Articles | Volume 17, issue 2
https://doi.org/10.5194/os-17-593-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-17-593-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Norwegian Sea net community production estimated from O2 and prototype CO2 optode measurements on a Seaglider
Centre for Ocean and Atmospheric Sciences, School of Environmental
Sciences, University of East Anglia, Norwich, UK
NIOZ Royal Netherlands Institute for Sea Research, Department of Ocean
Systems (OCS), Texel, the Netherlands
Ingunn Skjelvan
NORCE Norwegian Research Centre, Bjerknes Centre for Climate Research,
Bergen, Norway
Dariia Atamanchuk
Department of Oceanography, Dalhousie University, Halifax, Canada
Anders Tengberg
Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
Matthew P. Humphreys
NIOZ Royal Netherlands Institute for Sea Research, Department of Ocean
Systems (OCS), Texel, the Netherlands
Socratis Loucaides
National Oceanography Centre, European Way, Southampton, UK
Liam Fernand
Centre for Environment, Fisheries and Aquaculture Sciences, Lowestoft, UK
Jan Kaiser
Centre for Ocean and Atmospheric Sciences, School of Environmental
Sciences, University of East Anglia, Norwich, UK
Related authors
No articles found.
Riccardo Martellucci, Michele Giani, Elena Mauri, Laurent Coppola, Melf Paulsen, Marine Fourrier, Sara Pensieri, Vanessa Cardin, Carlotta Dentico, Roberto Bozzano, Carolina Cantoni, Anna Lucchetta, Alfredo Izquierdo, Miguel Bruno, and Ingunn Skjelvan
Earth Syst. Sci. Data, 16, 5333–5356, https://doi.org/10.5194/essd-16-5333-2024, https://doi.org/10.5194/essd-16-5333-2024, 2024
Short summary
Short summary
As part of the ATL2MED demonstration experiment, two autonomous surface vehicles undertook a 9-month mission from the northeastern Atlantic to the Adriatic Sea. Biofouling affected the measurement of variables such as conductivity and dissolved oxygen. COVID-19 limited the availability of discrete samples for validation. We present correction methods for salinity and dissolved oxygen. We use model products to correct salinity and apply the Argo floats in-air correction method for oxygen
Louise Delaigue, Gert-Jan Reichart, Chris Galley, Yasmina Ourradi, and Matthew Paul Humphreys
EGUsphere, https://doi.org/10.5194/egusphere-2024-2853, https://doi.org/10.5194/egusphere-2024-2853, 2024
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Our study analyzed pH in ocean surface waters to understand how they fluctuate with changes in temperature, salinity, and biological activities. We found that temperature mainly controls daily pH variations, but biological processes also play a role, especially in affecting CO2 levels between the ocean and atmosphere. Our research shows how these factors together maintain the balance of ocean chemistry, which is crucial for predicting changes in marine environments.
Matthew P. Humphreys
Ocean Sci., 20, 1325–1350, https://doi.org/10.5194/os-20-1325-2024, https://doi.org/10.5194/os-20-1325-2024, 2024
Short summary
Short summary
The ocean takes up carbon dioxide (CO2) from the atmosphere, slowing climate change. This CO2 uptake is controlled by a property called ƒCO2. Seawater ƒCO2 changes as seawater warms or cools, although by an uncertain amount; measurements and calculations give inconsistent results. Here, we work out how ƒCO2 should, in theory, respond to temperature. This matches field data and model calculations but still has discrepancies with scarce laboratory results, which need more measurements to resolve.
Siv K. Lauvset, Nico Lange, Toste Tanhua, Henry C. Bittig, Are Olsen, Alex Kozyr, Marta Álvarez, Kumiko Azetsu-Scott, Peter J. Brown, Brendan R. Carter, Leticia Cotrim da Cunha, Mario Hoppema, Matthew P. Humphreys, Masao Ishii, Emil Jeansson, Akihiko Murata, Jens Daniel Müller, Fiz F. Pérez, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Adam Ulfsbo, Anton Velo, Ryan J. Woosley, and Robert M. Key
Earth Syst. Sci. Data, 16, 2047–2072, https://doi.org/10.5194/essd-16-2047-2024, https://doi.org/10.5194/essd-16-2047-2024, 2024
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by the chemical analysis of water bottle samples from scientific cruises. GLODAPv2.2023 is the fifth update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality controlling, including systematic evaluation of measurement biases. This version contains data from 1108 hydrographic cruises covering the world's oceans from 1972 to 2021.
Charlotte A. J. Williams, Tom Hull, Jan Kaiser, Claire Mahaffey, Naomi Greenwood, Matthew Toberman, and Matthew R. Palmer
Biogeosciences, 21, 1961–1971, https://doi.org/10.5194/bg-21-1961-2024, https://doi.org/10.5194/bg-21-1961-2024, 2024
Short summary
Short summary
Oxygen (O2) is a key indicator of ocean health. The risk of O2 loss in the productive coastal/continental slope regions is increasing. Autonomous underwater vehicles equipped with O2 optodes provide lots of data but have problems resolving strong vertical O2 changes. Here we show how to overcome this and calculate how much O2 is supplied to the low-O2 bottom waters via mixing. Bursts in mixing supply nearly all of the O2 to bottom waters in autumn, stopping them reaching ecologically low levels.
Nico Lange, Björn Fiedler, Marta Álvarez, Alice Benoit-Cattin, Heather Benway, Pier Luigi Buttigieg, Laurent Coppola, Kim Currie, Susana Flecha, Dana S. Gerlach, Makio Honda, I. Emma Huertas, Siv K. Lauvset, Frank Muller-Karger, Arne Körtzinger, Kevin M. O'Brien, Sólveig R. Ólafsdóttir, Fernando C. Pacheco, Digna Rueda-Roa, Ingunn Skjelvan, Masahide Wakita, Angelicque White, and Toste Tanhua
Earth Syst. Sci. Data, 16, 1901–1931, https://doi.org/10.5194/essd-16-1901-2024, https://doi.org/10.5194/essd-16-1901-2024, 2024
Short summary
Short summary
The Synthesis Product for Ocean Time Series (SPOTS) is a novel achievement expanding and complementing the biogeochemical data landscape by providing consistent and high-quality biogeochemical time-series data from 12 ship-based fixed time-series programs. SPOTS covers multiple unique marine environments and time-series ranges, including data from 1983 to 2021. All in all, it facilitates a variety of applications that benefit from the collective value of biogeochemical time-series observations.
Amelia M. H. Bond, Markus M. Frey, Jan Kaiser, Jörg Kleffmann, Anna E. Jones, and Freya A. Squires
Atmos. Chem. Phys., 23, 5533–5550, https://doi.org/10.5194/acp-23-5533-2023, https://doi.org/10.5194/acp-23-5533-2023, 2023
Short summary
Short summary
Atmospheric nitrous acid (HONO) amount fractions measured at Halley Research Station, Antarctica, were found to be low. Vertical fluxes of HONO from the snow were also measured and agree with the estimated HONO production rate from photolysis of snow nitrate. In a simple box model of HONO sources and sinks, there was good agreement between the measured flux and amount fraction. HONO was found to be an important OH radical source at Halley.
Siv K. Lauvset, Nico Lange, Toste Tanhua, Henry C. Bittig, Are Olsen, Alex Kozyr, Simone Alin, Marta Álvarez, Kumiko Azetsu-Scott, Leticia Barbero, Susan Becker, Peter J. Brown, Brendan R. Carter, Leticia Cotrim da Cunha, Richard A. Feely, Mario Hoppema, Matthew P. Humphreys, Masao Ishii, Emil Jeansson, Li-Qing Jiang, Steve D. Jones, Claire Lo Monaco, Akihiko Murata, Jens Daniel Müller, Fiz F. Pérez, Benjamin Pfeil, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Bronte Tilbrook, Adam Ulfsbo, Anton Velo, Ryan J. Woosley, and Robert M. Key
Earth Syst. Sci. Data, 14, 5543–5572, https://doi.org/10.5194/essd-14-5543-2022, https://doi.org/10.5194/essd-14-5543-2022, 2022
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by the chemical analysis of water bottle samples from scientific cruises. GLODAPv2.2022 is the fourth update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality controlling, including systematic evaluation of measurement biases. This version contains data from 1085 hydrographic cruises covering the world's oceans from 1972 to 2021.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Luke Gregor, Judith Hauck, Corinne Le Quéré, Ingrid T. Luijkx, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Ramdane Alkama, Almut Arneth, Vivek K. Arora, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Henry C. Bittig, Laurent Bopp, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Wiley Evans, Stefanie Falk, Richard A. Feely, Thomas Gasser, Marion Gehlen, Thanos Gkritzalis, Lucas Gloege, Giacomo Grassi, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Atul K. Jain, Annika Jersild, Koji Kadono, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Keith Lindsay, Junjie Liu, Zhu Liu, Gregg Marland, Nicolas Mayot, Matthew J. McGrath, Nicolas Metzl, Natalie M. Monacci, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien, Tsuneo Ono, Paul I. Palmer, Naiqing Pan, Denis Pierrot, Katie Pocock, Benjamin Poulter, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Carmen Rodriguez, Thais M. Rosan, Jörg Schwinger, Roland Séférian, Jamie D. Shutler, Ingunn Skjelvan, Tobias Steinhoff, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Toste Tanhua, Pieter P. Tans, Xiangjun Tian, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Anthony P. Walker, Rik Wanninkhof, Chris Whitehead, Anna Willstrand Wranne, Rebecca Wright, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 14, 4811–4900, https://doi.org/10.5194/essd-14-4811-2022, https://doi.org/10.5194/essd-14-4811-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2022 describes the datasets and methodology used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, the land ecosystems, and the ocean. These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Benjamin R. Loveday, Timothy Smyth, Anıl Akpinar, Tom Hull, Mark E. Inall, Jan Kaiser, Bastien Y. Queste, Matt Tobermann, Charlotte A. J. Williams, and Matthew R. Palmer
Earth Syst. Sci. Data, 14, 3997–4016, https://doi.org/10.5194/essd-14-3997-2022, https://doi.org/10.5194/essd-14-3997-2022, 2022
Short summary
Short summary
Using a new approach to combine autonomous underwater glider data and satellite Earth observations, we have generated a 19-month time series of North Sea net primary productivity – the rate at which phytoplankton absorbs carbon dioxide minus that lost through respiration. This time series, which spans 13 gliders, allows for new investigations into small-scale, high-frequency variability in the biogeochemical processes that underpin the carbon cycle and coastal marine ecosystems in shelf seas.
Michael P. Hemming, Jan Kaiser, Jacqueline Boutin, Liliane Merlivat, Karen J. Heywood, Dorothee C. E. Bakker, Gareth A. Lee, Marcos Cobas García, David Antoine, and Kiminori Shitashima
Ocean Sci., 18, 1245–1262, https://doi.org/10.5194/os-18-1245-2022, https://doi.org/10.5194/os-18-1245-2022, 2022
Short summary
Short summary
An underwater glider mission was carried out in spring 2016 near a mooring in the northwestern Mediterranean Sea. The glider deployment served as a test of a prototype ion-sensitive field-effect transistor pH sensor. Mean net community production rates were estimated from glider and buoy measurements of dissolved oxygen and inorganic carbon concentrations before and during the spring bloom. Incorporating advection is important for accurate mass budgets. Unexpected metabolic quotients were found.
Josué Bock, Jan Kaiser, Max Thomas, Andreas Bott, and Roland von Glasow
Geosci. Model Dev., 15, 5807–5828, https://doi.org/10.5194/gmd-15-5807-2022, https://doi.org/10.5194/gmd-15-5807-2022, 2022
Short summary
Short summary
MISTRA-v9.0 is an atmospheric boundary layer chemistry model. The model includes a detailed particle description with regards to the microphysics, gas–particle interactions, and liquid phase chemistry within particles. Version 9.0 is the first release of MISTRA as an open-source community model. This paper presents a thorough description of the model characteristics and components. We show some examples of simulations reproducing previous studies with MISTRA with good consistency.
Olivier Sulpis, Matthew P. Humphreys, Monica M. Wilhelmus, Dustin Carroll, William M. Berelson, Dimitris Menemenlis, Jack J. Middelburg, and Jess F. Adkins
Geosci. Model Dev., 15, 2105–2131, https://doi.org/10.5194/gmd-15-2105-2022, https://doi.org/10.5194/gmd-15-2105-2022, 2022
Short summary
Short summary
A quarter of the surface of the Earth is covered by marine sediments rich in calcium carbonates, and their dissolution acts as a giant antacid tablet protecting the ocean against human-made acidification caused by massive CO2 emissions. Here, we present a new model of sediment chemistry that incorporates the latest experimental findings on calcium carbonate dissolution kinetics. This model can be used to predict how marine sediments evolve through time in response to environmental perturbations.
Filippa Fransner, Friederike Fröb, Jerry Tjiputra, Nadine Goris, Siv K. Lauvset, Ingunn Skjelvan, Emil Jeansson, Abdirahman Omar, Melissa Chierici, Elizabeth Jones, Agneta Fransson, Sólveig R. Ólafsdóttir, Truls Johannessen, and Are Olsen
Biogeosciences, 19, 979–1012, https://doi.org/10.5194/bg-19-979-2022, https://doi.org/10.5194/bg-19-979-2022, 2022
Short summary
Short summary
Ocean acidification, a direct consequence of the CO2 release by human activities, is a serious threat to marine ecosystems. In this study, we conduct a detailed investigation of the acidification of the Nordic Seas, from 1850 to 2100, by using a large set of samples taken during research cruises together with numerical model simulations. We estimate the effects of changes in different environmental factors on the rate of acidification and its potential effects on cold-water corals.
Jannes Koelling, Dariia Atamanchuk, Johannes Karstensen, Patricia Handmann, and Douglas W. R. Wallace
Biogeosciences, 19, 437–454, https://doi.org/10.5194/bg-19-437-2022, https://doi.org/10.5194/bg-19-437-2022, 2022
Short summary
Short summary
In this study, we investigate oxygen variability in the deep western boundary current in the Labrador Sea from multiyear moored records. We estimate that about half of the oxygen taken up in the interior Labrador Sea by air–sea gas exchange during deep water formation is exported southward the same year. Our results underline the complexity of the oxygen uptake and export in the Labrador Sea and highlight the important role this region plays in supplying oxygen to the deep ocean.
Matthew P. Humphreys, Erik H. Meesters, Henk de Haas, Szabina Karancz, Louise Delaigue, Karel Bakker, Gerard Duineveld, Siham de Goeyse, Andreas F. Haas, Furu Mienis, Sharyn Ossebaar, and Fleur C. van Duyl
Biogeosciences, 19, 347–358, https://doi.org/10.5194/bg-19-347-2022, https://doi.org/10.5194/bg-19-347-2022, 2022
Short summary
Short summary
A series of submarine sinkholes were recently discovered on Luymes Bank, part of Saba Bank, a carbonate platform in the Caribbean Netherlands. Here, we investigate the waters inside these sinkholes for the first time. One of the sinkholes contained a body of dense, low-oxygen and low-pH water, which we call the
acid lake. We use measurements of seawater chemistry to work out what processes were responsible for forming the acid lake and discuss the consequences for the carbonate platform.
Matthew P. Humphreys, Ernie R. Lewis, Jonathan D. Sharp, and Denis Pierrot
Geosci. Model Dev., 15, 15–43, https://doi.org/10.5194/gmd-15-15-2022, https://doi.org/10.5194/gmd-15-15-2022, 2022
Short summary
Short summary
The ocean helps to mitigate our impact on Earth's climate by absorbing about a quarter of the carbon dioxide (CO2) released by human activities each year. However, once absorbed, chemical reactions between CO2 and water reduce seawater pH (
ocean acidification), which may have adverse effects on marine ecosystems. Our Python package, PyCO2SYS, models the chemical reactions of CO2 in seawater, allowing us to quantify the corresponding changes in pH and related chemical properties.
Krysten Rutherford, Katja Fennel, Dariia Atamanchuk, Douglas Wallace, and Helmuth Thomas
Biogeosciences, 18, 6271–6286, https://doi.org/10.5194/bg-18-6271-2021, https://doi.org/10.5194/bg-18-6271-2021, 2021
Short summary
Short summary
Using a regional model of the northwestern North Atlantic shelves in combination with a surface water time series and repeat transect observations, we investigate surface CO2 variability on the Scotian Shelf. The study highlights a strong seasonal cycle in shelf-wide pCO2 and spatial variability throughout the summer months driven by physical events. The simulated net flux of CO2 on the Scotian Shelf is out of the ocean, deviating from the global air–sea CO2 flux trend in continental shelves.
Tom Hull, Naomi Greenwood, Antony Birchill, Alexander Beaton, Matthew Palmer, and Jan Kaiser
Biogeosciences, 18, 6167–6180, https://doi.org/10.5194/bg-18-6167-2021, https://doi.org/10.5194/bg-18-6167-2021, 2021
Short summary
Short summary
The shallow shelf seas play a large role in the global cycling of CO2 and also support large fisheries. We use an autonomous underwater vehicle in the central North Sea to measure the rates of change in oxygen and nutrients.
Using these data we determine the amount of carbon dioxide taken out of the atmosphere by the sea and measure how productive the region is.
These observations will be useful for improving our predictive models and help us predict and adapt to a changing ocean.
Max Thomas, Johannes C. Laube, Jan Kaiser, Samuel Allin, Patricia Martinerie, Robert Mulvaney, Anna Ridley, Thomas Röckmann, William T. Sturges, and Emmanuel Witrant
Atmos. Chem. Phys., 21, 6857–6873, https://doi.org/10.5194/acp-21-6857-2021, https://doi.org/10.5194/acp-21-6857-2021, 2021
Short summary
Short summary
CFC gases are destroying the Earth's life-protecting ozone layer. We improve understanding of CFC destruction by measuring the isotopic fingerprint of the carbon in the three most abundant CFCs. These are the first such measurements in the main region where CFCs are destroyed – the stratosphere. We reconstruct the atmospheric isotope histories of these CFCs back to the 1950s by measuring air extracted from deep snow and using a model. The model and the measurements are generally consistent.
Max Thomas, James France, Odile Crabeck, Benjamin Hall, Verena Hof, Dirk Notz, Tokoloho Rampai, Leif Riemenschneider, Oliver John Tooth, Mathilde Tranter, and Jan Kaiser
Atmos. Meas. Tech., 14, 1833–1849, https://doi.org/10.5194/amt-14-1833-2021, https://doi.org/10.5194/amt-14-1833-2021, 2021
Short summary
Short summary
We describe the Roland von Glasow Air-Sea-Ice Chamber, a laboratory facility for studying ocean–sea-ice–atmosphere interactions. We characterise the technical capabilities of our facility to help future users plan and perform experiments. We also characterise the sea ice grown in the facility, showing that the extinction of photosynthetically active radiation, the bulk salinity, and the growth rate of our artificial sea ice are within the range of natural values.
Meike Becker, Are Olsen, Peter Landschützer, Abdirhaman Omar, Gregor Rehder, Christian Rödenbeck, and Ingunn Skjelvan
Biogeosciences, 18, 1127–1147, https://doi.org/10.5194/bg-18-1127-2021, https://doi.org/10.5194/bg-18-1127-2021, 2021
Short summary
Short summary
We developed a simple method to refine existing open-ocean maps towards different coastal seas. Using a multi-linear regression, we produced monthly maps of surface ocean fCO2 in the northern European coastal seas (the North Sea, the Baltic Sea, the Norwegian Coast and the Barents Sea) covering a time period from 1998 to 2016. Based on this fCO2 map, we calculate trends in surface ocean fCO2, pH and the air–sea gas exchange.
Nicolai von Oppeln-Bronikowski, Brad de Young, Dariia Atamanchuk, and Douglas Wallace
Ocean Sci., 17, 1–16, https://doi.org/10.5194/os-17-1-2021, https://doi.org/10.5194/os-17-1-2021, 2021
Short summary
Short summary
This paper describes challenges around the direct measurement of CO2 in the ocean using ocean gliders. We discuss our method of using multiple sensor platforms as test beds to carry out observing experiments and highlight the implications of our study for future glider missions. We also show high-resolution measurements and discuss challenges and lessons learned in the context of future ocean gas measurements.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Judith Hauck, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Corinne Le Quéré, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone Alin, Luiz E. O. C. Aragão, Almut Arneth, Vivek Arora, Nicholas R. Bates, Meike Becker, Alice Benoit-Cattin, Henry C. Bittig, Laurent Bopp, Selma Bultan, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Wiley Evans, Liesbeth Florentie, Piers M. Forster, Thomas Gasser, Marion Gehlen, Dennis Gilfillan, Thanos Gkritzalis, Luke Gregor, Nicolas Gruber, Ian Harris, Kerstin Hartung, Vanessa Haverd, Richard A. Houghton, Tatiana Ilyina, Atul K. Jain, Emilie Joetzjer, Koji Kadono, Etsushi Kato, Vassilis Kitidis, Jan Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Zhu Liu, Danica Lombardozzi, Gregg Marland, Nicolas Metzl, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien, Tsuneo Ono, Paul I. Palmer, Denis Pierrot, Benjamin Poulter, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Jörg Schwinger, Roland Séférian, Ingunn Skjelvan, Adam J. P. Smith, Adrienne J. Sutton, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Guido van der Werf, Nicolas Vuichard, Anthony P. Walker, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Xu Yue, and Sönke Zaehle
Earth Syst. Sci. Data, 12, 3269–3340, https://doi.org/10.5194/essd-12-3269-2020, https://doi.org/10.5194/essd-12-3269-2020, 2020
Short summary
Short summary
The Global Carbon Budget 2020 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Hannah K. Donald, Gavin L. Foster, Nico Fröhberg, George E. A. Swann, Alex J. Poulton, C. Mark Moore, and Matthew P. Humphreys
Biogeosciences, 17, 2825–2837, https://doi.org/10.5194/bg-17-2825-2020, https://doi.org/10.5194/bg-17-2825-2020, 2020
Short summary
Short summary
The boron isotope pH proxy is increasingly being used to reconstruct ocean pH in the past. Here we detail a novel analytical methodology for measuring the boron isotopic composition (δ11B) of diatom opal and apply this to the study of the diatom Thalassiosira weissflogii grown in culture over a range of pH. To our knowledge this is the first study of its kind and provides unique insights into the way in which diatoms incorporate boron and their potential as archives of palaeoclimate records.
Robyn E. Tuerena, Raja S. Ganeshram, Matthew P. Humphreys, Thomas J. Browning, Heather Bouman, and Alexander P. Piotrowski
Biogeosciences, 16, 3621–3635, https://doi.org/10.5194/bg-16-3621-2019, https://doi.org/10.5194/bg-16-3621-2019, 2019
Short summary
Short summary
The carbon isotopes in algae can be used to predict food sources and environmental change. We explore how dissolved carbon is taken up by algae in the South Atlantic Ocean and how this affects their carbon isotope signature. We find that cell size controls isotope fractionation. We use our results to investigate how climate change may impact the carbon isotopes in algae. We suggest a shift to smaller algae in this region would decrease the carbon isotope ratio at the base of the food web.
Yingxu Wu, Mathis P. Hain, Matthew P. Humphreys, Sue Hartman, and Toby Tyrrell
Biogeosciences, 16, 2661–2681, https://doi.org/10.5194/bg-16-2661-2019, https://doi.org/10.5194/bg-16-2661-2019, 2019
Short summary
Short summary
This study takes advantage of the GLODAPv2 database to investigate the processes driving the surface ocean dissolved inorganic carbon distribution, with the focus on its latitudinal gradient between the polar oceans and the low-latitude oceans. Based on our quantitative study, we find that temperature-driven CO2 gas exchange and high-latitude upwelling of DIC- and TA-rich deep waters are the two major drivers, with the importance of the latter not having been previously realized.
Chris J. Daniels, Alex J. Poulton, William M. Balch, Emilio Marañón, Tim Adey, Bruce C. Bowler, Pedro Cermeño, Anastasia Charalampopoulou, David W. Crawford, Dave Drapeau, Yuanyuan Feng, Ana Fernández, Emilio Fernández, Glaucia M. Fragoso, Natalia González, Lisa M. Graziano, Rachel Heslop, Patrick M. Holligan, Jason Hopkins, María Huete-Ortega, David A. Hutchins, Phoebe J. Lam, Michael S. Lipsen, Daffne C. López-Sandoval, Socratis Loucaides, Adrian Marchetti, Kyle M. J. Mayers, Andrew P. Rees, Cristina Sobrino, Eithne Tynan, and Toby Tyrrell
Earth Syst. Sci. Data, 10, 1859–1876, https://doi.org/10.5194/essd-10-1859-2018, https://doi.org/10.5194/essd-10-1859-2018, 2018
Short summary
Short summary
Calcifying marine algae (coccolithophores) are key to oceanic biogeochemical processes, such as calcium carbonate production and export. We compile a global database of calcium carbonate production from field samples (n = 2756), alongside primary production rates and coccolithophore abundance. Basic statistical analysis highlights global distribution, average surface and integrated rates, patterns with depth and the importance of considering cell-normalised rates as a simple physiological index.
Reiner Onken, Heinz-Volker Fiekas, Laurent Beguery, Ines Borrione, Andreas Funk, Michael Hemming, Jaime Hernandez-Lasheras, Karen J. Heywood, Jan Kaiser, Michaela Knoll, Baptiste Mourre, Paolo Oddo, Pierre-Marie Poulain, Bastien Y. Queste, Aniello Russo, Kiminori Shitashima, Martin Siderius, and Elizabeth Thorp Küsel
Ocean Sci., 14, 321–335, https://doi.org/10.5194/os-14-321-2018, https://doi.org/10.5194/os-14-321-2018, 2018
Short summary
Short summary
In June 2014, high-resolution oceanographic data were collected in the
western Mediterranean Sea by two research vessels, 11 gliders, moored
instruments, drifters, and one profiling float. The objective
of this article is to provide an overview of the data set which
is utilised by various ongoing studies, focusing on (i) water masses and circulation, (ii) operational forecasting, (iii) data assimilation, (iv) variability of the ocean, and (v) new payloads
for gliders.
Chris J. Curtis, Jan Kaiser, Alina Marca, N. John Anderson, Gavin Simpson, Vivienne Jones, and Erika Whiteford
Biogeosciences, 15, 529–550, https://doi.org/10.5194/bg-15-529-2018, https://doi.org/10.5194/bg-15-529-2018, 2018
Short summary
Short summary
Few studies have investigated the atmospheric deposition of nitrate in the Arctic or its impacts on Arctic ecosystems. We collected late-season snowpack from three regions in western Greenland from the coast to the edge of the ice sheet. We found major differences in nitrate concentrations (lower at the coast) and deposition load (higher). Nitrate in snowpack undergoes losses and isotopic enrichment which are greatest in inland areas; hence deposition impacts may be greatest at the coast.
David J. Morris, John K. Pinnegar, David L. Maxwell, Stephen R. Dye, Liam J. Fernand, Stephen Flatman, Oliver J. Williams, and Stuart I. Rogers
Earth Syst. Sci. Data, 10, 27–51, https://doi.org/10.5194/essd-10-27-2018, https://doi.org/10.5194/essd-10-27-2018, 2018
Short summary
Short summary
This paper brings together over 10 million previously unpublished, quality-controlled seawater temperature measurements from 130 years of government-funded marine science investigations in the United Kingdom (UK).
The records focus around the UK but also extend from Greenland to the Bay of Biscay. Making the data open and accessible provides valuable information to assess changing hydrological conditions.
The data are now all publicly available at https://www.cefas.co.uk/cefas-data-hub/.
Michaela Knoll, Ines Borrione, Heinz-Volker Fiekas, Andreas Funk, Michael P. Hemming, Jan Kaiser, Reiner Onken, Bastien Queste, and Aniello Russo
Ocean Sci., 13, 889–904, https://doi.org/10.5194/os-13-889-2017, https://doi.org/10.5194/os-13-889-2017, 2017
Short summary
Short summary
The hydrography and circulation west of Sardinia, observed in June 2014 during REP14-MED by means of various measuring platforms, are presented and compared with previous knowledge. So far, the circulation of this area is not well-known and the hydrography is subject to long-term changes. The different water masses are characterized and temporal changes are emphasized. The observed eddies are specified and geostrophic transports in the upper ocean are presented.
Michael P. Hemming, Jan Kaiser, Karen J. Heywood, Dorothee C.E. Bakker, Jacqueline Boutin, Kiminori Shitashima, Gareth Lee, Oliver Legge, and Reiner Onken
Ocean Sci., 13, 427–442, https://doi.org/10.5194/os-13-427-2017, https://doi.org/10.5194/os-13-427-2017, 2017
Short summary
Short summary
Underwater gliders are useful platforms for monitoring the world oceans at a high resolution. An experimental pH sensor was attached to an underwater glider in the Mediterranean Sea, which is an important carbon sink region. Comparing measurements from the glider with those obtained from a ship indicated that there were issues with the experimental pH sensor. Correcting for these issues enabled us to look at pH variability in the area related to biomass abundance and physical water properties.
Markella Prokopiou, Patricia Martinerie, Célia J. Sapart, Emmanuel Witrant, Guillaume Monteil, Kentaro Ishijima, Sophie Bernard, Jan Kaiser, Ingeborg Levin, Thomas Blunier, David Etheridge, Ed Dlugokencky, Roderik S. W. van de Wal, and Thomas Röckmann
Atmos. Chem. Phys., 17, 4539–4564, https://doi.org/10.5194/acp-17-4539-2017, https://doi.org/10.5194/acp-17-4539-2017, 2017
Short summary
Short summary
Nitrous oxide is the third most important anthropogenic greenhouse gas with an increasing mole fraction. To understand its natural and anthropogenic sources
we employ isotope measurements. Results show that while the N2O mole fraction increases, its heavy isotope content decreases. The isotopic changes observed underline the dominance of agricultural emissions especially at the early part of the record, whereas in the later decades the contribution from other anthropogenic sources increases.
Imke Grefe, Sophie Fielding, Karen J. Heywood, and Jan Kaiser
Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-73, https://doi.org/10.5194/bg-2017-73, 2017
Revised manuscript not accepted
Meike Becker, Nils Andersen, Helmut Erlenkeuser, Matthew P. Humphreys, Toste Tanhua, and Arne Körtzinger
Earth Syst. Sci. Data, 8, 559–570, https://doi.org/10.5194/essd-8-559-2016, https://doi.org/10.5194/essd-8-559-2016, 2016
Short summary
Short summary
The stable carbon isotope composition of dissolved inorganic carbon (δ13C-DIC) can be used to quantify fluxes within the marine carbon system such as the exchange between ocean and atmosphere or the amount of anthropogenic carbon in the water column. In this study, an internally consistent δ13C-DIC dataset for the North Atlantic is presented. The data have undergone a secondary quality control during which systematic biases between the respective cruises have been quantified and adjusted.
Dorothee C. E. Bakker, Benjamin Pfeil, Camilla S. Landa, Nicolas Metzl, Kevin M. O'Brien, Are Olsen, Karl Smith, Cathy Cosca, Sumiko Harasawa, Stephen D. Jones, Shin-ichiro Nakaoka, Yukihiro Nojiri, Ute Schuster, Tobias Steinhoff, Colm Sweeney, Taro Takahashi, Bronte Tilbrook, Chisato Wada, Rik Wanninkhof, Simone R. Alin, Carlos F. Balestrini, Leticia Barbero, Nicholas R. Bates, Alejandro A. Bianchi, Frédéric Bonou, Jacqueline Boutin, Yann Bozec, Eugene F. Burger, Wei-Jun Cai, Robert D. Castle, Liqi Chen, Melissa Chierici, Kim Currie, Wiley Evans, Charles Featherstone, Richard A. Feely, Agneta Fransson, Catherine Goyet, Naomi Greenwood, Luke Gregor, Steven Hankin, Nick J. Hardman-Mountford, Jérôme Harlay, Judith Hauck, Mario Hoppema, Matthew P. Humphreys, Christopher W. Hunt, Betty Huss, J. Severino P. Ibánhez, Truls Johannessen, Ralph Keeling, Vassilis Kitidis, Arne Körtzinger, Alex Kozyr, Evangelia Krasakopoulou, Akira Kuwata, Peter Landschützer, Siv K. Lauvset, Nathalie Lefèvre, Claire Lo Monaco, Ansley Manke, Jeremy T. Mathis, Liliane Merlivat, Frank J. Millero, Pedro M. S. Monteiro, David R. Munro, Akihiko Murata, Timothy Newberger, Abdirahman M. Omar, Tsuneo Ono, Kristina Paterson, David Pearce, Denis Pierrot, Lisa L. Robbins, Shu Saito, Joe Salisbury, Reiner Schlitzer, Bernd Schneider, Roland Schweitzer, Rainer Sieger, Ingunn Skjelvan, Kevin F. Sullivan, Stewart C. Sutherland, Adrienne J. Sutton, Kazuaki Tadokoro, Maciej Telszewski, Matthias Tuma, Steven M. A. C. van Heuven, Doug Vandemark, Brian Ward, Andrew J. Watson, and Suqing Xu
Earth Syst. Sci. Data, 8, 383–413, https://doi.org/10.5194/essd-8-383-2016, https://doi.org/10.5194/essd-8-383-2016, 2016
Short summary
Short summary
Version 3 of the Surface Ocean CO2 Atlas (www.socat.info) has 14.5 million CO2 (carbon dioxide) values for the years 1957 to 2014 covering the global oceans and coastal seas. Version 3 is an update to version 2 with a longer record and 44 % more CO2 values. The CO2 measurements have been made on ships, fixed moorings and drifting buoys. SOCAT enables quantification of the ocean carbon sink and ocean acidification, as well as model evaluation, thus informing climate negotiations.
Matthew P. Humphreys, Florence M. Greatrix, Eithne Tynan, Eric P. Achterberg, Alex M. Griffiths, Claudia H. Fry, Rebecca Garley, Alison McDonald, and Adrian J. Boyce
Earth Syst. Sci. Data, 8, 221–233, https://doi.org/10.5194/essd-8-221-2016, https://doi.org/10.5194/essd-8-221-2016, 2016
Short summary
Short summary
This paper reports the stable isotope composition of dissolved inorganic carbon in seawater for a transect from west to east across the North Atlantic Ocean. The results can be used to study oceanic uptake of anthropogenic carbon dioxide, and also to investigate the natural biological carbon pump. We also provide stable DIC isotope results for two batches of Dickson seawater CRMs to enable intercomparisons with other studies.
Dominika Lewicka-Szczebak, Jens Dyckmans, Jan Kaiser, Alina Marca, Jürgen Augustin, and Reinhard Well
Biogeosciences, 13, 1129–1144, https://doi.org/10.5194/bg-13-1129-2016, https://doi.org/10.5194/bg-13-1129-2016, 2016
Short summary
Short summary
Oxygen isotopic signatures of N2O are formed in complex multistep enzymatic reactions and depend on isotopic fractionation during enzymatic reduction of nitrate to N2O and on the oxygen isotope exchange with soil water. We propose a new method for quantification of oxygen isotope exchange, with simultaneous determination of oxygen isotopic signatures, to decipher the mechanism of oxygen isotopic fractionation. We indicate the differences between fractionation mechanisms by various pathways.
Tom Hull, Naomi Greenwood, Jan Kaiser, and Martin Johnson
Biogeosciences, 13, 943–959, https://doi.org/10.5194/bg-13-943-2016, https://doi.org/10.5194/bg-13-943-2016, 2016
Short summary
Short summary
We explore the estimation of NCP using an oxygen time series from a surface mooring located in the River Thames plume. Our study site is identified as a region of net heterotrophy with strong seasonal variability. Short-term daily variability in oxygen and horizontal advection is demonstrated to make accurate estimates challenging. The effects of bubble-induced supersaturation is shown to have a large influence on cumulative annual estimates.
S. Walter, A. Kock, T. Steinhoff, B. Fiedler, P. Fietzek, J. Kaiser, M. Krol, M. E. Popa, Q. Chen, T. Tanhua, and T. Röckmann
Biogeosciences, 13, 323–340, https://doi.org/10.5194/bg-13-323-2016, https://doi.org/10.5194/bg-13-323-2016, 2016
Short summary
Short summary
Oceans are a source of H2, an indirect greenhouse gas. Measurements constraining the temporal and spatial patterns of oceanic H2 emissions are sparse and although H2 is assumed to be produced mainly biologically, direct evidence for biogenic marine production was lacking. By analyzing the H2 isotopic composition (δD) we were able to constrain the global H2 budget in more detail, verify biogenic production and point to additional sources. We also showed that current models are reasonably working.
J. Gloël, C. Robinson, G. H. Tilstone, G. Tarran, and J. Kaiser
Ocean Sci., 11, 947–952, https://doi.org/10.5194/os-11-947-2015, https://doi.org/10.5194/os-11-947-2015, 2015
Short summary
Short summary
We assess benzalkonium chloride (BAC) as alternative to mercuric chloride (HgCl2) for preservation of seawater samples. BAC concentrations of 50mg dm–3 inhibited microbial activity for at least 3 days in samples tested with chlorophyll a concentrations up to 1mg m–3. With fewer risks to health and environment, and lower waste disposal costs, BAC could be a short-term alternative to HgCl2, but cannot replace it for oxygen triple isotope samples, which require storage over weeks to months.
K. Ishijima, M. Takigawa, K. Sudo, S. Toyoda, N. Yoshida, T. Röckmann, J. Kaiser, S. Aoki, S. Morimoto, S. Sugawara, and T. Nakazawa
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-15-19947-2015, https://doi.org/10.5194/acpd-15-19947-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
We developed an atmospheric N2O isotopocule model based on a chemistry-coupled atmospheric general circulation model and a simple method to optimize the model, and estimated the isotopic signatures of surface sources at the hemispheric scale. Data obtained from ground-based observations, measurements of firn air, and balloon and aircraft flights were used to optimize the long-term trends, interhemispheric gradients, and photolytic fractionation, respectively, in the model.
S. J. Allin, J. C. Laube, E. Witrant, J. Kaiser, E. McKenna, P. Dennis, R. Mulvaney, E. Capron, P. Martinerie, T. Röckmann, T. Blunier, J. Schwander, P. J. Fraser, R. L. Langenfelds, and W. T. Sturges
Atmos. Chem. Phys., 15, 6867–6877, https://doi.org/10.5194/acp-15-6867-2015, https://doi.org/10.5194/acp-15-6867-2015, 2015
Short summary
Short summary
Stratospheric ozone protects life on Earth from harmful UV-B radiation. Chlorofluorocarbons (CFCs) are man-made compounds which act to destroy this barrier.
This paper presents (1) the first measurements of the stratospheric δ(37Cl) of CFCs -11 and -113; (2) the first quantification of long-term trends in the tropospheric δ(37Cl) of CFCs -11, -12 and -113.
This study provides a better understanding of source and sink processes associated with these destructive compounds.
M. P. Humphreys, E. P. Achterberg, A. M. Griffiths, A. McDonald, and A. J. Boyce
Earth Syst. Sci. Data, 7, 127–135, https://doi.org/10.5194/essd-7-127-2015, https://doi.org/10.5194/essd-7-127-2015, 2015
Short summary
Short summary
We present measurements of the stable carbon isotope composition of seawater dissolved inorganic carbon. The samples were collected during two research cruises in boreal summer 2012 in the northeastern Atlantic and Nordic Seas. The results can be used to investigate the marine carbon cycle, providing information about biological productivity and oceanic uptake of anthropogenic carbon dioxide.
D. J. Mrozek, C. van der Veen, M. Kliphuis, J. Kaiser, A. A. Wiegel, and T. Röckmann
Atmos. Meas. Tech., 8, 811–822, https://doi.org/10.5194/amt-8-811-2015, https://doi.org/10.5194/amt-8-811-2015, 2015
Short summary
Short summary
Our analytical system is a promising tool for investigating the triple oxygen isotope composition of CO2 from stratospheric air samples of volumes 100ml and smaller. The method is designed for measuring air samples with CO2 mole fractions between 360 and 400ppm, and it is the first fully automated analytical system that uses CeO2 as the isotope exchange medium.
I. Grefe and J. Kaiser
Ocean Sci., 10, 501–512, https://doi.org/10.5194/os-10-501-2014, https://doi.org/10.5194/os-10-501-2014, 2014
J. Friedrich, F. Janssen, D. Aleynik, H. W. Bange, N. Boltacheva, M. N. Çagatay, A. W. Dale, G. Etiope, Z. Erdem, M. Geraga, A. Gilli, M. T. Gomoiu, P. O. J. Hall, D. Hansson, Y. He, M. Holtappels, M. K. Kirf, M. Kononets, S. Konovalov, A. Lichtschlag, D. M. Livingstone, G. Marinaro, S. Mazlumyan, S. Naeher, R. P. North, G. Papatheodorou, O. Pfannkuche, R. Prien, G. Rehder, C. J. Schubert, T. Soltwedel, S. Sommer, H. Stahl, E. V. Stanev, A. Teaca, A. Tengberg, C. Waldmann, B. Wehrli, and F. Wenzhöfer
Biogeosciences, 11, 1215–1259, https://doi.org/10.5194/bg-11-1215-2014, https://doi.org/10.5194/bg-11-1215-2014, 2014
V. V. Petrenko, P. Martinerie, P. Novelli, D. M. Etheridge, I. Levin, Z. Wang, T. Blunier, J. Chappellaz, J. Kaiser, P. Lang, L. P. Steele, S. Hammer, J. Mak, R. L. Langenfelds, J. Schwander, J. P. Severinghaus, E. Witrant, G. Petron, M. O. Battle, G. Forster, W. T. Sturges, J.-F. Lamarque, K. Steffen, and J. W. C. White
Atmos. Chem. Phys., 13, 7567–7585, https://doi.org/10.5194/acp-13-7567-2013, https://doi.org/10.5194/acp-13-7567-2013, 2013
K. Castro-Morales, N. Cassar, D. R. Shoosmith, and J. Kaiser
Biogeosciences, 10, 2273–2291, https://doi.org/10.5194/bg-10-2273-2013, https://doi.org/10.5194/bg-10-2273-2013, 2013
Cited articles
Alkire, M. B., Lee, C., D'Asaro, E., Perry, M. J., Briggs, N., Cetinić,
I., and Gray, A.: Net community production and export from Seaglider
measurements in the North Atlantic after the spring bloom,
J. Geophys. Res.-Oceans, 119, 6121–6139, 2014.
Anderson, L. A.: On the hydrogen and oxygen content of marine phytoplankton,
Deep-Sea Res. Pt. I, 42, 1675–1680, 1995.
Anderson, L. A. and Sarmiento, J. L.: Redfield ratios of remineralization
determined by nutrient data analysis, Global Biogeochem. Cy., 8,
65–80, 1994.
Atamanchuk, D., Tengberg, A., Thomas, P. J., Hovdenes, J., Apostolidis, A.,
Huber, C., and Hall, P. O. J.: Performance of a lifetime-based optode for
measuring partial pressure of carbon dioxide in natural waters,
Limnol. Oceanogr.-Meth., 12, 63–73, https://doi.org/10.4319/lom.2014.12.63, 2014.
Atamanchuk, D., Kononets, M., Thomas, P. J., Hovdenes, J., Tengberg, A., and
Hall, P. O. J.: Continuous long-term observations of the carbonate system
dynamics in the water column of a temperate fjord, J. Marine Syst., 148,
272–284, https://doi.org/10.1016/j.jmarsys.2015.03.002, 2015a.
Atamanchuk, D., Tengberg, A., Aleynik, D., Fietzek, P., Shitashima, K.,
Lichtschlag, A., Hall, P. O. J., and Stahl, H.: Detection of CO2 leakage from
a simulated sub-seabed storage site using three different types of pCO2 sensors, Int. J. Greenh. Gas Con., 38, 121–134,
https://doi.org/10.1016/j.ijggc.2014.10.021, 2015b.
Bakker, D. C. E., Pfeil, B., Landa, C. S., Metzl, N., O'Brien, K. M., Olsen, A., Smith, K., Cosca, C., Harasawa, S., Jones, S. D., Nakaoka, S., Nojiri, Y., Schuster, U., Steinhoff, T., Sweeney, C., Takahashi, T., Tilbrook, B., Wada, C., Wanninkhof, R., Alin, S. R., Balestrini, C. F., Barbero, L., Bates, N. R., Bianchi, A. A., Bonou, F., Boutin, J., Bozec, Y., Burger, E. F., Cai, W.-J., Castle, R. D., Chen, L., Chierici, M., Currie, K., Evans, W., Featherstone, C., Feely, R. A., Fransson, A., Goyet, C., Greenwood, N., Gregor, L., Hankin, S., Hardman-Mountford, N. J., Harlay, J., Hauck, J., Hoppema, M., Humphreys, M. P., Hunt, C. W., Huss, B., Ibánhez, J. S. P., Johannessen, T., Keeling, R., Kitidis, V., Körtzinger, A., Kozyr, A., Krasakopoulou, E., Kuwata, A., Landschützer, P., Lauvset, S. K., Lefèvre, N., Lo Monaco, C., Manke, A., Mathis, J. T., Merlivat, L., Millero, F. J., Monteiro, P. M. S., Munro, D. R., Murata, A., Newberger, T., Omar, A. M., Ono, T., Paterson, K., Pearce, D., Pierrot, D., Robbins, L. L., Saito, S., Salisbury, J., Schlitzer, R., Schneider, B., Schweitzer, R., Sieger, R., Skjelvan, I., Sullivan, K. F., Sutherland, S. C., Sutton, A. J., Tadokoro, K., Telszewski, M., Tuma, M., van Heuven, S. M. A. C., Vandemark, D., Ward, B., Watson, A. J., and Xu, S.: A multi-decade record of high-quality fCO2 data in version 3 of the Surface Ocean CO2 Atlas (SOCAT), Earth Syst. Sci. Data, 8, 383–413, https://doi.org/10.5194/essd-8-383-2016, 2016.
Benson, B. B. and Krause Jr., D.: The concentration and isotopic
fractionation of oxygen dissolved in freshwater and seawater in equilibrium
with the atmosphere 1, Limnol. Oceanogr., 29, 620–632, https://doi.org/10.4319/lo.1984.29.3.0620, 1984.
Binetti, U., Kaiser, J., Damerell, G. M., Rumyantseva, A., Martin, A. P.,
Henson, S., and Heywood, K. J.: Net community oxygen production derived from
Seaglider deployments at the Porcupine Abyssal Plain site (PAP; northeast
Atlantic) in 2012–2013, Prog. Oceanogr., 183, 102293, https://doi.org/10.1016/j.pocean.2020.102293, 2020.
Bittig, H. C. and Körtzinger, A.: Tackling oxygen optode drift:
Near-surface and in-air oxygen optode measurements on a float provide an
accurate in situ reference, J. Atmos. Ocean. Tech., 32, 1536–1543,
https://doi.org/10.1175/JTECH-D-14-00162.1, 2015.
Bittig, H. C., Fiedler, B., Steinhoff, T., and Körtzinger, A.: A novel
electrochemical calibration setup for oxygen sensors and its use for the
stability assessment of Aanderaa optodes, Limnol. Oceanogr.-Meth., 10,
921–933, https://doi.org/10.4319/lom.2012.10.921, 2012.
Bushinsky, S. M., Takeshita, Y., and Williams, N. L.: Observing Changes in
Ocean Carbonate Chemistry: Our Autonomous Future,
Current Climate Change Reports, 5, 207–220, https://doi.org/10.1007/s40641-019-00129-8, 2019.
Chu, S. N., Sutton, A. J., Alin, S. R., Lawrence-Slavas, N., Atamanchuk, D.,
Mickett, J. B., Newton, J. A., Meinig, C., Stalin, S., and Tengberg, A.:
Field evaluation of a low-powered, profiling pCO2 system in coastal
Washington, Limnol. Oceanogr.-Meth., 18, 280–296, https://doi.org/10.1002/lom3.10354, 2020.
Copin-Montégut, C.: Consumption and production on scales of a few days
of inorganic carbon, nitrate and oxygen by the planktonic community: results
of continuous measurements at the Dyfamed Station in the northwestern
Mediterranean Sea (May 1995), Deep-Sea Res. Pt. I, 47, 447–477, https://doi.org/10.1016/S0967-0637(99)00098-9, 2000.
Degrandpre, M. D.: Measurement of Seawater pCO2 Using a Renewable-Reagent
Fiber Optic Sensor with Colorimetric Detection, Anal. Chem., 65, 331–337,
https://doi.org/10.1021/ac00052a005, 1993.
Dickson, A. G.: Thermodynamics of the dissociation of boric acid in
synthetic seawater from 273.15 to 318.15 K, Deep-Sea Res., 37, 755–766, https://doi.org/10.1016/0198-0149(90)90004-F, 1990.
Dickson, A. G., Afghan, J. D., and Anderson, G. C.: Reference materials for
oceanic CO2 analysis: a method for the certification of total
alkalinity, Mar. Chem., 80, 185–197, https://doi.org/10.1016/S0304-4203(02)00133-0, 2003.
Dickson, A. G., Sabine, C. L., and Christian, J. R.: Guide to best practices for ocean CO2 measurements, North Pacific Marine Science Organization, Sidney, British Columbia, 2007.
Dlugokencky, E. J., Lang, P. M., Masarie, K. A., Crotwell, A. M., and
Crotwell, M. J.: Atmospheric carbon dioxide dry air mole fractions from the
NOAA ESRL Carbon Cycle Cooperative Global Air Sampling Network,
NOAA ESRL Glob. Monit. Div., Boulder, Colorado, USA, 1968–2014, 2015.
Ducklow, H. W. and Doney, S. C.: What Is the Metabolic State of the
Oligotrophic Ocean? A Debate, Annu. Rev. Mar. Sci., 5, 525–533,
https://doi.org/10.1146/annurev-marine-121211-172331, 2013.
Falck, E. and Anderson, L. G.: The dynamics of the carbon cycle in the
surface water of the Norwegian Sea, Mar. Chem., 94, 43–53,
https://doi.org/10.1016/j.marchem.2004.08.009, 2005.
Falck, E. and Gade, G.: Net community production and oxygen fluxes in the
Nordic Seas based on O2 budget calculations, Global Biogeochem. Cy.,
13, 1117–1126, https://doi.org/10.1029/1999GB900030, 1999.
Fiedler, B., Fietzek, P., Vieira, N., Silva, P., Bittig, H. C., and
Körtzinger, A.: In situ CO2 and O2 measurements on a profiling float,
J. Atmos. Ocean. Tech., 30, 112–126, https://doi.org/10.1175/JTECH-D-12-00043.1, 2013.
Foltz, G. R., Grodsky, S. A., Carton, J. A., and McPhaden, M. J.: Seasonal
mixed layer heat budget of the tropical Atlantic Ocean, J. Geophys. Res.-Oceans, 108, 3146, https://doi.org/10.1029/2002JC001584, 2003.
Garcia, H. E. and Gordon, L. I.: Oxygen solubility in seawater: Better
fitting equations, Limnol. Oceanogr., 37, 1307–1312, https://doi.org/10.4319/lo.1992.37.6.1307, 1992.
Gattuso, J.-P. and Hansson, L.: Ocean acidification, Oxford University
Press, Oxford, UK, 2011.
Gislefoss, J. S., Nydal, R., Slagstad, D., Sonninen, E., and Holme, K.:
Carbon time series in the Norwegian sea,
Deep-Sea Res. Pt. I, 45, 433–460, https://doi.org/10.1016/S0967-0637(97)00093-9, 1998.
Gourcuff, C.: ANFOG Slocum CTD data correction, Australian National Facility for Ocean Gliderrs, Integrated Marine Observing System IMOS, March 2014.
Goyet, C., Walt, D. R., and Brewer, P. G.: Development of a fiber optic
sensor for measurement of pCO2 in sea water: design criteria and sea trials,
Deep-Sea Res., 39, 1015–1026, https://doi.org/10.1016/0198-0149(92)90037-T, 1992.
Hagebo, M. and Rey, F.: Storage of seawater for nutrients analysis,
Fisk. Hav., 4, 1–12, 1984.
Hansen, B. and Østerhus, S.: North Atlantic – Nordic Seas
exchanges, Prog. Oceanogr., 45, 109–208, https://doi.org/10.1016/S0079-6611(99)00052-X, 2000.
Hardman-Mountford, N. J., Moore, G., Bakker, D. C. E., Watson, A. J.,
Schuster, U., Barciela, R., Hines, A., Moncoiffé, G., Brown, J., Dye,
S., Blackford, J., Somerfield, P. J., Holt, J., Hydes, D. J., and Aiken, J.:
An operational monitoring system to provide indicators of CO2-related
variables in the ocean, ICES J. Mar. Sci., 65, 1498–1503,
https://doi.org/10.1093/icesjms/fsn110, 2008.
Haskell, W. Z., Hammond, D. E., Prokopenko, M. G., Teel, E. N., Seegers, B.
N., Ragan, M. A., Rollins, N., and Jones, B. H.: Net Community Production in
a Productive Coastal Ocean From an Autonomous Buoyancy-Driven Glider, J. Geophys. Res.-Oceans, 124, 4188–4207, https://doi.org/10.1029/2019JC015048, 2019.
Hemsley, J. M.: Observations Platforms Buoys, in: North, 2nd Edn., Academic Press, Oxford, UK, 264–267, https://doi.org/10.1016/B978-0-12-382225-3.00256-5, 2003.
Hemsley, V. S., Smyth, T. J., Martin, A. P., Frajka-williams, E., Thompson,
A. F., Damerell, G., and Painter, S. C.: Estimating Oceanic Primary
Production Using Vertical Irradiance and Chlorophyll Profiles from Ocean
Gliders in the North Atlantic, Environ. Sci. Technol., 49, 11612–11621, https://doi.org/10.1021/acs.est.5b00608, 2015.
Jeansson, E., Olsen, A., Eldevik, T., Skjelvan, I., Omar, A. M., Lauvset, S.
K., Nilsen, J. E. Ø., Bellerby, R. G. J., Johannessen, T., and Falck, E.:
The Nordic Seas carbon budget: Sources, sinks, and uncertainties,
Global Biogeochem. Cy., 25, GB4010, https://doi.org/10.1029/2010GB003961, 2011.
Kara, A. B., Rochford, P. A., and Hurlburt, H. E.: An optimal definition for
ocean mixed layer depth, J. Geophys. Res.-Oceans, 105, 16803–16821,
https://doi.org/10.1029/2000JC900072, 2000.
Kivimäe, C.: Carbon and oxygen fluxes in the Barents and Norwegian Seas:
production, air-sea exchange and budget calculations, PhD Dissertation,
University of Bergen, Bergen, Norway, 112–130, 2007.
Klimant, I., Huber, C., Liebsch, G., Neurauter, G., Stangelmayer, A., and
Wolfbeis, O. S.: Dual lifetime referencing (DLR) – a new scheme for
converting fluorescence intensity into a frequency-domain or time-domain
information, in: New Trends in Fluorescence Spectroscopy, Springer, Berlin, Heidelberg, 257–274, https://doi.org/10.1007/978-3-642-56853-4_13, 2001.
Körtzinger, A., Thomas, H., Schneider, B., Gronau, N., Mintrop, L., and
Duinker, J. C.: At-sea intercomparison of two newly designed underway pCO2
systems – encouraging results, Mar. Chem., 52, 133–145, https://doi.org/10.1016/0304-4203(95)00083-6, 1996.
Körtzinger, A., Koeve, W., Kähler, P., and Mintrop, L.: C:N ratios in the mixed layer during the productive season in the northeast Atlantic Ocean, Deep-Sea Res. Pt. I, 48, 661–688, https://doi.org/10.1016/S0967-0637(00)00051-0, 2001.
Laws, E. A.: Photosynthetic quotients, new production and net community
production in the open ocean, Deep-Sea Res., 38, 143–167, https://doi.org/10.1016/0198-0149(91)90059-O, 1991.
Le Quéré, C., Raupach, M. R., Canadell, J. G., Marland, G., Bopp, L., Ciais, P., Conway, T. J., Doney, S. C., Feely, R. A., Foster, P., Friedlingstein, P., Gurney, K., Houghton, R. A., House, J. I., Huntingford, C., Levy, P. E., Lomas, M. R., Majkut, J., Metzl, N., Ometto, J. P., Peters, G. P., Prentice, I. C., Randerson, J. T., Running, S. W., Sarmiento, J. L., Schuster, U., Sitch, S., Takahashi, T., Viovy, N., van der Werf, G. R., and Woodward, F. I.: Trends in the sources and sinks of carbon dioxide, Nat. Geosci., 2, 831–836, https://doi.org/10.1038/ngeo689, 2009.
Lee, K., Tong, L. T., Millero, F. J., Sabine, C. L., Dickson, A. G., Goyet,
C., Park, G. H., Wanninkhof, R., Feely, R. A., and Key, R. M.: Global
relationships of total alkalinity with salinity and temperature in surface
waters of the world's oceans, Geophys. Res. Lett., 33, L19605,
https://doi.org/10.1029/2006GL027207, 2006.
Lee, K., Kim, T., Byrne, R. H., Millero, F. J., Feely, R. A., and Liu, Y.:
The universal ratio of boron to chlorinity for the North Pacific and North
Atlantic oceans, Geochim. Cosmochim. Ac., 74, 1801–1811,
https://doi.org/10.1016/j.gca.2009.12.027, 2010.
Lockwood, D., Quay, P. D., Kavanaugh, M. T., Juranek, L. W., and Feely, R.
A.: High-resolution estimates of net community production and air-sea CO2
flux in the northeast Pacific, Global Biogeochem. Cy., 26, GB4010,
https://doi.org/10.1029/2012GB004380, 2012.
Lueker, T. J., Dickson, A. G., and Keeling, C. D.: Ocean pCO2 calculated from
DIC, TA, and the Mehrbach equations for K1 and K2: Validation using
laboratory measurements of CO2 in gas and seawater at equilibrium,
Abstr. Pap. Am. Chem. S., 217, U848–U848, 2000.
Martz, T. R., Connery, J. G., and Johnson, K. S.: Testing the Honeywell
Durafet for seawater pH applications, Limnol. Oceanogr.-Meth., 8,
172–184, https://doi.org/10.4319/lom.2010.8.172, 2010.
Medeot, N., Nair, R., and Gerin, R.: Laboratory Evaluation and Control of
Slocum Glider C – T Sensors, J. Atmos. Ocean. Tech., 6,
838–846, https://doi.org/10.1175/2011JTECHO767.1, 2011.
Miloshevich, L.: Development and Validation of a Time-Lag Correction for
Vaisala Radiosonde Humidity Measurements, J. Atmos. Ocean. Tech., 21, 1305–1328, https://doi.org/10.1175/1520-0426(2004)021<1305:DAVOAT>2.0.CO;2, 2004.
Monteiro, P. M. S., Schuster, U., Hood, M., Lenton, A., Metzl, N., Olsen,
A., Rogers, K., Sabine, C., Takahashi, T., and Tilbrook, B.: A global sea
surface carbon observing system: Assessment of changing sea surface CO2 and
air-sea CO2 fluxes, Proc. Ocean., 9, 702–714, 2009.
Monterey, G. I. and Levitus, S.: US National Environmental Satellite and Information Service: Seasonal variability of mixed layer depth
for the world ocean, US Department of Commerce, National Oceanic and
Atmospheric Administration, Silver Spring, MD, 1997.
Naveira Garabato, A. C., Oliver, K. I. C., Watson, A. J., and Messias, M.:
Turbulent diapycnal mixing in the Nordic seas, J. Geophys. Res.-Oceans,
109, C12010, https://doi.org/10.1029/2004JC002411, 2004.
Neftel, A., Oeschger, H., Schwander, J., Stauffer, B., and Zumbrunn, R.: Ice
core sample measurements give atmospheric CO2 content during the past 40 000 years, Nature, 295, 220–223, https://doi.org/10.1038/295220a0, 1982.
Neuer, S., Cianca, A., Helmke, P., Freudenthal, T., Davenport, R., Meggers,
H., and Knoll, M.: Biogeochemistry and hydrography in the eastern subtropical
North Atlantic gyre, Results from the European time-series station ESTOC,
Prog. Oceanogr., 72, 1–29, https://doi.org/10.1016/j.pocean.2006.08.001, 2007.
Nicholson, D., Emerson, S., and Eriksen, C. C.: Net community production in
the deep euphotic zone of the subtropical North Pacific gyre from glider
surveys, Limnol. Oceanogr., 53, 2226–2236,
https://doi.org/10.4319/lo.2008.53.5_part_2.2226, 2008.
Nicholson, D. P. and Feen, M. L.: Air calibration of an oxygen optode on an
underwater glider, Limnol. Oceanogr.-Meth., 15, 495–502,
https://doi.org/10.1002/lom3.10177, 2017.
Nilsen, J. E. Ø. and Falck, E.: Variations of mixed layer properties in
the Norwegian Sea for the period 1948–1999, Prog. Oceanogr., 70,
58–90, https://doi.org/10.1016/j.pocean.2006.03.014, 2006.
Obata, A., Ishizaka, J., and Endoh, M.: Global verification of critical depth
theory for phytoplankton bloom with climatological in situ temperature and
satellite ocean color data, J. Geophys. Res.-Oceans, 101, 20657–20667,
https://doi.org/10.1029/96JC01734, 1996.
Olsen, A., Key, R. M., van Heuven, S., Lauvset, S. K., Velo, A., Lin, X., Schirnick, C., Kozyr, A., Tanhua, T., Hoppema, M., Jutterström, S., Steinfeldt, R., Jeansson, E., Ishii, M., Pérez, F. F., and Suzuki, T.: The Global Ocean Data Analysis Project version 2 (GLODAPv2) – an internally consistent data product for the world ocean, Earth Syst. Sci. Data, 8, 297–323, https://doi.org/10.5194/essd-8-297-2016, 2016.
Osterroht, C. and Thomas, H.: New production enhanced by nutrient supply
from non-Redfield remineralisation of freshly produced organic material, J. Marine Syst., 25, 33–46, https://doi.org/10.1016/S0924-7963(00)00007-5, 2000.
Pachauri, R. K. and Reisinger, A.: IPCC Fourth Assessment Report, 976, available at:
https://www.ipcc.ch/site/assets/uploads/2018/03/ar4_wg2_full_report.pdf (last access: 5 February 2019),
2007.
Peeters, F., Atamanchuk, D., Tengberg, A., Encinas-Fernández, J.,
and Hofmann, H.: Lake metabolism: Comparison of lake metabolic rates
estimated from a diel CO2-and the common diel O2-technique, PLoS One,
11, 12, https://doi.org/10.1371/journal.pone.0168393, 2016.
Plant, J. N., Johnson, K. S., Sakamoto, C. M., Jannasch, H. W., Coletti, L.
J., Riser, S. C., and Swift, D. D.: Net community production at Ocean Station
Papa observed with nitrate and oxygen sensors on profiling floats, Global
Biogeochem. Cy., 30, 859–879, https://doi.org/10.1002/2015GB005349, 2016.
Possenti, L. and Castano Primo, R.: Svinøy transect oxygen and dissolved inorganic, NMDC, carbon, University of Bergen, Bergen, Norway, https://doi.org/10.21335/NMDC-1654657723, 2020.
Quay, P., Stutsman, J., and Steinhoff, T.: Primary production and carbon
export rates across the subpolar N, Atlantic Ocean basin based on triple
oxygen isotope and dissolved O2 and Ar gas measurements, Global Biogeochem.
Cy., 26, GB2003, https://doi.org/10.1029/2010GB004003, 2012.
Redfield, A. C.: The influence of organisms on the composition of seawater,
The Sea, 2, 26–77, 1963.
Rérolle, V. M. C., Floquet, C. F. A., Harris, A. J. K., Mowlem, M. C.,
Bellerby, R. R. G. J., and Achterberg, E. P.: Development of a colorimetric
microfluidic pH sensor for autonomous seawater measurements,
Anal. Chim. Acta, 786, 124–131, https://doi.org/10.1016/j.aca.2013.05.008, 2013.
Reuer, M. K., Barnett, B. A., Bender, M. L., Falkowski, P. G., and Hendricks,
M. B.: New estimates of Southern Ocean biological production rates from
ratios and the triple isotope composition of O2, Deep-Sea Res. Pt. I, 54, 951–974, https://doi.org/10.1016/j.dsr.2007.02.007, 2007.
Rey, B. F.: Phytoplankton: the grass of the sea, in: The Norwegian Sea
Ecosystem, edited by: Skjodal, H. R., Tapir, Trondheim, Norway, 93–112,
2004.
Sabine, C. L., Feely, R. A., Gruber, N., Key, R. M., Lee, K., Bullister, J. L., Wanninkhof, R., Wong, C. S., Wallace, D. W. R., Tilbrook, B., Millero, F. J., Peng, T.-H., Kozyr, A., Ono, T., and Rios, A. F.: The oceanic sink for anthropogenic CO2, Science, 305, 367–371, https://doi.org/10.1126/science.1097403, 2004.
Saderne, V., Fietzek, P., and Herman, P. M. J.: Extreme Variations of pCO2
and pH in a Macrophyte Meadow of the Baltic Sea in Summer: Evidence of the
Effect of Photosynthesis and Local Upwelling, PLoS One, 8, 2–9,
https://doi.org/10.1371/journal.pone.0062689, 2013.
Saetre, R. and Ljoen, R.: The norwegian coastal current, Port and Ocean
Engineering under Arctic Conditions, Technical University of Norway, Bergen, Norway, 1–22, 1972.
Seguro, I., Marca, A. D., Painting, S. J., Shutler, J. D., Suggett, D. J.,
and Kaiser, J.: High-resolution net and gross biological production during a
Celtic Sea spring bloom, Prog. Oceanogr., 177, 101885, https://doi.org/10.1016/j.pocean.2017.12.003, 2019.
Seidel, M. P., Degrandpre, M. D., and Dickson, A. G.: A sensor for in situ
indicator-based measurements of seawater pH, Mar. Chem., 109, 18–28,
https://doi.org/10.1016/j.marchem.2007.11.013, 2008.
Sharples, J., Ross, O. N., Scott, B. E., Greenstreet, S. P. R., and Fraser,
H.: Inter-annual variability in the timing of stratification and the spring
bloom in the North-western North Sea, Cont. Shelf Res., 26, 733–751,
https://doi.org/10.1016/j.csr.2006.01.011, 2006.
Skjelvan, I., Falck, E., Anderson, L. G., and Rey, F.: Oxygen fluxes in the
Norwegian Atlantic Current, Mar. Chem., 73, 291–303,
https://doi.org/10.1016/S0304-4203(00)00112-2, 2001.
Skjelvan, I., Anderson, L. G., Falck, E., and Anders, K.: A Review of the
Inorganic Carbon Cycle of the Nordic Seas and Barents Sea, The Nordic Seas:
An Integrated Perspective, 14, 157, https://doi.org/10.1029/GM158, 2005.
Skjelvan, I., Falck, E., Rey, F., and Kringstad, S. B.: Inorganic carbon time series at Ocean Weather Station M in the Norwegian Sea, Biogeosciences, 5, 549–560, https://doi.org/10.5194/bg-5-549-2008, 2008.
Sprintall, J. and Roemmich, D.: Characterizing the structure of the surface
layer in the Pacific Ocean, J. Geophys. Res.-Oceans, 104, 23297–23311,
https://doi.org/10.1029/1999JC900179, 1999.
Sutton, A. J., Sabine, C. L., Maenner-Jones, S., Lawrence-Slavas, N., Meinig, C., Feely, R. A., Mathis, J. T., Musielewicz, S., Bott, R., McLain, P. D., Fought, H. J., and Kozyr, A.: A high-frequency atmospheric and seawater pCO2 data set from 14 open-ocean sites using a moored autonomous system, Earth Syst. Sci. Data, 6, 353–366, https://doi.org/10.5194/essd-6-353-2014, 2014.
Swift, J. H.: The arctic waters, in: The Nordic Seas, Springer, New York, NY, ISBN: 978-1-4615-8037-9, 129–154,
1986.
Takahashi, T., Sutherland, S. C., Sweeney, C., Poisson, A., Metzl, N.,
Tilbrook, B., Bates, N., Wanninkhof, R., Feely, R. A., Sabine, C., Olafsson,
J., and Nojiri, Y.: Global sea – air CO2 flux based on climatological
surface ocean pCO2, and seasonal biological and temperature effects,
Deep-Sea Res. Pt. II, 49, 1601–1622,
https://doi.org/10.1016/S0967-0645(02)00003-6, 2002.
Takahashi, T., Sutherland, S. C., Wanninkhof, R., Sweeney, C., Feely, R. A.,
Chipman, D. W., Hales, B., Friederich, G., Chavez, F., Sabine, C., Watson,
A., Bakker, D. C. E., Schuster, U., Yoshikawa-Inoue, H., Ishii, M.,
Midorikawa, T., Nojiri, Y., Körtzinger, A., Steinhoff, T., Hoppema, M.,
Olafsson, J., Arnarson, T. S., Johannessen, T., Olsen, A., Bellerby, R.,
Wong, C. S., Delille, B., Bates, N. R., and de Baar, H. J. W.: Climatological
mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux
over the global oceans, Deep-Sea Res. Pt. II, 56, 554–577, https://doi.org/10.1016/j.dsr2.2008.12.009, 2009.
Tengberg, A., Hovdenes, J., Andersson, H. J., Brocandel, O., Diaz, R., and
Hebert, D.: Evaluation of a lifetime-based optode to measure oxygen in
aquatic systems, Limnol. Oceanogr.-Meth., 4, 7–17, https://doi.org/10.4319/lom.2006.4.7, 2006.
Thomas, H., Ittekkot, V., Osterroht, C., and Schneider, B.: Preferential
recycling of nutrients – the ocean's way to increase new production and to
pass nutrient limitation?, Limnol. Oceanogr., 44, 1999–2004, https://doi.org/10.4319/lo.1999.44.8.1999, 1999.
Thomas, P. J., Atamanchuk, D., Hovdenes, J., and Tengberg, A.: The use of
novel optode sensor technologies for monitoring dissolved carbon dioxide and
ammonia concentrations under live haul conditions, Aquacult. Eng., 77, 89–96, https://doi.org/10.1016/j.aquaeng.2017.02.004, 2017.
Thompson, R. O. R. Y.: Climatological numerical models of the surface mixed
layer of the ocean, J. Phys. Oceanogr., 6, 496–503, 1976.
van Heuven, S., Pierrot, D., Rae, J. W. B., Lewis, E., and Wallace, D. W. R.:
MATLAB program developed for CO2 system calculations,
Carbon Dioxide Inf. Anal. Center, Oak Ridge Natl. Lab. US Dep. Energy, Oak
Ridge, Tennessee, USA, ORNL/CDIAC-105b, 2011.
von Bültzingslöwen, C., McEvoy, A. K., McDonagh, C., MacCraith, B.
D., Klimant, I., Krause, C., and Wolfbeis, O. S.: Sol-gel based optical
carbon dioxide sensor employing dual luminophore referencing for application
in food packaging technology, Analyst, 127, 1478–1483, https://doi.org/10.1039/B207438A, 2002.
Wanninkhof, R.: Relationship between wind speed and gas exchange over the
ocean revisited, Limnol. Oceanogr.-Meth., 12, 351–362,
https://doi.org/10.4319/lom.2014.12.351, 2014.
Weiss, R. F.: Carbon dioxide in water and seawater: the solubility of a
non-ideal gas, Mar. Chem., 2, 203–215, https://doi.org/10.1016/0304-4203(74)90015-2,
1974.
Weiss, R. F. and Price, B. A.: Nitrous oxide solubility in water and
seawater, Mar. Chem., 8, 347–359, https://doi.org/10.1016/0304-4203(80)90024-9, 1980.
Woolf, D. K. and Thorpe, S. A.: Bubbles and the air-sea exchange of gases in
near-saturation conditions, J. Mar. Res., 49, 435–466, https://doi.org/10.1357/002224091784995765, 1991.
Short summary
A Seaglider was deployed for 8 months in the Norwegian Sea mounting an oxygen and, for the first time, a CO2 optode and a chlorophyll fluorescence sensor. The oxygen and CO2 data were used to assess the spatial and temporal variability and calculate the net community production, N(O2) and N(CT). The dataset was used to calculate net community production from inventory changes, air–sea flux, diapycnal mixing and entrainment.
A Seaglider was deployed for 8 months in the Norwegian Sea mounting an oxygen and, for the first...