Articles | Volume 17, issue 2
https://doi.org/10.5194/os-17-509-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-17-509-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Medusa–Aqua system: simultaneous measurement and evaluation of novel potential halogenated transient tracers HCFCs, HFCs, and PFCs in the ocean
Pingyang Li
State Key Laboratory of Organic Geochemistry and Guangdong–Hong
Kong–Macao Joint Laboratory for Environmental Pollution and Control,
Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou
510640, China
CAS Center for Excellence in Deep Earth Science, Guangzhou 510640,
China
Marine Biogeochemistry, GEOMAR Helmholtz Centre for Ocean Research
Kiel, 24105 Kiel, Germany
Marine Biogeochemistry, GEOMAR Helmholtz Centre for Ocean Research
Kiel, 24105 Kiel, Germany
Related authors
Pingyang Li, Jens Mühle, Stephen A. Montzka, David E. Oram, Benjamin R. Miller, Ray F. Weiss, Paul J. Fraser, and Toste Tanhua
Ocean Sci., 15, 33–60, https://doi.org/10.5194/os-15-33-2019, https://doi.org/10.5194/os-15-33-2019, 2019
Short summary
Short summary
Use of CFCs as oceanic transient tracers is difficult for recently ventilated water masses as their atmospheric mole fractions have been decreasing. To explore novel tracers, we synthesized consistent annual mean atmospheric histories of HCFC-22, HCFC-141b, HCFC-142b, HFC-134a, HFC-125, HFC-23, PFC-14 (CF4) and PFC-116 in both hemispheres and reconstructed their solubility functions in water and seawater. This work is also potentially useful for tracer studies in a range of natural waters.
Mian Liu and Toste Tanhua
EGUsphere, https://doi.org/10.5194/egusphere-2024-1362, https://doi.org/10.5194/egusphere-2024-1362, 2024
Short summary
Short summary
Based on the distribution of water masses in the Atlantic Ocean, the water mass ages are shown by using CFC-12 and SF6. The ages increase with pressure and along the pathway. The central waters in the upper layer obtain the lowest ages. In all the other three deeper layers, the ages increase with the distance from formation area. The age is also used to calculate the oxygen utilization rate (OUR) in water masses. The western basin exhibits lower age with higher OUR due to the better ventilation.
Siv K. Lauvset, Nico Lange, Toste Tanhua, Henry C. Bittig, Are Olsen, Alex Kozyr, Marta Álvarez, Kumiko Azetsu-Scott, Peter J. Brown, Brendan R. Carter, Leticia Cotrim da Cunha, Mario Hoppema, Matthew P. Humphreys, Masao Ishii, Emil Jeansson, Akihiko Murata, Jens Daniel Müller, Fiz F. Pérez, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Adam Ulfsbo, Anton Velo, Ryan J. Woosley, and Robert M. Key
Earth Syst. Sci. Data, 16, 2047–2072, https://doi.org/10.5194/essd-16-2047-2024, https://doi.org/10.5194/essd-16-2047-2024, 2024
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by the chemical analysis of water bottle samples from scientific cruises. GLODAPv2.2023 is the fifth update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality controlling, including systematic evaluation of measurement biases. This version contains data from 1108 hydrographic cruises covering the world's oceans from 1972 to 2021.
Nico Lange, Björn Fiedler, Marta Álvarez, Alice Benoit-Cattin, Heather Benway, Pier Luigi Buttigieg, Laurent Coppola, Kim Currie, Susana Flecha, Dana S. Gerlach, Makio Honda, I. Emma Huertas, Siv K. Lauvset, Frank Muller-Karger, Arne Körtzinger, Kevin M. O'Brien, Sólveig R. Ólafsdóttir, Fernando C. Pacheco, Digna Rueda-Roa, Ingunn Skjelvan, Masahide Wakita, Angelicque White, and Toste Tanhua
Earth Syst. Sci. Data, 16, 1901–1931, https://doi.org/10.5194/essd-16-1901-2024, https://doi.org/10.5194/essd-16-1901-2024, 2024
Short summary
Short summary
The Synthesis Product for Ocean Time Series (SPOTS) is a novel achievement expanding and complementing the biogeochemical data landscape by providing consistent and high-quality biogeochemical time-series data from 12 ship-based fixed time-series programs. SPOTS covers multiple unique marine environments and time-series ranges, including data from 1983 to 2021. All in all, it facilitates a variety of applications that benefit from the collective value of biogeochemical time-series observations.
Siv K. Lauvset, Nico Lange, Toste Tanhua, Henry C. Bittig, Are Olsen, Alex Kozyr, Simone Alin, Marta Álvarez, Kumiko Azetsu-Scott, Leticia Barbero, Susan Becker, Peter J. Brown, Brendan R. Carter, Leticia Cotrim da Cunha, Richard A. Feely, Mario Hoppema, Matthew P. Humphreys, Masao Ishii, Emil Jeansson, Li-Qing Jiang, Steve D. Jones, Claire Lo Monaco, Akihiko Murata, Jens Daniel Müller, Fiz F. Pérez, Benjamin Pfeil, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Bronte Tilbrook, Adam Ulfsbo, Anton Velo, Ryan J. Woosley, and Robert M. Key
Earth Syst. Sci. Data, 14, 5543–5572, https://doi.org/10.5194/essd-14-5543-2022, https://doi.org/10.5194/essd-14-5543-2022, 2022
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by the chemical analysis of water bottle samples from scientific cruises. GLODAPv2.2022 is the fourth update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality controlling, including systematic evaluation of measurement biases. This version contains data from 1085 hydrographic cruises covering the world's oceans from 1972 to 2021.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Luke Gregor, Judith Hauck, Corinne Le Quéré, Ingrid T. Luijkx, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Ramdane Alkama, Almut Arneth, Vivek K. Arora, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Henry C. Bittig, Laurent Bopp, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Wiley Evans, Stefanie Falk, Richard A. Feely, Thomas Gasser, Marion Gehlen, Thanos Gkritzalis, Lucas Gloege, Giacomo Grassi, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Atul K. Jain, Annika Jersild, Koji Kadono, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Keith Lindsay, Junjie Liu, Zhu Liu, Gregg Marland, Nicolas Mayot, Matthew J. McGrath, Nicolas Metzl, Natalie M. Monacci, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien, Tsuneo Ono, Paul I. Palmer, Naiqing Pan, Denis Pierrot, Katie Pocock, Benjamin Poulter, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Carmen Rodriguez, Thais M. Rosan, Jörg Schwinger, Roland Séférian, Jamie D. Shutler, Ingunn Skjelvan, Tobias Steinhoff, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Toste Tanhua, Pieter P. Tans, Xiangjun Tian, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Anthony P. Walker, Rik Wanninkhof, Chris Whitehead, Anna Willstrand Wranne, Rebecca Wright, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 14, 4811–4900, https://doi.org/10.5194/essd-14-4811-2022, https://doi.org/10.5194/essd-14-4811-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2022 describes the datasets and methodology used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, the land ecosystems, and the ocean. These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Rainer Kiko, Marc Picheral, David Antoine, Marcel Babin, Léo Berline, Tristan Biard, Emmanuel Boss, Peter Brandt, Francois Carlotti, Svenja Christiansen, Laurent Coppola, Leandro de la Cruz, Emilie Diamond-Riquier, Xavier Durrieu de Madron, Amanda Elineau, Gabriel Gorsky, Lionel Guidi, Helena Hauss, Jean-Olivier Irisson, Lee Karp-Boss, Johannes Karstensen, Dong-gyun Kim, Rachel M. Lekanoff, Fabien Lombard, Rubens M. Lopes, Claudie Marec, Andrew M. P. McDonnell, Daniela Niemeyer, Margaux Noyon, Stephanie H. O'Daly, Mark D. Ohman, Jessica L. Pretty, Andreas Rogge, Sarah Searson, Masashi Shibata, Yuji Tanaka, Toste Tanhua, Jan Taucher, Emilia Trudnowska, Jessica S. Turner, Anya Waite, and Lars Stemmann
Earth Syst. Sci. Data, 14, 4315–4337, https://doi.org/10.5194/essd-14-4315-2022, https://doi.org/10.5194/essd-14-4315-2022, 2022
Short summary
Short summary
The term
marine particlescomprises detrital aggregates; fecal pellets; bacterioplankton, phytoplankton and zooplankton; and even fish. Here, we present a global dataset that contains 8805 vertical particle size distribution profiles obtained with Underwater Vision Profiler 5 (UVP5) camera systems. These data are valuable to the scientific community, as they can be used to constrain important biogeochemical processes in the ocean, such as the flux of carbon to the deep sea.
Pierre Friedlingstein, Matthew W. Jones, Michael O'Sullivan, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Corinne Le Quéré, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Rob B. Jackson, Simone R. Alin, Peter Anthoni, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Laurent Bopp, Thi Tuyet Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Kim I. Currie, Bertrand Decharme, Laique M. Djeutchouang, Xinyu Dou, Wiley Evans, Richard A. Feely, Liang Feng, Thomas Gasser, Dennis Gilfillan, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Ingrid T. Luijkx, Atul Jain, Steve D. Jones, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Peter Landschützer, Siv K. Lauvset, Nathalie Lefèvre, Sebastian Lienert, Junjie Liu, Gregg Marland, Patrick C. McGuire, Joe R. Melton, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Tsuneo Ono, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Clemens Schwingshackl, Roland Séférian, Adrienne J. Sutton, Colm Sweeney, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Francesco Tubiello, Guido R. van der Werf, Nicolas Vuichard, Chisato Wada, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, and Jiye Zeng
Earth Syst. Sci. Data, 14, 1917–2005, https://doi.org/10.5194/essd-14-1917-2022, https://doi.org/10.5194/essd-14-1917-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2021 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Siv K. Lauvset, Nico Lange, Toste Tanhua, Henry C. Bittig, Are Olsen, Alex Kozyr, Marta Álvarez, Susan Becker, Peter J. Brown, Brendan R. Carter, Leticia Cotrim da Cunha, Richard A. Feely, Steven van Heuven, Mario Hoppema, Masao Ishii, Emil Jeansson, Sara Jutterström, Steve D. Jones, Maren K. Karlsen, Claire Lo Monaco, Patrick Michaelis, Akihiko Murata, Fiz F. Pérez, Benjamin Pfeil, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Bronte Tilbrook, Anton Velo, Rik Wanninkhof, Ryan J. Woosley, and Robert M. Key
Earth Syst. Sci. Data, 13, 5565–5589, https://doi.org/10.5194/essd-13-5565-2021, https://doi.org/10.5194/essd-13-5565-2021, 2021
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by the chemical analysis of water bottle samples from scientific cruises. GLODAPv2.2021 is the third update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality control, including systematic evaluation of measurement biases. This version contains data from 989 hydrographic cruises covering the world's oceans from 1972 to 2020.
Gerd Krahmann, Damian L. Arévalo-Martínez, Andrew W. Dale, Marcus Dengler, Anja Engel, Nicolaas Glock, Patricia Grasse, Johannes Hahn, Helena Hauss, Mark Hopwood, Rainer Kiko, Alexandra Loginova, Carolin R. Löscher, Marie Maßmig, Alexandra-Sophie Roy, Renato Salvatteci, Stefan Sommer, Toste Tanhua, and Hela Mehrtens
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-308, https://doi.org/10.5194/essd-2020-308, 2021
Preprint withdrawn
Short summary
Short summary
The project "Climate-Biogeochemistry Interactions in the Tropical Ocean" (SFB 754) was a multidisciplinary research project active from 2008 to 2019 aimed at a better understanding of the coupling between the tropical climate and ocean circulation and the ocean's oxygen and nutrient balance. On 34 research cruises, mainly in the Southeast Tropical Pacific and the Northeast Tropical Atlantic, 1071 physical, chemical and biological data sets were collected.
Mian Liu and Toste Tanhua
Ocean Sci., 17, 463–486, https://doi.org/10.5194/os-17-463-2021, https://doi.org/10.5194/os-17-463-2021, 2021
Short summary
Short summary
We have characterized the major water masses in the Atlantic Ocean based on the properties found in their formation areas using six properties taken from the GLODAPv2 data product, including both conservative (conservative temperature and absolute salinity) and non-conservative (oxygen, silicate, phosphate and nitrate) properties. The distributions of the water masses are estimated by using the optimum multi-parameter (OMP) model, and we have mapped the distributions of the water masses.
Are Olsen, Nico Lange, Robert M. Key, Toste Tanhua, Henry C. Bittig, Alex Kozyr, Marta Álvarez, Kumiko Azetsu-Scott, Susan Becker, Peter J. Brown, Brendan R. Carter, Leticia Cotrim da Cunha, Richard A. Feely, Steven van Heuven, Mario Hoppema, Masao Ishii, Emil Jeansson, Sara Jutterström, Camilla S. Landa, Siv K. Lauvset, Patrick Michaelis, Akihiko Murata, Fiz F. Pérez, Benjamin Pfeil, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Bronte Tilbrook, Anton Velo, Rik Wanninkhof, and Ryan J. Woosley
Earth Syst. Sci. Data, 12, 3653–3678, https://doi.org/10.5194/essd-12-3653-2020, https://doi.org/10.5194/essd-12-3653-2020, 2020
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by chemical analysis of water bottle samples at scientific cruises. GLODAPv2.2020 is the second update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality control, including systematic evaluation of measurement biases. This version contains data from 946 hydrographic cruises covering the world's oceans from 1972 to 2019.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Judith Hauck, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Corinne Le Quéré, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone Alin, Luiz E. O. C. Aragão, Almut Arneth, Vivek Arora, Nicholas R. Bates, Meike Becker, Alice Benoit-Cattin, Henry C. Bittig, Laurent Bopp, Selma Bultan, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Wiley Evans, Liesbeth Florentie, Piers M. Forster, Thomas Gasser, Marion Gehlen, Dennis Gilfillan, Thanos Gkritzalis, Luke Gregor, Nicolas Gruber, Ian Harris, Kerstin Hartung, Vanessa Haverd, Richard A. Houghton, Tatiana Ilyina, Atul K. Jain, Emilie Joetzjer, Koji Kadono, Etsushi Kato, Vassilis Kitidis, Jan Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Zhu Liu, Danica Lombardozzi, Gregg Marland, Nicolas Metzl, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien, Tsuneo Ono, Paul I. Palmer, Denis Pierrot, Benjamin Poulter, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Jörg Schwinger, Roland Séférian, Ingunn Skjelvan, Adam J. P. Smith, Adrienne J. Sutton, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Guido van der Werf, Nicolas Vuichard, Anthony P. Walker, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Xu Yue, and Sönke Zaehle
Earth Syst. Sci. Data, 12, 3269–3340, https://doi.org/10.5194/essd-12-3269-2020, https://doi.org/10.5194/essd-12-3269-2020, 2020
Short summary
Short summary
The Global Carbon Budget 2020 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Dagmar Hainbucher, Marta Álvarez, Blanca Astray Uceda, Giancarlo Bachi, Vanessa Cardin, Paolo Celentano, Spyros Chaikalis, Maria del Mar Chaves Montero, Giuseppe Civitarese, Noelia M. Fajar, Francois Fripiat, Lennart Gerke, Alexandra Gogou, Elisa F. Guallart, Birte Gülk, Abed El Rahman Hassoun, Nico Lange, Andrea Rochner, Chiara Santinelli, Tobias Steinhoff, Toste Tanhua, Lidia Urbini, Dimitrios Velaoras, Fabian Wolf, and Andreas Welsch
Earth Syst. Sci. Data, 12, 2747–2763, https://doi.org/10.5194/essd-12-2747-2020, https://doi.org/10.5194/essd-12-2747-2020, 2020
Short summary
Short summary
We report on data from an oceanographic cruise in the Mediterranean Sea (MSM72, March 2018). The main objective of the cruise was to contribute to the understanding of long-term changes and trends in physical and biogeochemical parameters, such as the anthropogenic carbon uptake, and further assess the hydrographical situation after the Eastern and Western Mediterranean Transients. Multidisciplinary measurements were conducted on a predominantly
zonal section throughout the Mediterranean Sea.
Daniel Broullón, Fiz F. Pérez, Antón Velo, Mario Hoppema, Are Olsen, Taro Takahashi, Robert M. Key, Toste Tanhua, J. Magdalena Santana-Casiano, and Alex Kozyr
Earth Syst. Sci. Data, 12, 1725–1743, https://doi.org/10.5194/essd-12-1725-2020, https://doi.org/10.5194/essd-12-1725-2020, 2020
Short summary
Short summary
This work offers a vision of the global ocean regarding the carbon cycle and the implications of ocean acidification through a climatology of a changing variable in the context of climate change: total dissolved inorganic carbon. The climatology was designed through artificial intelligence techniques to represent the mean state of the present ocean. It is very useful to introduce in models to evaluate the state of the ocean from different perspectives.
Are Olsen, Nico Lange, Robert M. Key, Toste Tanhua, Marta Álvarez, Susan Becker, Henry C. Bittig, Brendan R. Carter, Leticia Cotrim da Cunha, Richard A. Feely, Steven van Heuven, Mario Hoppema, Masao Ishii, Emil Jeansson, Steve D. Jones, Sara Jutterström, Maren K. Karlsen, Alex Kozyr, Siv K. Lauvset, Claire Lo Monaco, Akihiko Murata, Fiz F. Pérez, Benjamin Pfeil, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Maciej Telszewski, Bronte Tilbrook, Anton Velo, and Rik Wanninkhof
Earth Syst. Sci. Data, 11, 1437–1461, https://doi.org/10.5194/essd-11-1437-2019, https://doi.org/10.5194/essd-11-1437-2019, 2019
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by chemical analysis of water bottle samples at scientific cruises. GLODAPv2.2019 is the first update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality control, including systematic evaluation of measurement biases. This version contains data from 840 hydrographic cruises covering the world's oceans from 1972 to 2017.
Daniel Broullón, Fiz F. Pérez, Antón Velo, Mario Hoppema, Are Olsen, Taro Takahashi, Robert M. Key, Toste Tanhua, Melchor González-Dávila, Emil Jeansson, Alex Kozyr, and Steven M. A. C. van Heuven
Earth Syst. Sci. Data, 11, 1109–1127, https://doi.org/10.5194/essd-11-1109-2019, https://doi.org/10.5194/essd-11-1109-2019, 2019
Short summary
Short summary
In this work, we are contributing to the knowledge of the consequences of climate change in the ocean. We have focused on a variable related to this process: total alkalinity. We have designed a monthly climatology of total alkalinity using artificial intelligence techniques, that is, a representation of the average capacity of the ocean in the last decades to decelerate the consequences of climate change. The climatology is especially useful to infer the evolution of the ocean through models.
Mian Liu and Toste Tanhua
Ocean Sci. Discuss., https://doi.org/10.5194/os-2018-140, https://doi.org/10.5194/os-2018-140, 2019
Publication in OS not foreseen
Pingyang Li, Jens Mühle, Stephen A. Montzka, David E. Oram, Benjamin R. Miller, Ray F. Weiss, Paul J. Fraser, and Toste Tanhua
Ocean Sci., 15, 33–60, https://doi.org/10.5194/os-15-33-2019, https://doi.org/10.5194/os-15-33-2019, 2019
Short summary
Short summary
Use of CFCs as oceanic transient tracers is difficult for recently ventilated water masses as their atmospheric mole fractions have been decreasing. To explore novel tracers, we synthesized consistent annual mean atmospheric histories of HCFC-22, HCFC-141b, HCFC-142b, HFC-134a, HFC-125, HFC-23, PFC-14 (CF4) and PFC-116 in both hemispheres and reconstructed their solubility functions in water and seawater. This work is also potentially useful for tracer studies in a range of natural waters.
James C. Orr, Raymond G. Najjar, Olivier Aumont, Laurent Bopp, John L. Bullister, Gokhan Danabasoglu, Scott C. Doney, John P. Dunne, Jean-Claude Dutay, Heather Graven, Stephen M. Griffies, Jasmin G. John, Fortunat Joos, Ingeborg Levin, Keith Lindsay, Richard J. Matear, Galen A. McKinley, Anne Mouchet, Andreas Oschlies, Anastasia Romanou, Reiner Schlitzer, Alessandro Tagliabue, Toste Tanhua, and Andrew Yool
Geosci. Model Dev., 10, 2169–2199, https://doi.org/10.5194/gmd-10-2169-2017, https://doi.org/10.5194/gmd-10-2169-2017, 2017
Short summary
Short summary
The Ocean Model Intercomparison Project (OMIP) is a model comparison effort under Phase 6 of the Coupled Model Intercomparison Project (CMIP6). Its physical component is described elsewhere in this special issue. Here we describe its ocean biogeochemical component (OMIP-BGC), detailing simulation protocols and analysis diagnostics. Simulations focus on ocean carbon, other biogeochemical tracers, air-sea exchange of CO2 and related gases, and chemical tracers used to evaluate modeled circulation.
Leif G. Anderson, Göran Björk, Ola Holby, Sara Jutterström, Carl Magnus Mörth, Matt O'Regan, Christof Pearce, Igor Semiletov, Christian Stranne, Tim Stöven, Toste Tanhua, Adam Ulfsbo, and Martin Jakobsson
Ocean Sci., 13, 349–363, https://doi.org/10.5194/os-13-349-2017, https://doi.org/10.5194/os-13-349-2017, 2017
Short summary
Short summary
We use data collected in 2014 to show that the outflow of nutrient-rich water occurs much further to the west than has been reported in the past. We suggest that this is due to much less summer sea-ice coverage in the northwestern East Siberian Sea than in the past decades. Further, our data support a more complicated flow pattern in the region where the Mendeleev Ridge reaches the shelf compared to the general cyclonic circulation within the individual basins as suggested historically.
Mohamed Ayache, Jean-Claude Dutay, Anne Mouchet, Nadine Tisnérat-Laborde, Paolo Montagna, Toste Tanhua, Giuseppe Siani, and Philippe Jean-Baptiste
Biogeosciences, 14, 1197–1213, https://doi.org/10.5194/bg-14-1197-2017, https://doi.org/10.5194/bg-14-1197-2017, 2017
Short summary
Short summary
A high-resolution dynamical model was used to give the first simulation of the distribution of natural and anthropogenic radiocarbon (14C) across the whole Mediterranean Sea. The model correctly simulates the main features of 14C distribution during and after the bomb perturbation. The results demonstrate the major influence of the flux of Atlantic water through the Strait of Gibraltar, and a significant increase in 14C in the Aegean deep water during the Eastern Mediterranean Transient event.
Meike Becker, Nils Andersen, Helmut Erlenkeuser, Matthew P. Humphreys, Toste Tanhua, and Arne Körtzinger
Earth Syst. Sci. Data, 8, 559–570, https://doi.org/10.5194/essd-8-559-2016, https://doi.org/10.5194/essd-8-559-2016, 2016
Short summary
Short summary
The stable carbon isotope composition of dissolved inorganic carbon (δ13C-DIC) can be used to quantify fluxes within the marine carbon system such as the exchange between ocean and atmosphere or the amount of anthropogenic carbon in the water column. In this study, an internally consistent δ13C-DIC dataset for the North Atlantic is presented. The data have undergone a secondary quality control during which systematic biases between the respective cruises have been quantified and adjusted.
Björn Fiedler, Damian S. Grundle, Florian Schütte, Johannes Karstensen, Carolin R. Löscher, Helena Hauss, Hannes Wagner, Alexandra Loginova, Rainer Kiko, Péricles Silva, Toste Tanhua, and Arne Körtzinger
Biogeosciences, 13, 5633–5647, https://doi.org/10.5194/bg-13-5633-2016, https://doi.org/10.5194/bg-13-5633-2016, 2016
Short summary
Short summary
Oxygen-depleted mesoscale features in the open eastern tropical North Atlantic, which are formed in the Mauritanian upwelling region, were discovered recently. This study examines biogeochemical structure and magnitudes of related processes within these isolated water masses. We found very low oxygen concentrations and strongly enhanced acidity at near-surface depth. Oxygen utilization and downward carbon export were found to exceed known values for this ocean region.
Are Olsen, Robert M. Key, Steven van Heuven, Siv K. Lauvset, Anton Velo, Xiaohua Lin, Carsten Schirnick, Alex Kozyr, Toste Tanhua, Mario Hoppema, Sara Jutterström, Reiner Steinfeldt, Emil Jeansson, Masao Ishii, Fiz F. Pérez, and Toru Suzuki
Earth Syst. Sci. Data, 8, 297–323, https://doi.org/10.5194/essd-8-297-2016, https://doi.org/10.5194/essd-8-297-2016, 2016
Short summary
Short summary
The GLODAPv2 data product collects data from more than 700 hydrographic cruises into a global and internally calibrated product. It provides access to the data from almost all ocean carbon cruises carried out since the 1970s and is a unique resource for marine science, in particular regarding the ocean carbon cycle. GLODAPv2 will form the foundation for future routine synthesis of hydrographic data of the same sort.
Siv K. Lauvset, Robert M. Key, Are Olsen, Steven van Heuven, Anton Velo, Xiaohua Lin, Carsten Schirnick, Alex Kozyr, Toste Tanhua, Mario Hoppema, Sara Jutterström, Reiner Steinfeldt, Emil Jeansson, Masao Ishii, Fiz F. Perez, Toru Suzuki, and Sylvain Watelet
Earth Syst. Sci. Data, 8, 325–340, https://doi.org/10.5194/essd-8-325-2016, https://doi.org/10.5194/essd-8-325-2016, 2016
Short summary
Short summary
This paper describes the mapped climatologies that are part of the Global Ocean Data Analysis Project Version 2 (GLODAPv2). GLODAPv2 is a uniformly calibrated open ocean data product on inorganic carbon and carbon-relevant variables. Global mapped climatologies of the total dissolved inorganic carbon, total alkalinity, pH, saturation state of calcite and aragonite, anthropogenic carbon, preindustrial carbon content, inorganic macronutrients, oxygen, salinity, and temperature have been created.
Tim Stöven, Toste Tanhua, Mario Hoppema, and Wilken-Jon von Appen
Ocean Sci., 12, 319–333, https://doi.org/10.5194/os-12-319-2016, https://doi.org/10.5194/os-12-319-2016, 2016
Short summary
Short summary
The article describes transient tracer distributions of CFC-12 and SF6 in the Fram Strait in 2012. The SF6 excess and the anthropogenic carbon content in this area was estimated assuming a standard parameterization of the inverse-Gaussian–transit-time distribution. Hydrographic data were obtained along a mooring array at 78°50’N and a mean velocity field was used for flux estimates.
L. Stramma, R. Czeschel, T. Tanhua, P. Brandt, M. Visbeck, and B. S. Giese
Ocean Sci., 12, 153–167, https://doi.org/10.5194/os-12-153-2016, https://doi.org/10.5194/os-12-153-2016, 2016
Short summary
Short summary
The subsurface circulation in the eastern tropical North Atlantic OMZ is derived from velocity, float and tracer data and data assimilation results, and shows a cyclonic flow around the Guinea Dome reaching into the oxygen minimum zone. The stronger cyclonic flow around the Guinea Dome in 2009 seem to be connected to a strong Atlantic Meridional Mode (AMM) event.
A continuous deoxygenation trend of the low oxygen layer was confirmed.
Eddy influence is weak south of the Cape Verde Islands.
S. Walter, A. Kock, T. Steinhoff, B. Fiedler, P. Fietzek, J. Kaiser, M. Krol, M. E. Popa, Q. Chen, T. Tanhua, and T. Röckmann
Biogeosciences, 13, 323–340, https://doi.org/10.5194/bg-13-323-2016, https://doi.org/10.5194/bg-13-323-2016, 2016
Short summary
Short summary
Oceans are a source of H2, an indirect greenhouse gas. Measurements constraining the temporal and spatial patterns of oceanic H2 emissions are sparse and although H2 is assumed to be produced mainly biologically, direct evidence for biogenic marine production was lacking. By analyzing the H2 isotopic composition (δD) we were able to constrain the global H2 budget in more detail, verify biogenic production and point to additional sources. We also showed that current models are reasonably working.
T. Stöven, T. Tanhua, M. Hoppema, and J. L. Bullister
Ocean Sci., 11, 699–718, https://doi.org/10.5194/os-11-699-2015, https://doi.org/10.5194/os-11-699-2015, 2015
Short summary
Short summary
We use a suite of transient tracer measurements from a Southern Ocean sector southeast of Africa collected from 1998 and 2012 to quantify ventilation and change in ventilation. We found that the ventilation can be constrained by an inverse Gaussian transit time distribution north of the Subantarctic Front. We do not find any significant changes in upper ocean ventilation during this time period.
P. Brandt, H. W. Bange, D. Banyte, M. Dengler, S.-H. Didwischus, T. Fischer, R. J. Greatbatch, J. Hahn, T. Kanzow, J. Karstensen, A. Körtzinger, G. Krahmann, S. Schmidtko, L. Stramma, T. Tanhua, and M. Visbeck
Biogeosciences, 12, 489–512, https://doi.org/10.5194/bg-12-489-2015, https://doi.org/10.5194/bg-12-489-2015, 2015
Short summary
Short summary
Our observational study looks at the structure of the eastern tropical North Atlantic (ETNA) oxygen minimum zone (OMZ) in comparison with the less-ventilated, eastern tropical South Pacific OMZ. We quantify the OMZ’s oxygen budget composed of consumption, advection, lateral and vertical mixing. Substantial oxygen variability is observed on interannual to multidecadal timescales. The deoxygenation of the ETNA OMZ during the last decades represents a substantial imbalance of the oxygen budget.
A. Oviedo, P. Ziveri, M. Álvarez, and T. Tanhua
Ocean Sci., 11, 13–32, https://doi.org/10.5194/os-11-13-2015, https://doi.org/10.5194/os-11-13-2015, 2015
D. Hainbucher, A. Rubino, V. Cardin, T. Tanhua, K. Schroeder, and M. Bensi
Ocean Sci., 10, 669–682, https://doi.org/10.5194/os-10-669-2014, https://doi.org/10.5194/os-10-669-2014, 2014
T. Stöven and T. Tanhua
Ocean Sci., 10, 439–457, https://doi.org/10.5194/os-10-439-2014, https://doi.org/10.5194/os-10-439-2014, 2014
P. Malanotte-Rizzoli, V. Artale, G. L. Borzelli-Eusebi, S. Brenner, A. Crise, M. Gacic, N. Kress, S. Marullo, M. Ribera d'Alcalà, S. Sofianos, T. Tanhua, A. Theocharis, M. Alvarez, Y. Ashkenazy, A. Bergamasco, V. Cardin, S. Carniel, G. Civitarese, F. D'Ortenzio, J. Font, E. Garcia-Ladona, J. M. Garcia-Lafuente, A. Gogou, M. Gregoire, D. Hainbucher, H. Kontoyannis, V. Kovacevic, E. Kraskapoulou, G. Kroskos, A. Incarbona, M. G. Mazzocchi, M. Orlic, E. Ozsoy, A. Pascual, P.-M. Poulain, W. Roether, A. Rubino, K. Schroeder, J. Siokou-Frangou, E. Souvermezoglou, M. Sprovieri, J. Tintoré, and G. Triantafyllou
Ocean Sci., 10, 281–322, https://doi.org/10.5194/os-10-281-2014, https://doi.org/10.5194/os-10-281-2014, 2014
M. Álvarez, H. Sanleón-Bartolomé, T. Tanhua, L. Mintrop, A. Luchetta, C. Cantoni, K. Schroeder, and G. Civitarese
Ocean Sci., 10, 69–92, https://doi.org/10.5194/os-10-69-2014, https://doi.org/10.5194/os-10-69-2014, 2014
A. Schneider, T. Tanhua, W. Roether, and R. Steinfeldt
Ocean Sci., 10, 1–16, https://doi.org/10.5194/os-10-1-2014, https://doi.org/10.5194/os-10-1-2014, 2014
F. Ziska, B. Quack, K. Abrahamsson, S. D. Archer, E. Atlas, T. Bell, J. H. Butler, L. J. Carpenter, C. E. Jones, N. R. P. Harris, H. Hepach, K. G. Heumann, C. Hughes, J. Kuss, K. Krüger, P. Liss, R. M. Moore, A. Orlikowska, S. Raimund, C. E. Reeves, W. Reifenhäuser, A. D. Robinson, C. Schall, T. Tanhua, S. Tegtmeier, S. Turner, L. Wang, D. Wallace, J. Williams, H. Yamamoto, S. Yvon-Lewis, and Y. Yokouchi
Atmos. Chem. Phys., 13, 8915–8934, https://doi.org/10.5194/acp-13-8915-2013, https://doi.org/10.5194/acp-13-8915-2013, 2013
T. Tanhua, D. Hainbucher, K. Schroeder, V. Cardin, M. Álvarez, and G. Civitarese
Ocean Sci., 9, 789–803, https://doi.org/10.5194/os-9-789-2013, https://doi.org/10.5194/os-9-789-2013, 2013
T. Tanhua, D. Hainbucher, V. Cardin, M. Álvarez, G. Civitarese, A. P. McNichol, and R. M. Key
Earth Syst. Sci. Data, 5, 289–294, https://doi.org/10.5194/essd-5-289-2013, https://doi.org/10.5194/essd-5-289-2013, 2013
T. Fischer, D. Banyte, P. Brandt, M. Dengler, G. Krahmann, T. Tanhua, and M. Visbeck
Biogeosciences, 10, 5079–5093, https://doi.org/10.5194/bg-10-5079-2013, https://doi.org/10.5194/bg-10-5079-2013, 2013
S. Khatiwala, T. Tanhua, S. Mikaloff Fletcher, M. Gerber, S. C. Doney, H. D. Graven, N. Gruber, G. A. McKinley, A. Murata, A. F. Ríos, and C. L. Sabine
Biogeosciences, 10, 2169–2191, https://doi.org/10.5194/bg-10-2169-2013, https://doi.org/10.5194/bg-10-2169-2013, 2013
Cited articles
Abraham, M. H., Gola, J. M., Cometto-Muñiz, J. E., and Cain, W. S.:
Solvation properties of refrigerants, and the estimation of their
water-solvent and gas-solvent partitions, Fluid Phase Equilib., 180, 41–58,
https://doi.org/10.1016/S0378-3812(00)00511-2, 2001.
Aggarwal, P. K.: Isotope Methods for Dating Old Groundwater, edited by:
Suckow, A., Aggarwal, P., and Araguas-Araguas, L., International Atomic
Energy Agency, Vienna, 357 pp., 2013.
Arnold, T., Mühle, J., Salameh, P. K., Harth, C. M., Ivy, D. J., and
Weiss, R. F.: Automated Measurement of Nitrogen Trifluoride in Ambient Air,
Anal. Chem., 84, 4798–4804, https://doi.org/10.1021/ac300373e, 2012.
Beyer, M., van der Raaij, R., Morgenstern, U., and Jackson, B.: Potential
groundwater age tracer found: Halon-1301 (CF3Br), as previously
identified as CFC-13 (CF3Cl), Water Resour. Res., 50, 7318–7331,
https://doi.org/10.1002/2014WR015818, 2014.
Booge, D.: FS Alkor Cruise Report, Cruise AL516, 12.09.2018–22.09.2018. Alkor-Berichte, AL516, GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Kiel, Germany, 25 pp., https://doi.org/10.3289/CR_AL516, 2018.
Bullister, J. and Weiss, R.: Determination of CCl3F and
CCl2F2 in seawater and air, Deep-Sea Res. Pt. A, 35, 839–853, https://doi.org/10.1016/0198-0149(88)90033-7, 1988.
Bullister, J. L.: Atmospheric Histories (1765–2015) for CFC-11, CFC-12, CFC-113, CCl4, SF6 and N2O, NDP-095, 1–23, available at: http://cdiac.ess-dive.lbl.gov/ftp/oceans/CFC_ATM_Hist/CFC_ATM_Hist_2015 (last access: 31 March 2021), Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, 2015.
Bullister, J. L. and Tanhua, T.: Sampling and Measurement of Chlorofluorocarbon and Sulfur Hexafluoride in Seawater GO-SHIP Repeat Hydrography Manual: A Collection of Expert Reports and Guidelines. IOCCP Report, 14. GO-SHIP (Unesco/IOC), Paris, France, 1–11, 2010.
Bullister, J. L. and Wisegarver, D. P.: The shipboard analysis of trace
levels of sulfur hexafluoride, chlorofluorocarbon-11 and
chlorofluorocarbon-12 in seawater, Deep-Sea Res. Pt. I, 55, 1063–1074,
https://doi.org/10.1016/j.dsr.2008.03.014, 2008.
Bullister, J. L., Wisegarver, D. P., and Menzia, F. A.: The solubility of
sulfur hexafluoride in water and seawater, Deep-Sea Res. Pt. I, 49,
175–187, https://doi.org/10.1016/S0967-0637(01)00051-6, 2002.
Bullister, J. L., Wisegarver, D. P., and Sonnerup, R. E.: Sulfur
hexafluoride as a transient tracer in the North Pacific Ocean, Geophys. Res.
Lett., 33, L18603, https://doi.org/10.1029/2006GL026514, 2006.
Butler, J. H., Yvon-Lewis, S. A., Lobert, J. M., King, D. B., Montzka, S. A., Bullister, J. L., Koropalov, V., Elkins, J. W., Hall, B. D., Hu, L., and Liu, Y.: A comprehensive estimate for loss of atmospheric carbon tetrachloride (CCl4) to the ocean, Atmos. Chem. Phys., 16, 10899–10910, https://doi.org/10.5194/acp-16-10899-2016, 2016.
Carpenter, L. J., Reimann, S., Burkholder, J. B., Clerbaux, C., Hall, B. D.,
Hossaini, R., Laube, J. C., and Yvon-Lewis, S. A.: Scientific Assessment of
Ozone Depletion: 2014, World Meteorological Organization, Geneva, 1.1–5.58,
2014.
Cicerone, R. J.: Atmospheric carbon tetrafluoride: A nearly inert gas,
Science, 206, 59–61, https://doi.org/10.1126/science.206.4414.59, 1979.
Clever, H. L., Battino, R., Clever, H. L., Jaselskis, B., Clever, H. L.,
Yampol'skii, Y. P., Jaselskis, B., Scharlin, P., and Young, C. L.:
IUPAC-NIST Solubility Data Series. 80. Gaseous Fluorides of Boron, Nitrogen,
Sulfur, Carbon, and Silicon and Solid Xenon Fluorides in all Solvents, J.
Phys. Chem. Ref. Data, 34, 201–438, https://doi.org/10.1063/1.1794762, 2005.
Deeds, D. A.: The Natural Geochemistry of Tetrafluoromethane and Sulfur
Hexafluoride: Studies of Ancient Mojave Desert Groundwaters, North Pacific
Seawaters and the Summit Emissions of Kilauea Volcano, PhD thesis, Scripps Institution of Oceanography, San Diego, 174 pp., 2008.
Ebser, S., Kersting, A., Stöven, T., Feng, Z., Ringena, L., Schmidt, M.,
Tanhua, T., Aeschbach, W., and Oberthaler, M. K.: 39Ar dating with
small samples provides new key constraints on ocean ventilation, Nat.
Commun., 9, 5046, https://doi.org/10.1038/s41467-018-07465-7,
2018.
Hainbucher, D., Álvarez, M., Astray Uceda, B., Bachi, G., Cardin, V., Celentano, P., Chaikalis, S., del Mar Chaves Montero, M., Civitarese, G., Fajar, N. M., Fripiat, F., Gerke, L., Gogou, A., Guallart, E. F., Gülk, B., El Rahman Hassoun, A., Lange, N., Rochner, A., Santinelli, C., Steinhoff, T., Tanhua, T., Urbini, L., Velaoras, D., Wolf, F., and Welsch, A.: Physical and biogeochemical parameters of the Mediterranean Sea during a cruise with RV Maria S. Merian in March 2018, Earth Syst. Sci. Data, 12, 2747–2763, https://doi.org/10.5194/essd-12-2747-2020, 2020.
Hall, T. M. and Plumb, R. A.: Age as a diagnostic of stratospheric
transport, J. Geophy. Res.-Atmos., 99, 1059–1070, https://doi.org/10.1029/93JD03192, 1994.
Holzer, M., Smethie Jr, W. M., and Ting, Y. H.: Ventilation of the
Subtropical North Atlantic: locations and times of last ventilation
estimated using tracer constraints from GEOTRACES Section GA03, J. Geophys.
Res.-Oceans, 123, 2332–2352, 2018.
Huhn, O., Roether, W., Beining, P., and Rose, H.: Validity limits of carbon
tetrachloride as an ocean tracer, Deep-Sea Res. Pt. I, 48, 2025–2049,
https://doi.org/10.1016/S0967-0637(01)00004-8, 2001.
Law, C., Watson, A., and Liddicoat, M.: Automated vacuum analysis of sulphur
hexafluoride in seawater: derivation of the atmospheric trend (1970–1993)
and potential as a transient tracer, Mar. Chem., 48, 57–69,
https://doi.org/10.1016/0304-4203(94)90062-0, 1994.
Li, P. and Tanhua, T.: Recent changes in deep ventilation of the
Mediterranean Sea; evidence from long-term transient tracer observations,
Front. Mar. Sci., 7, 594, https://doi.org/10.3389/fmars.2020.00594, 2020 (data available at: https://www.nodc.noaa.gov/ocads/oceans/Coastal/Meteor_Med_Sea.html, last access: 31 March 2021).
Li, P., Mühle, J., Montzka, S. A., Oram, D. E., Miller, B. R., Weiss, R. F., Fraser, P. J., and Tanhua, T.: Atmospheric histories, growth rates and solubilities in seawater and other natural waters of the potential transient tracers HCFC-22, HCFC-141b, HCFC-142b, HFC-134a, HFC-125, HFC-23, PFC-14 and PFC-116, Ocean Sci., 15, 33–60, https://doi.org/10.5194/os-15-33-2019, 2019.
Lobert, J. M., Butler, J. H., Baring, T. J., Montzka, S. M., Myers, R. C., and Elkins, J. W.: OAXTC 92: Ocean/Atmosphere Exchange of Trace Compounds 1992: Oceanic measurements of HCFC-22, CFC-11, CFC-12, CFC-113, CH3CCl3, CCl4, and N2O in the marine air and surface waters of the west Pacific Ocean (August 3–October 21, 1992), NOAA Technical Memorandum, ERL CMDL-9, 43 pp., 1995.
Lobert, J. M., Butler, J. H., Geller, L. S., Montzka, S. A., Yvon, S. A., Myers, R. C., and Elkins, J. W.: BLAST 94: Bromine Latitudinal Air/Sea Transect 1994, Report on Oceanic Measurements of Methyl Bromide and Other Compounds, NOAA Technical Memorandum ERL CMDL-10 (2/1996), available from NTIS, 5285 Port Royal Road, Springfield, VA 22161 USA, 1996.
Lu, Z. T., Schlosser, P., Smethie Jr., W. M., Sturchio, N. C., Fischer, T.
P., Kennedy, B. M., Purtschert, R., Severinghaus, J. P., Solomon, D. K.,
Tanhua, T., and Yokochi, R.: Tracer applications of noble gas radionuclides
in the geosciences, Earth-Sci. Rev., 138, 196–214,
https://doi.org/10.1016/j.earscirev.2013.09.002, 2014.
Miller, B. R., Weiss, R. F., Salameh, P. K., Tanhua, T., Greally, B. R.,
Mühle, J., and Simmonds, P. G.: Medusa: A sample preconcentration and
GC/MS detector system for in situ measurements of atmospheric trace
halocarbons, hydrocarbons, and sulfur compounds, Anal. Chem., 80,
1536–1545, https://doi.org/10.1021/ac702084k, 2008.
Ooki, A. and Yokouchi, Y.: Determination of Henry's law constant of
halocarbons in seawater and analysis of sea-to-air flux of iodoethane
(C2H5I) in the Indian and Southern oceans based on partial
pressure measurements, Geochem. J., 45, e1–e7,
https://doi.org/10.2343/geochemj.1.0122, 2011.
Prinn, R. G., Weiss, R. F., Arduini, J., Arnold, T., DeWitt, H. L., Fraser, P. J., Ganesan, A. L., Gasore, J., Harth, C. M., Hermansen, O., Kim, J., Krummel, P. B., Li, S., Loh, Z. M., Lunder, C. R., Maione, M., Manning, A. J., Miller, B. R., Mitrevski, B., Mühle, J., O'Doherty, S., Park, S., Reimann, S., Rigby, M., Saito, T., Salameh, P. K., Schmidt, R., Simmonds, P. G., Steele, L. P., Vollmer, M. K., Wang, R. H., Yao, B., Yokouchi, Y., Young, D., and Zhou, L.: History of chemically and radiatively important atmospheric gases from the Advanced Global Atmospheric Gases Experiment (AGAGE), Earth Syst. Sci. Data, 10, 985–1018, https://doi.org/10.5194/essd-10-985-2018, 2018.
Ravishankara, A., Solomon, S., Turnipseed, A. A., and Warren, R.:
Atmospheric lifetimes of long-lived halogenated species, Science, 259, 194–199,
https://doi.org/10.1126/science.259.5092.194, 1993.
Roether, W., Klein, B., and Bulsiewicz, K.: Apparent loss of CFC-113 in the
upper ocean, J. Geophys. Res.-Oceans, 106, 2679–2688, https://doi.org/10.1029/1999JC000079, 2001.
Scharlin, P. and Battino, R.: Solubility of CCl2F2, CClF3,
CF4, and CH4 in Water and Seawater at 288.15-303.15 K and 101.325
kPa, J. Chem. Eng. Data, 40, 167–169,
https://doi.org/10.1021/je00017a036, 1995.
Schneider, A., Tanhua, T., Roether, W., and Steinfeldt, R.: Changes in ventilation of the Mediterranean Sea during the past 25 year, Ocean Sci., 10, 1–16, https://doi.org/10.5194/os-10-1-2014, 2014.
Simmonds, P. G., Rigby, M., McCulloch, A., Vollmer, M. K., Henne, S., Mühle, J., O'Doherty, S., Manning, A. J., Krummel, P. B., Fraser, P. J., Young, D., Weiss, R. F., Salameh, P. K., Harth, C. M., Reimann, S., Trudinger, C. M., Steele, L. P., Wang, R. H. J., Ivy, D. J., Prinn, R. G., Mitrevski, B., and Etheridge, D. M.: Recent increases in the atmospheric growth rate and emissions of HFC-23 (CHF3) and the link to HCFC-22 (CHClF2) production, Atmos. Chem. Phys., 18, 4153–4169, https://doi.org/10.5194/acp-18-4153-2018, 2018.
Sousa, S. R. and Bialkowski, S. E.: Comparison of gas chromatography
detection limits and relative responses of common alternative fluorocarbons
using electron capture, atomic emission, and mass spectrometry detection,
Anal. Chim. Acta, 433, 181–186, https://doi.org/10.1016/S0003-2670(01)00789-9, 2001.
Stöven, T.: Ventilation Processes of the Mediterranean Sea based on CFC-12 and SF6 measurements, Diploma thesis, Christian-Albrechts-Universität, Kiel, Germany, 152 pp., 2011.
Stöven, T. and Tanhua, T.: Ventilation of the Mediterranean Sea constrained by multiple transient tracer measurements, Ocean Sci., 10, 439–457, https://doi.org/10.5194/os-10-439-2014, 2014.
Stöven, T., Tanhua, T., Hoppema, M., and Bullister, J. L.: Perspectives of transient tracer applications and limiting cases, Ocean Sci., 11, 699–718, https://doi.org/10.5194/os-11-699-2015, 2015.
Stöven, T., Tanhua, T., Hoppema, M., and von Appen, W.-J.: Transient tracer distributions in the Fram Strait in 2012 and inferred anthropogenic carbon content and transport, Ocean Sci., 12, 319–333, https://doi.org/10.5194/os-12-319-2016, 2016.
Tanhua, T., Anders Olsson, K., and Fogelqvist, E.: A first study of SF6
as a transient tracer in the Southern Ocean, Deep-Sea Res. Pt. II, 51,
2683–2699, https://doi.org/10.1016/j.dsr2.2001.02.001, 2004.
Tanhua, T., Waugh, D. W., and Wallace, D. W. R.: Use of SF6 to estimate
anthropogenic CO2 in the upper ocean, J. Geophy. Res., 113, C04037,
https://doi.org/10.1029/2007jc004416, 2008.
Tanhua, T., van Heuven, S., Key, R. M., Velo, A., Olsen, A., and Schirnick, C.: Quality control procedures and methods of the CARINA database, Earth Syst. Sci. Data, 2, 35–49, https://doi.org/10.5194/essd-2-35-2010, 2010.
Trudinger, C. M., Fraser, P. J., Etheridge, D. M., Sturges, W. T., Vollmer, M. K., Rigby, M., Martinerie, P., Mühle, J., Worton, D. R., Krummel, P. B., Steele, L. P., Miller, B. R., Laube, J., Mani, F. S., Rayner, P. J., Harth, C. M., Witrant, E., Blunier, T., Schwander, J., O'Doherty, S., and Battle, M.: Atmospheric abundance and global emissions of perfluorocarbons CF4, C2F6 and C3F8 since 1800 inferred from ice core, firn, air archive and in situ measurements, Atmos. Chem. Phys., 16, 11733–11754, https://doi.org/10.5194/acp-16-11733-2016, 2016.
Vollmer, M. K. and Weiss, R. F.: Simultaneous determination of sulfur
hexafluoride and three chlorofluorocarbons in water and air, Mar. Chem., 78,
137–148, https://doi.org/10.1016/S0304-4203(02)00015-4, 2002.
Walker, S. J., Weiss, R. F., and Salameh, P. K.: Reconstructed histories of
the annual mean atmospheric mole fractions for the halocarbons CFC-11
CFC-12, CFC-113, and carbon tetrachloride, J. Geophy. Res., 105,
14285–14296, https://doi.org/10.1029/1999jc900273, 2000.
Wallace, D. W. R. and Krysell, M.: Hydrolysis of Carbon Tetrachloride,
Science, 246, 1638–1639, https://doi.org/10.1126/science.1638-a, 1989.
Warner, M. J. and Weiss, R. F.: Solubilities of chlorofluorocarbons 11 and
12 in water and seawater, Deep Sea Res. Pt. A, 32,
1485–1497, https://doi.org/10.1016/0198-0149(85)90099-8, 1985.
Waugh, D. W., Hall, T. M., and Haine, T. W.: Relationships among tracer
ages, J. Geophys. Res.-Oceans, 108, 3138,
https://doi.org/10.1029/2002JC001325, 2003.
Yvon-Lewis, S., Liu, Y., Hu, L., and O'Hern, J.: Selected CFC and HCFC
Tracers Observed During the Gulf of Mexico East Coast Carbon (GOMECC)
Cruise, AGU Fall Meeting Abstracts, San Francisco, OS53C-1321, 2008.
Yvon-Lewis, S. A. and Butler, J. H.: Effect of oceanic uptake on
atmospheric lifetimes of selected trace gases, J. Geophy. Res.-Atmos., 107,
4414, https://doi.org/10.1029/2001JD001267, 2002.
Short summary
Observations of transient tracer distribution provide essential information on ocean ventilation. The use of several commonly used transient traces is limited as their atmospheric mole fractions do not monotonically change. Here we explore new potential oceanic transient tracers with an analytical system that simultaneously measures a large range of compounds. Combined with the known atmospheric history and seawater solubility, we discuss the utility of selected HCFCs, HFCs, and PFCs as tracers.
Observations of transient tracer distribution provide essential information on ocean...