Articles | Volume 17, issue 1
https://doi.org/10.5194/os-17-365-2021
https://doi.org/10.5194/os-17-365-2021
Research article
 | 
19 Feb 2021
Research article |  | 19 Feb 2021

Structure and drivers of ocean mixing north of Svalbard in summer and fall 2018

Zoe Koenig, Eivind H. Kolås, and Ilker Fer

Related authors

An emerging pathway of Atlantic Water to the Barents Sea through the Svalbard Archipelago: drivers and variability
Kjersti Kalhagen, Ragnheid Skogseth, Till M. Baumann, Eva Falck, and Ilker Fer
Ocean Sci., 20, 981–1001, https://doi.org/10.5194/os-20-981-2024,https://doi.org/10.5194/os-20-981-2024, 2024
Short summary
The Polar Front in the northwestern Barents Sea: structure, variability and mixing
Eivind H. Kolås, Ilker Fer, and Till M. Baumann
Ocean Sci., 20, 895–916, https://doi.org/10.5194/os-20-895-2024,https://doi.org/10.5194/os-20-895-2024, 2024
Short summary
Dynamical reconstruction of the upper-ocean state in the central Arctic during the winter period of the MOSAiC expedition
Ivan Kuznetsov, Benjamin Rabe, Alexey Androsov, Ying-Chih Fang, Mario Hoppmann, Alejandra Quintanilla-Zurita, Sven Harig, Sandra Tippenhauer, Kirstin Schulz, Volker Mohrholz, Ilker Fer, Vera Fofonova, and Markus Janout
Ocean Sci., 20, 759–777, https://doi.org/10.5194/os-20-759-2024,https://doi.org/10.5194/os-20-759-2024, 2024
Short summary
Technical note: Turbulence measurements from a light autonomous underwater vehicle
Eivind H. Kolås, Tore Mo-Bjørkelund, and Ilker Fer
Ocean Sci., 18, 389–400, https://doi.org/10.5194/os-18-389-2022,https://doi.org/10.5194/os-18-389-2022, 2022
Short summary
The mesoscale eddy field in the Lofoten Basin from high-resolution Lagrangian simulations
Johannes S. Dugstad, Pål Erik Isachsen, and Ilker Fer
Ocean Sci., 17, 651–674, https://doi.org/10.5194/os-17-651-2021,https://doi.org/10.5194/os-17-651-2021, 2021
Short summary

Cited articles

Årthun, M., Eldevik, T., Smedsrud, L., Skagseth, Ø., and Ingvaldsen, R.: Quantifying the influence of Atlantic heat on Barents Sea ice variability and retreat, J. Climate, 25, 4736–4743, https://doi.org/10.1175/JCLI-D-11-00466.1, 2012. a, b
Baines, P. G.: On internal tide generation models, Deep-Sea Res. Pt. A, 29, 307–338, https://doi.org/10.1016/0198-0149(82)90098-X, 1982. a
Bouffard, D. and Boegman, L.: A diapycnal diffusivity model for stratified environmental flows, Dynam. Atmos. Oceans, 61, 14–34, https://doi.org/10.1016/j.dynatmoce.2013.02.002, 2013. a
Boyd, T. J. and D'Asaro, E. A.: Cooling of the West Spitsbergen Current: Wintertime observations west of Svalbard, J. Geophys. Res., 99, 22597–22618, https://doi.org/10.1029/94JC01824, 1994. a
Cokelet, E. D., Tervalon, N., and Bellingham, J. G.: Hydrography of the West Spitsbergen Current, Svalbard Branch: Autumn 2001, J. Geophys. Res., 113, C01006, https://doi.org/10.1029/2007JC004150, 2008. a, b, c
Download
Short summary
The Arctic Ocean is a major sink for heat and salt for the global ocean. Ocean mixing contributes to this sink by mixing the Atlantic and Pacific waters with surrounding waters. We investigate the drivers of ocean mixing north of Svalbard based on observations collected during two research cruises in 2018 as part of the Nansen Legacy project. We found that wind and tidal forcing are the main drivers and that 1 % of the Atlantic Water heat loss can be attributed to vertical turbulent mixing.