Articles | Volume 17, issue 1
https://doi.org/10.5194/os-17-365-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-17-365-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Structure and drivers of ocean mixing north of Svalbard in summer and fall 2018
Zoe Koenig
CORRESPONDING AUTHOR
Geophysical Institute, University of Bergen and Bjerknes Center for Climate Research, Bergen, Norway
Norwegian Polar Institute, Tromsø, Norway
Eivind H. Kolås
Geophysical Institute, University of Bergen and Bjerknes Center for Climate Research, Bergen, Norway
Ilker Fer
Geophysical Institute, University of Bergen and Bjerknes Center for Climate Research, Bergen, Norway
Related authors
No articles found.
Kjersti Kalhagen, Ragnheid Skogseth, Till M. Baumann, Eva Falck, and Ilker Fer
Ocean Sci., 20, 981–1001, https://doi.org/10.5194/os-20-981-2024, https://doi.org/10.5194/os-20-981-2024, 2024
Short summary
Short summary
Atlantic water (AW) is a key driver of change in the Barents Sea. We studied an emerging pathway through the Svalbard Archipelago that allows AW to enter the Barents Sea. We found that the Atlantic sector near the study site has warmed over the past 2 decades; that Atlantic-origin waters intermittently enter the Barents Sea through the aforementioned pathway; and that heat transport is driven by tides, wind events, and variations in the upstream current system.
Eivind H. Kolås, Ilker Fer, and Till M. Baumann
Ocean Sci., 20, 895–916, https://doi.org/10.5194/os-20-895-2024, https://doi.org/10.5194/os-20-895-2024, 2024
Short summary
Short summary
In the northwestern Barents Sea, we study the Barents Sea Polar Front formed by Atlantic Water meeting Polar Water. Analyses of ship and glider data from October 2020 to February 2021 show a density front with warm, salty water intruding under cold, fresh water. Short-term variability is linked to tidal currents and mesoscale eddies, influencing front position, density slopes and water mass transformation. Despite seasonal changes in the upper layers, the front remains stable below 100 m depth.
Ivan Kuznetsov, Benjamin Rabe, Alexey Androsov, Ying-Chih Fang, Mario Hoppmann, Alejandra Quintanilla-Zurita, Sven Harig, Sandra Tippenhauer, Kirstin Schulz, Volker Mohrholz, Ilker Fer, Vera Fofonova, and Markus Janout
Ocean Sci., 20, 759–777, https://doi.org/10.5194/os-20-759-2024, https://doi.org/10.5194/os-20-759-2024, 2024
Short summary
Short summary
Our research introduces a tool for dynamically mapping the Arctic Ocean using data from the MOSAiC experiment. Incorporating extensive data into a model clarifies the ocean's structure and movement. Our findings on temperature, salinity, and currents reveal how water layers mix and identify areas of intense water movement. This enhances understanding of Arctic Ocean dynamics and supports climate impact studies. Our work is vital for comprehending this key region in global climate science.
Eivind H. Kolås, Tore Mo-Bjørkelund, and Ilker Fer
Ocean Sci., 18, 389–400, https://doi.org/10.5194/os-18-389-2022, https://doi.org/10.5194/os-18-389-2022, 2022
Short summary
Short summary
A turbulence instrument was installed on a light autonomous underwater vehicle (AUV) and deployed in the Barents Sea in February 2021. We present the data quality and discuss limitations when measuring turbulence from the AUV. AUV vibrations contaminate the turbulence measurements, yet the measurements were sufficiently cleaned when the AUV operated in turbulent environments. In quiescent environments the noise from the AUV became relatively large, making the turbulence measurements unreliable.
Johannes S. Dugstad, Pål Erik Isachsen, and Ilker Fer
Ocean Sci., 17, 651–674, https://doi.org/10.5194/os-17-651-2021, https://doi.org/10.5194/os-17-651-2021, 2021
Short summary
Short summary
We quantify the mesoscale eddy field in the Lofoten Basin using Lagrangian model trajectories and aim to estimate the relative importance of eddies compared to the ambient flow in transporting warm Atlantic Water to the Lofoten Basin as well as modifying it. Water properties are largely changed in eddies compared to the ambient flow. However, only a relatively small fraction of eddies is detected in the basin. The ambient flow therefore dominates the heat transport to the Lofoten Basin.
Ilker Fer, Anthony Bosse, and Johannes Dugstad
Ocean Sci., 16, 685–701, https://doi.org/10.5194/os-16-685-2020, https://doi.org/10.5194/os-16-685-2020, 2020
Short summary
Short summary
We analyzed 14-month-long observations from moored instruments to describe the average features and the variability of the Norwegian Atlantic Slope Current at the Lofoten Escarpment (13°E, 69°N). The slope current varies strongly with depth and in time. Pulses of strong current occur, lasting for 1 to 2 weeks, and extend as deep as 600 m. The average volume transport is 2 x 106 m3 s-1.
Erik M. Bruvik, Ilker Fer, Kjetil Våge, and Peter M. Haugan
Ocean Sci., 16, 291–305, https://doi.org/10.5194/os-16-291-2020, https://doi.org/10.5194/os-16-291-2020, 2020
Short summary
Short summary
A concept of small and slow ocean gliders or profiling floats with wings is explored. These robots or drones measure the ocean temperature and currents. Even if the speed is very slow, only 13 cm s1, it is possible to navigate the (simulated) ocean using a navigation method called Eulerian roaming. The slow speed and size conserve a lot of energy and enable scientific missions of years at sea.
Eivind Kolås and Ilker Fer
Ocean Sci., 14, 1603–1618, https://doi.org/10.5194/os-14-1603-2018, https://doi.org/10.5194/os-14-1603-2018, 2018
Short summary
Short summary
Measurements of ocean currents, stratification and microstructure collected northwest of Svalbard are used to characterize the evolution of the warm Atlantic current. The measured turbulent heat flux is too small to account for the observed cooling rate of the current. The estimated contribution of diffusion by eddies could be limited to one half of the observed heat loss. Mixing in the bottom boundary layer, driven by cross-slope flow of buoyant water, can be important.
Jenny E. Ullgren, Elin Darelius, and Ilker Fer
Ocean Sci., 12, 451–470, https://doi.org/10.5194/os-12-451-2016, https://doi.org/10.5194/os-12-451-2016, 2016
Short summary
Short summary
One-year long moored measurements of currents and hydrographic properties in the overflow region of the Faroe Bank Channel have provided a more accurate observational-based estimate of the volume transport, entrainment, and eddy diffusivities associated with the overflow plume. The data set resolves the temporal variability and covers the entire lateral and vertical extent of the plume.
E. Darelius, I. Fer, T. Rasmussen, C. Guo, and K. M. H. Larsen
Ocean Sci., 11, 855–871, https://doi.org/10.5194/os-11-855-2015, https://doi.org/10.5194/os-11-855-2015, 2015
Short summary
Short summary
Quasi-regular eddies are known to be generated in the outflow of dense water through the Faroe Bank Channel. One year long mooring records from the plume region show that (1) the energy associated with the eddies varies by a factor of 10 throughout the year and (2) the frequency of the eddies shifts between 3 and 6 days and is related to the strength of the outflow. Similar variability is shown by a high-resolution regional model and the observations agree with theory on baroclinic instability.
I. Fer, M. Müller, and A. K. Peterson
Ocean Sci., 11, 287–304, https://doi.org/10.5194/os-11-287-2015, https://doi.org/10.5194/os-11-287-2015, 2015
Short summary
Short summary
Over the Yermak Plateau northwest of Svalbard there is substantial energy conversion from barotropic to internal tides. Internal tides are trapped along the topography. An approximate local conversion-to-dissipation balance is found over
shallows and also in the deep part of the sloping flanks. Dissipation of
tidal energy can be a significant contributor to turbulent mixing and cooling of the Atlantic layer in the Arctic Ocean.
T. Vihma, R. Pirazzini, I. Fer, I. A. Renfrew, J. Sedlar, M. Tjernström, C. Lüpkes, T. Nygård, D. Notz, J. Weiss, D. Marsan, B. Cheng, G. Birnbaum, S. Gerland, D. Chechin, and J. C. Gascard
Atmos. Chem. Phys., 14, 9403–9450, https://doi.org/10.5194/acp-14-9403-2014, https://doi.org/10.5194/acp-14-9403-2014, 2014
M. Bakhoday Paskyabi and I. Fer
Nonlin. Processes Geophys., 21, 713–733, https://doi.org/10.5194/npg-21-713-2014, https://doi.org/10.5194/npg-21-713-2014, 2014
E. Støylen and I. Fer
Nonlin. Processes Geophys., 21, 87–100, https://doi.org/10.5194/npg-21-87-2014, https://doi.org/10.5194/npg-21-87-2014, 2014
Cited articles
Årthun, M., Eldevik, T., Smedsrud, L., Skagseth, Ø., and Ingvaldsen, R.: Quantifying the influence of Atlantic heat on Barents Sea ice variability and retreat, J. Climate, 25, 4736–4743,
https://doi.org/10.1175/JCLI-D-11-00466.1, 2012. a, b
Baines, P. G.: On internal tide generation models, Deep-Sea Res. Pt. A,
29, 307–338,
https://doi.org/10.1016/0198-0149(82)90098-X, 1982. a
Bouffard, D. and Boegman, L.: A diapycnal diffusivity model for stratified
environmental flows, Dynam. Atmos. Oceans, 61, 14–34,
https://doi.org/10.1016/j.dynatmoce.2013.02.002, 2013. a
Boyd, T. J. and D'Asaro, E. A.: Cooling of the West Spitsbergen Current:
Wintertime observations west of Svalbard, J. Geophys. Res., 99,
22597–22618, https://doi.org/10.1029/94JC01824, 1994. a
Cokelet, E. D., Tervalon, N., and Bellingham, J. G.: Hydrography of the West
Spitsbergen Current, Svalbard Branch: Autumn 2001, J. Geophys. Res., 113,
C01006, https://doi.org/10.1029/2007JC004150, 2008. a, b, c
Couto, N., Alford, M. H., MacKinnon, J., and Mickett, J. B.: Mixing rates and bottom drag in Bering Strait, J. Phys. Oceanogr., 50,
809–825, https://doi.org/10.1175/JPO-D-19-0154.1, 2020. a
Crews, L., Sundfjord, A., Albretsen, J., and Hattermann, T.: Mesoscale Eddy
Activity and Transport in the Atlantic Water Inflow Region North of
Svalbard, J. Geophys. Res., 123, 201–215, https://doi.org/10.1002/2017JC013198, 2018. a, b, c
Crews, L., Sundfjord, A., and Hattermann, T.: How the Yermak Pass Branch
Regulates Atlantic Water Inflow to the Arctic Ocean, J. Geophys.
Res.-Oceans, 124, 267–280, https://doi.org/10.1029/2018JC014476, 2019. a
Dosser, H. V. and Rainville, L.: Dynamics of the changing near-inertial
internal wave field in the Arctic Ocean, J. Phys. Oceanogr., 46, 395–415,
https://doi.org/10.1175/jpo-d-15-0056.1, 2016. a
Duarte, P., Sundfjord, A., Meyer, A., Hudson, S. R., Spreen, G., and Smedsrud,
L. H.: Warm Atlantic water explains observed sea ice melt rates north of
Svalbard, J. Geophys. Res.-Oceans, 125, e2019JC015662,
https://doi.org/10.1029/2019JC015662, 2020. a
Erofeeva, S. and Egbert, G.: Arc5km2018: Arctic Ocean Inverse Tide Model on a 5 kilometer grid, 2018, Dataset, Arctic Data Center, https://doi.org/10.18739/A21R6N14K, 2020. a
Fer, I.: Weak vertical diffusion allows maintenance of cold halocline in the
central Arctic, Atmos. Ocean. Sci. Lett., 2, 148–152,
https://doi.org/10.1080/16742834.2009.11446789, 2009. a, b
Fer, I., Müller, M., and Peterson, A. K.: Tidal forcing, energetics, and mixing near the Yermak Plateau, Ocean Sci., 11, 287–304, https://doi.org/10.5194/os-11-287-2015, 2015. a, b, c
Fer, I., Koenig, Z., Kolås, E., Falck, E., Fossum, T., Ludvigsen, M.,
Marnela, M., Nilsen, F., Norgren, P., and Skogseth, R.: Physical
oceanography data from the cruise KH 2018709 with R.V. Kronprins Haakon,
12–24 September 2018, Data Set, Norwegian Marine Data Center (NMDC), https://doi.org/10.21335/NMDC-2039932526, 2019. a, b
Fer, I., Koenig, Z., Bosse, A., Falck, E., Kolås, E., and Nilsen, F.:
Physical oceanography data from the cruise KB 2018616 with R.V. Kristine
Bonnevie, Data Set, Norwegian Marine Data Center (NMDC), https://doi.org/10.21335/NMDC-2047975397, 2020a. a, b
Gregg, M., D'Asaro, E., Riley, J., and Kunze, E.: Mixing efficiency in the
ocean, Annu. Rev. Mar. Sci., 10, 443–473,
https://doi.org/10.1146/annurev-marine-121916-063643, 2018. a
Guarino, M.-V., Sime, L. C., Schröeder, D., Malmierca-Vallet, I.,
Rosenblum, E., Ringer, M., Ridley, J., Feltham, D., Bitz, C., Steig, E. J.,
Wolff, E., Stroeve, J., and Sellar, A.: Sea-ice-free Arctic during the Last Interglacial supports fast future
loss, Nat. Clim. Change, 10, 928–932, https://doi.org/10.1038/s41558-020-0865-2, 2020. a
Ivanov, V., Alexeev, V., Koldunov, N. V., Repina, I., Sandø, A. B.,
Smedsrud, L. H., and Smirnov, A.: Arctic Ocean heat impact on regional ice
decay: A suggested positive feedback, J. Phys. Oceanogr., 46,
1437–1456, https://doi.org/10.1175/JPO-D-15-0144.1, 2016. a
Jakobsson, M., Mayer, L., Coakley, B., Dowdeswell, J. A., Forbes, S., Fridman,
B., Hodnesdal, H., Noormets, R., Pedersen, R., Rebesco, M., Schenke, H. W.,
Zarayskaya, Y., Accettella, D., Armstrong, A., Anderson, R. M., Bienhoff, P.,
Camerlenghi, A., Church, I., Edwards, M., Gardner, J. V., Hall, J. K., Hell,
B., Hestvik, O., Kristoffersen, Y., Marcussen, C., Mohammad, R., Mosher, D.,
Nghiem, S. V., Pedrosa, M. T., Travaglini, P. G., and Weatherall, P.: The
International Bathymetric Chart of the Arctic Ocean (IBCAO) Version 3.0,
Geophys. Res. Lett., 39, L12609, https://doi.org/10.1029/2012gl052219, 2012. a, b
Jayne, S. and St. Laurent, L.: Parameterizing tidal dissipation over rough
topography, Geophys. Res. Lett., 28, 811–814, https://doi.org/10.1029/2000GL012044,
2001. a
Koenig, Z., Provost, C., Sennechael, N., Garric, G., and Gascard, J.-C.: The
Yermak Pass Branch: A Major Pathway for the Atlantic Water North of
Svalbard?, J. Geophys. Res., 122, 9332–9349, https://doi.org/10.1002/2017JC013271, 2017. a
Koenig, Z., Fer, I., Kolås, E., Fossum, T., Norgren, P., and Ludvigsen, M.:
Observations of turbulence at a near-surface temperature front in the Arctic
Ocean, J. Geophys. Res.-Oceans, 125, e2019JC015526, https://doi.org/10.1029/2019JC015526, 2020. a, b, c, d
Kolås, E. and Fer, I.: Hydrography, transport and mixing of the West Spitsbergen Current: the Svalbard Branch in summer 2015, Ocean Sci., 14, 1603–1618, https://doi.org/10.5194/os-14-1603-2018, 2018. a, b, c
Krishfield, R. A. and Perovich, D. K.: Spatial and temporal variability of
oceanic heat flux to the Arctic ice pack, J. Geophys. Res., 110, C07021,
https://doi.org/10.1029/2004JC002293, 2005. a
Large, W. and Pond, S.: Open ocean momentum flux measurements in moderate to
strong winds, J. Phys. Oceanogr., 11, 324–336,
https://doi.org/10.1175/1520-0485(1981)011<0324:OOMFMI>2.0.CO;2, 1981. a
Legg, S. and Klymak, J.: Internal hydraulic jumps and overturning generated by
tidal flow over a tall steep ridge, J. Phys. Oceanogr., 38,
1949–1964, https://doi.org/10.1175/2008JPO3777.1, 2008. a, b, c
Lenn, Y.-D., Rippeth, T. P., Old, C. P., Bacon, S., Polyakov, I., Ivanov, V.,
and Hölemann, J.: Intermittent Intense turbulent mixing under Ice in the
Laptev Sea continental shelf, J. Phys. Oceanogr., 41, 531–547,
https://doi.org/10.1175/2010JPO4425.1, 2011. a
Lincoln, B. J., Rippeth, T. P., Lenn, Y.-D., Timmermans, M. L., Williams,
W. J., and Bacon, S.: Wind-driven mixing at intermediate depths in an
ice-free Arctic Ocean, Geophys. Res. Lett., 43, 9749–9756,
https://doi.org/10.1002/2016GL070454, 2016. a, b
Maykut, G. A. and McPhee, M. G.: Solar heating of the Arctic mixed layer, J. Geophys. Res., 100, 24691–24703, https://doi.org/10.1029/95JC02554, 1995. a
Maykut, G. A. and Untersteiner, N.: Some results from a time-dependent
thermodynamic model of sea ice, J. Geophys. Res., 76, 1550–1575,
https://doi.org/10.1029/JC076i006p01550, 1971. a
McDougall, J. and Barker, P.: Getting started with TEOS-10 and the Gibbs
Seawater (GSW) Oceanographic Toolbox, 28 pp., SCOR/IAPSO WG127, ISBN
978-0-646-55621-5, 2011. a
Menze, S., Ingvaldsen, R. B., Haugan, P., Fer, I., Sundfjord, A.,
Beszczynska-Moeller, A., and Falk-Petersen, S.: Atlantic Water Pathways
Along the North-Western Svalbard Shelf Mapped Using Vessel-Mounted Current
Profilers, J. Geophys. Res.-Oceans, 124, 1699–1716,
https://doi.org/10.1029/2018JC014299, 2019. a
Meyer, A., Fer, I., Sundfjord, A., and Peterson, A. K.: Mixing rates and
vertical heat fluxes north of Svalbard from Arctic winter to spring, J.
Geophys. Res., 122, 4569–4586, https://doi.org/10.1002/2016JC012441,
2017. a, b, c, d
Musgrave, R. C., MacKinnon, J. A., Pinkel, R., Waterhouse, A. F., and Nash, J.:
Tidally Driven Processes Leading to Near-Field Turbulence in a Channel at
the Crest of the Mendocino Escarpment, J. Phys. Oceanogr., 46, 1137–1155,
https://doi.org/10.1175/Jpo-D-15-0021.1, 2016. a
Nash, J. D., Kunze, E., Lee, C. M., and Sanford, T. B.: Structure of the
baroclinic tide generated at Kaena Ridge, Hawaii, J. Phys.
Oceanogr., 36, 1123–1135, https://doi.org/10.1175/JPO2883.1, 2006. a
Nasmyth, P.: Ocean turbulence, PhD thesis, The University of British
Columbia, 1970. a
Oakey, N. S. and Elliott, A. J.: Dissipation within the surface mixed layer, J. Phys. Oceanogr., 12, 171–185,
https://doi.org/10.1175/1520-0485(1982)012<0171:DWTSML>2.0.CO;2, 1982. a
Osborn, T. R.: Estimates of the local rate of vertical diffusion from
dissipation measurements, J. Phys. Oceanogr., 10, 83–89, 1980. a
Padman, L. and Dillon, T. M.: Turbulent mixing near the Yermak Plateau during
the coordinated Eastern Arctic Experiment, J. Geophys. Res.-Oceans, 96, 4769–4782, https://doi.org/10.1029/90JC02260, 1991. a, b
Padman, L. and Erofeeva, S.: A barotropic inverse tidal model for the Arctic
Ocean, Geophys. Res. Lett., 31, L02303, https://doi.org/10.1029/2003GL019003, 2004. a
Padman, L., Plueddemann, A. J., Muench, R. D., and Pinkel, R.: Diurnal tides
near the Yermak Plateau, J. Geophys. Res., 97, 12639–12652,
https://doi.org/10.1029/92JC01097, 1992. a
Peterson, A. K., Fer, I., McPhee, M. G., and Randelhoff, A.: Turbulent heat
and momentum fluxes in the upper ocean under Arctic sea ice, J.
Geophys. Res.-Oceans, 122, 1–18, https://doi.org/10.1002/2016JC012283, 2017. a, b
Polyakov, I. V., Pnyushkov, A. V., Alkire, M. B., Ashik, I. M., Baumann, T. M.,
Carmack, E. C., Goszczko, I., Guthrie, J., Ivanov, V. V., Kanzow, T.,
Krishfield, R., Kwok, R., Sundfjord, A., Morison, J., Rember, R., and Yulin,
A.: Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin
of the Arctic Ocean, Science, 356, 285–291, https://doi.org/10.1126/science.aai8204, 2017. a, b
Polyakov, I. V., Padman, L., Lenn, Y. D., Pnyushkov, A., Rember, R., and
Ivanov, V. V.: Eastern Arctic Ocean Diapycnal Heat Fluxes through Large
Double-Diffusive Steps, J. Phys. Oceanogr., 49, 227–246,
https://doi.org/10.1175/Jpo-D-18-0080.1, 2019. a, b
Polyakov, I. V., Rippeth, T. P., Fer, I., Alkire, M. B., Baumann, T. M.,
Carmack, E. C., Ingvaldsen, R., Ivanov, V. V., Janout, M., Lind, S., et al.:
Weakening of cold halocline layer exposes sea ice to oceanic heat in the
eastern Arctic Ocean, J. Climate, 33, 8107–8123, https://doi.org/10.1175/JCLI-D-19-0976.1,
2020. a, b, c
Rainville, L. and Woodgate, R. A.: Observations of internal wave generation in the seasonally ice-free Arctic, Geophys. Res. Lett., 36, L23604,
https://doi.org/10.1029/2009GL041291, 2009. a
Randelhoff, A., Fer, I., and Sundfjord, A.: Turbulent upper-ocean mixing
affected by meltwater layers during Arctic summer, J. Phys.
Oceanogr., 47, 835–853, https://doi.org/10.1175/JPO-D-16-0200.1, 2017. a
Rippeth, T. P., Vlasenko, V., Stashchuk, N., Scannell, B. D., Green, J. A. M.,
Lincoln, B. J., and Bacon, S.: Tidal Conversion and Mixing Poleward of the
Critical Latitude (an Arctic Case Study), Geophys. Res. Lett., 44,
12349–12357, https://doi.org/10.1002/2017gl075310, 2017.
a, b
Rudels, B., Meyer, R., Fahrbach, E., Ivanov, V., Østerhus, S., Quadfasel,
D., Schauer, U., Tverberg, V., and Woodgate, R.: Water mass distribution in Fram Strait and over the Yermak Plateau in summer 1997, Annales Geophysicae, 18, 687–705, https://doi.org/10.1007/s00585-000-0687-5, 2000. a
Schmidtko, S., Johnson, G. C., and Lyman, J. M.: MIMOC: A global monthly
isopycnal upper-ocean climatology with mixed layers, J. Geophys. Res.-Oceans, 118, 1658–1672, https://doi.org/10.1002/jgrc.20122, 2013. a
St. Laurent, L. C., Simmons, H. L., and Jayne, S. R.: Estimating tidally
driven mixing in the deep ocean, Geophys. Res. Lett., 29, 2106,
https://doi.org/10.1029/2002GL015633, 2002. a
Timmermans, M.-L. and Marshall, J.: Understanding Arctic Ocean Circulation: A Review of Ocean Dynamics in a Changing Climate, J. Geophys.
Res.-Oceans, 125, e2018JC014378, https://doi.org/10.1029/2018JC014378, 2020. a
Tsubouchi, T., Bacon, S., Aksenov, Y., Naveira Garabato, A. C.,
Beszczynska-Möller, A., Hansen, E., De Steur, L., Curry, B., and Lee,
C. M.: The Arctic Ocean seasonal cycles of heat and freshwater fluxes:
Observation-based inverse estimates, J. Phys. Oceanogr., 48,
2029–2055, https://doi.org/10.1175/JPO-D-17-0239.1, 2018. a
Vlasenko, V., Stashchuk, N., Hutter, K., and Sabinin, K.: Nonlinear internal
waves forced by tides near the critical latitude, Deep-Sea Res. Pt. I, 50, 317–338,
https://doi.org/10.1016/S0967-0637(03)00018-9, 2003. a
Våge, K., Pickart, R. S., Pavlov, V., Lin, P., Torres, D. J., Ingvaldsen,
R., Sundfjord, A., and Proshutinsky, A.: The Atlantic Water boundary current
in the Nansen Basin: Transport and mechanisms of lateral exchange, J. Geophys. Res.-Oceans, 121, 6946–6960, https://doi.org/10.1002/2016JC011715,
2016. a, b
Short summary
The Arctic Ocean is a major sink for heat and salt for the global ocean. Ocean mixing contributes to this sink by mixing the Atlantic and Pacific waters with surrounding waters. We investigate the drivers of ocean mixing north of Svalbard based on observations collected during two research cruises in 2018 as part of the Nansen Legacy project. We found that wind and tidal forcing are the main drivers and that 1 % of the Atlantic Water heat loss can be attributed to vertical turbulent mixing.
The Arctic Ocean is a major sink for heat and salt for the global ocean. Ocean mixing...