Articles | Volume 17, issue 1
Ocean Sci., 17, 335–350, 2021
https://doi.org/10.5194/os-17-335-2021
Ocean Sci., 17, 335–350, 2021
https://doi.org/10.5194/os-17-335-2021

Research article 18 Feb 2021

Research article | 18 Feb 2021

Multidecadal polynya formation in a conceptual (box) model

Daan Boot et al.

Related authors

Abrupt climate change as rate-dependent cascading tipping point
Johannes Lohmann, Daniele Castellana, Peter D. Ditlevsen, and Henk A. Dijkstra
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2021-7,https://doi.org/10.5194/esd-2021-7, 2021
Preprint under review for ESD
Short summary
Improvements to the use of the Trajectory-Adaptive Multilevel Sampling algorithm for the study of rare events
Pascal Wang, Daniele Castellana, and Henk A. Dijkstra
Nonlin. Processes Geophys., 28, 135–151, https://doi.org/10.5194/npg-28-135-2021,https://doi.org/10.5194/npg-28-135-2021, 2021
Short summary
Ordering of trajectories reveals hierarchical finite-time coherent sets in Lagrangian particle data: detecting Agulhas rings in the South Atlantic Ocean
David Wichmann, Christian Kehl, Henk A. Dijkstra, and Erik van Sebille
Nonlin. Processes Geophys., 28, 43–59, https://doi.org/10.5194/npg-28-43-2021,https://doi.org/10.5194/npg-28-43-2021, 2021
Short summary
Global dataset of thermohaline staircases obtained from Argo floats and Ice-Tethered Profilers
Carine G. van der Boog, J. Otto Koetsier, Henk A. Dijkstra, Julie D. Pietrzak, and Caroline A. Katsman
Earth Syst. Sci. Data, 13, 43–61, https://doi.org/10.5194/essd-13-43-2021,https://doi.org/10.5194/essd-13-43-2021, 2021
Short summary
The middle to late Eocene greenhouse climate modelled using the CESM 1.0.5
Michiel Baatsen, Anna S. von der Heydt, Matthew Huber, Michael A. Kliphuis, Peter K. Bijl, Appy Sluijs, and Henk A. Dijkstra
Clim. Past, 16, 2573–2597, https://doi.org/10.5194/cp-16-2573-2020,https://doi.org/10.5194/cp-16-2573-2020, 2020
Short summary

Cited articles

Alverson, K. and Owens, W. B.: Topographic Preconditioning of Open-Ocean Deep Convection, J. Phys. Oceanogr., 26, 2196–2213, https://doi.org/10.1175/1520-0485(1996)026<2196:TPOOOD>2.0.CO;2, 1996. a, b
Boot, D., Van Westen, R. M., and Dijkstra, H. A.: MRP_Conceptual_Box_Model, Zenodo, https://doi.org/10.5281/zenodo.3941689, 2020. a
Campbell, E., Wilson, E., and Moore, G.: Antarctic offshore polynyas linked to Southern Hemisphere climate anomalies, Nature, 570, 319–325, https://doi.org/10.1038/s41586-019-1294-0, 2019. a, b, c, d
Carsey, F. D.: Microwave Observations of the Weddell Polynya, Mon. Weather Rev., 108, 2032–2044, https://doi.org/10.1175/1520-0493(1980)108<2032:MOOTWP>2.0.CO;2, 1980. a
Cheon, W. G. and Gordon, A. L.: Open-ocean polynyas and deep convection in the Southern Ocean, Sci. Rep.-UK, 9, 6935, https://doi.org/10.1038/s41598-019-43466-2, 2019. a, b, c
Download
Short summary
The Maud Rise polynya is a hole in the sea ice surrounding Antarctica that occurs during winter. It appeared in 2016 and 2017. Our study concludes that heat and salt accumulation around 1000 m depth are likely to be important for polynya formation. The heat is mixed upward to the surface where it is able to melt the sea ice and, thus, create a polynya. How often the polynya forms depends largely on the variation in the time of the heat and salt accumulation.