Articles | Volume 17, issue 5
https://doi.org/10.5194/os-17-1489-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-17-1489-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The riddle of eastern tropical Pacific Ocean oxygen levels: the role of the supply by intermediate-depth waters
Olaf Duteil
CORRESPONDING AUTHOR
FB1 Ozeanzirkulation und Klimadynamik, GEOMAR, Helmholtz-Zentrum für Ozeanforschung Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany
Ivy Frenger
FB2 Marine Biogeochemie, Helmholtz-Zentrum für Ozeanforschung Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany
Julia Getzlaff
FB2 Marine Biogeochemie, Helmholtz-Zentrum für Ozeanforschung Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany
Related authors
Pierre Damien, Julio Sheinbaum, Orens Pasqueron de Fommervault, Julien Jouanno, Lorena Linacre, and Olaf Duteil
Biogeosciences, 18, 4281–4303, https://doi.org/10.5194/bg-18-4281-2021, https://doi.org/10.5194/bg-18-4281-2021, 2021
Short summary
Short summary
The Gulf of Mexico deep waters are relatively poor in phytoplankton biomass due to low levels of nutrients in the upper layers. Using modeling techniques, we find that the long-living anticyclonic Loop Current eddies that are shed episodically from the Yucatan Channel strongly shape the distribution of phytoplankton and, more importantly, stimulate their growth. This results from the contribution of multiple mechanisms of physical–biogeochemical interactions discussed in this study.
Olaf Duteil, Andreas Oschlies, and Claus W. Böning
Biogeosciences, 15, 7111–7126, https://doi.org/10.5194/bg-15-7111-2018, https://doi.org/10.5194/bg-15-7111-2018, 2018
Short summary
Short summary
Oxygen-depleted regions of the Pacific Ocean are currently expanding, which is threatening marine habitats. Based on numerical simulations, we show that the decrease in the intensity of the trade winds and the subsequent slowdown of the oceanic currents lead to a reduction in oxygen supply. Our study suggests that the prevailing positive conditions of the Pacific Decadal Oscillation since 1975, a major source of natural variability, may explain a significant part of the current deoxygenation.
W. Koeve, O. Duteil, A. Oschlies, P. Kähler, and J. Segschneider
Geosci. Model Dev., 7, 2393–2408, https://doi.org/10.5194/gmd-7-2393-2014, https://doi.org/10.5194/gmd-7-2393-2014, 2014
O. Duteil, W. Koeve, A. Oschlies, D. Bianchi, E. Galbraith, I. Kriest, and R. Matear
Biogeosciences, 10, 7723–7738, https://doi.org/10.5194/bg-10-7723-2013, https://doi.org/10.5194/bg-10-7723-2013, 2013
Malcolm John Roberts, Kevin A. Reed, Qing Bao, Joseph J. Barsugli, Suzana J. Camargo, Louis-Philippe Caron, Ping Chang, Cheng-Ta Chen, Hannah M. Christensen, Gokhan Danabasoglu, Ivy Frenger, Neven S. Fučkar, Shabeh ul Hasson, Helene T. Hewitt, Huanping Huang, Daehyun Kim, Chihiro Kodama, Michael Lai, Lai-Yung Ruby Leung, Ryo Mizuta, Paulo Nobre, Pablo Ortega, Dominique Paquin, Christopher D. Roberts, Enrico Scoccimarro, Jon Seddon, Anne Marie Treguier, Chia-Ying Tu, Paul A. Ullrich, Pier Luigi Vidale, Michael F. Wehner, Colin M. Zarzycki, Bosong Zhang, Wei Zhang, and Ming Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2024-2582, https://doi.org/10.5194/egusphere-2024-2582, 2024
Short summary
Short summary
HighResMIP2 is a model intercomparison project focussing on high resolution global climate models, that is those with grid spacings of 25 km or less in atmosphere and ocean, using simulations of decades to a century or so in length. We are proposing an update of our simulation protocol to make the models more applicable to key questions for climate variability and hazard in present day and future projections, and to build links with other communities to provide more robust climate information.
Tianfei Xue, Jens Terhaar, A. E. Friederike Prowe, Thomas L. Frölicher, Andreas Oschlies, and Ivy Frenger
Biogeosciences, 21, 2473–2491, https://doi.org/10.5194/bg-21-2473-2024, https://doi.org/10.5194/bg-21-2473-2024, 2024
Short summary
Short summary
Phytoplankton play a crucial role in marine ecosystems. However, climate change's impact on phytoplankton biomass remains uncertain, particularly in the Southern Ocean. In this region, phytoplankton biomass within the water column is likely to remain stable in response to climate change, as supported by models. This stability arises from a shallower mixed layer, favoring phytoplankton growth but also increasing zooplankton grazing due to phytoplankton concentration near the surface.
Iris Kriest, Julia Getzlaff, Angela Landolfi, Volkmar Sauerland, Markus Schartau, and Andreas Oschlies
Biogeosciences, 20, 2645–2669, https://doi.org/10.5194/bg-20-2645-2023, https://doi.org/10.5194/bg-20-2645-2023, 2023
Short summary
Short summary
Global biogeochemical ocean models are often subjectively assessed and tuned against observations. We applied different strategies to calibrate a global model against observations. Although the calibrated models show similar tracer distributions at the surface, they differ in global biogeochemical fluxes, especially in global particle flux. Simulated global volume of oxygen minimum zones varies strongly with calibration strategy and over time, rendering its temporal extrapolation difficult.
Chia-Te Chien, Jonathan V. Durgadoo, Dana Ehlert, Ivy Frenger, David P. Keller, Wolfgang Koeve, Iris Kriest, Angela Landolfi, Lavinia Patara, Sebastian Wahl, and Andreas Oschlies
Geosci. Model Dev., 15, 5987–6024, https://doi.org/10.5194/gmd-15-5987-2022, https://doi.org/10.5194/gmd-15-5987-2022, 2022
Short summary
Short summary
We present the implementation and evaluation of a marine biogeochemical model, Model of Oceanic Pelagic Stoichiometry (MOPS) in the Flexible Ocean and Climate Infrastructure (FOCI) climate model. FOCI-MOPS enables the simulation of marine biological processes, the marine carbon, nitrogen and oxygen cycles, and air–sea gas exchange of CO2 and O2. As shown by our evaluation, FOCI-MOPS shows an overall adequate performance that makes it an appropriate tool for Earth climate system simulations.
Tianfei Xue, Ivy Frenger, A. E. Friederike Prowe, Yonss Saranga José, and Andreas Oschlies
Biogeosciences, 19, 455–475, https://doi.org/10.5194/bg-19-455-2022, https://doi.org/10.5194/bg-19-455-2022, 2022
Short summary
Short summary
The Peruvian system supports 10 % of the world's fishing yield. In the Peruvian system, wind and earth’s rotation bring cold, nutrient-rich water to the surface and allow phytoplankton to grow. But observations show that it grows worse at high upwelling. Using a model, we find that high upwelling happens when air mixes the water the most. Then phytoplankton is diluted and grows slowly due to low light and cool upwelled water. This study helps to estimate how it might change in a warming climate.
Henrike Schmidt, Julia Getzlaff, Ulrike Löptien, and Andreas Oschlies
Ocean Sci., 17, 1303–1320, https://doi.org/10.5194/os-17-1303-2021, https://doi.org/10.5194/os-17-1303-2021, 2021
Short summary
Short summary
Oxygen-poor regions in the open ocean restrict marine habitats. Global climate simulations show large uncertainties regarding the prediction of these areas. We analyse the representation of the simulated oxygen minimum zones in the Arabian Sea using 10 climate models. We give an overview of the main deficiencies that cause the model–data misfit in oxygen concentrations. This detailed process analysis shall foster future model improvements regarding the oxygen minimum zone in the Arabian Sea.
Pierre Damien, Julio Sheinbaum, Orens Pasqueron de Fommervault, Julien Jouanno, Lorena Linacre, and Olaf Duteil
Biogeosciences, 18, 4281–4303, https://doi.org/10.5194/bg-18-4281-2021, https://doi.org/10.5194/bg-18-4281-2021, 2021
Short summary
Short summary
The Gulf of Mexico deep waters are relatively poor in phytoplankton biomass due to low levels of nutrients in the upper layers. Using modeling techniques, we find that the long-living anticyclonic Loop Current eddies that are shed episodically from the Yucatan Channel strongly shape the distribution of phytoplankton and, more importantly, stimulate their growth. This results from the contribution of multiple mechanisms of physical–biogeochemical interactions discussed in this study.
Sabine Mathesius, Julia Getzlaff, Heiner Dietze, Andreas Oschlies, and Markus Schartau
Earth Syst. Sci. Data, 12, 1775–1787, https://doi.org/10.5194/essd-12-1775-2020, https://doi.org/10.5194/essd-12-1775-2020, 2020
Short summary
Short summary
Controlled manipulation of environmental conditions within large enclosures in the ocean, pelagic mesocosms, has become a standard method to explore responses of marine plankton communities to anthropogenic change. Among the challenges of interpreting mesocosm data is the often uncertain role of vertical mixing. This study introduces a mesocosm mixing model that is able to estimate vertical diffusivities and thus provides a tool for future mesocosm data analyses that account for mixing.
Heiner Dietze, Ulrike Löptien, and Julia Getzlaff
Geosci. Model Dev., 13, 71–97, https://doi.org/10.5194/gmd-13-71-2020, https://doi.org/10.5194/gmd-13-71-2020, 2020
Short summary
Short summary
We present a new near-global coupled biogeochemical ocean-circulation model configuration of the Southern Ocean. The configuration features both a relatively equilibrated oceanic carbon inventory and an explicit representation of mesoscale eddies. In this paper, we document the model configuration and showcase its potential to tackle research questions such as the Southern Ocean carbon uptake dynamics on decadal timescales.
Fabian Reith, Wolfgang Koeve, David P. Keller, Julia Getzlaff, and Andreas Oschlies
Earth Syst. Dynam., 10, 711–727, https://doi.org/10.5194/esd-10-711-2019, https://doi.org/10.5194/esd-10-711-2019, 2019
Short summary
Short summary
This modeling study is the first one to look at the suitability and collateral effects of direct CO2 injection into the deep ocean as a means to bridge the gap between CO2 emissions and climate impacts of an intermediate CO2 emission scenario and a temperature target on a millennium timescale, such as the 1.5 °C climate target of the Paris Agreement.
Olaf Duteil, Andreas Oschlies, and Claus W. Böning
Biogeosciences, 15, 7111–7126, https://doi.org/10.5194/bg-15-7111-2018, https://doi.org/10.5194/bg-15-7111-2018, 2018
Short summary
Short summary
Oxygen-depleted regions of the Pacific Ocean are currently expanding, which is threatening marine habitats. Based on numerical simulations, we show that the decrease in the intensity of the trade winds and the subsequent slowdown of the oceanic currents lead to a reduction in oxygen supply. Our study suggests that the prevailing positive conditions of the Pacific Decadal Oscillation since 1975, a major source of natural variability, may explain a significant part of the current deoxygenation.
Ivy Frenger, Matthias Münnich, and Nicolas Gruber
Biogeosciences, 15, 4781–4798, https://doi.org/10.5194/bg-15-4781-2018, https://doi.org/10.5194/bg-15-4781-2018, 2018
Short summary
Short summary
Although mesoscale ocean eddies are ubiquitous in the Southern Ocean (SO), their regional and seasonal association with phytoplankton has not been quantified. We identify over 100 000 eddies and determine the associated phytoplankton biomass anomalies using satellite-based chlorophyll (Chl) as a proxy. The emerging Chl anomalies can be explained largely by lateral advection of Chl by eddies. This impact of eddies on phytoplankton may implicate downstream effects on SO biogeochemical properties.
Heiner Dietze, Julia Getzlaff, and Ulrike Löptien
Biogeosciences, 14, 1561–1576, https://doi.org/10.5194/bg-14-1561-2017, https://doi.org/10.5194/bg-14-1561-2017, 2017
Short summary
Short summary
The Southern Ocean is a sink for anthropogenic carbon. Projections of how this sink will evolve in an ever-warming climate are based on coupled ocean-circulation–biogeochemical models. This study compares uncertainties of simulated oceanic carbon uptake associated to physical (eddy) parameterizations with those associated wtih (unconstrained) supply of bioavailable iron supply to the surface ocean.
W. Koeve, O. Duteil, A. Oschlies, P. Kähler, and J. Segschneider
Geosci. Model Dev., 7, 2393–2408, https://doi.org/10.5194/gmd-7-2393-2014, https://doi.org/10.5194/gmd-7-2393-2014, 2014
O. Duteil, W. Koeve, A. Oschlies, D. Bianchi, E. Galbraith, I. Kriest, and R. Matear
Biogeosciences, 10, 7723–7738, https://doi.org/10.5194/bg-10-7723-2013, https://doi.org/10.5194/bg-10-7723-2013, 2013
Cited articles
Ascani, F., Firing, E., Dutrieux, P., McCreary, J. P., and Ishida, A.: Deep
Equatorial Ocean Circulation Induced by a Forced–Dissipated Yanai Beam, J.
Phys. Oceanogr., 40, 1118–1142, https://doi.org/10.1175/2010jpo4356.1, 2010.
Ascani, F., Firing, E., McCreary, J. P., Brandt, P., and Greatbatch, R. J.:
The Deep Equatorial Ocean Circulation in Wind-Forced Numerical Solutions, J.
Phys. Oceanogr., 45, 1709–1734, https://doi.org/10.1175/jpo-d-14-0171.1, 2015.
Bahl, A., Gnanadesikan, A., and Pradal, M. A.: Variations in Ocean Deoxygenation Across Earth System Models: Isolating the Role of Parameterized Lateral Mixing, Global Biogeochem. Cy., 33, 703–724, https://doi.org/10.1029/2018gb006121, 2019.
Blanke, B. and Grima, N.: ARIANE software for tracking particles [code], available at: http://stockage.univ-brest.fr/~grima/Ariane/ariane.html, last access: 14 October 2021.
Blanke, B. and Raynaud, S.: Kinematics of the Pacific Equatorial Undercurrent: An Eulerian and Lagrangian Approach from GCM Results, J. Phys.
Oceanogr., 27, 1038–1053, https://doi.org/10.1175/1520-0485(1997)027<1038:kotpeu>2.0.co;2, 1997.
Brandt, P., Funk, A., Hormann, V., Dengler, M., Greatbatch, R. J., and Toole, J. M.: Interannual atmospheric variability forced by the deep equatorial Atlantic Ocean, Nature, 473, 497–500, https://doi.org/10.1038/nature10013, 2011.
Brandt, P., Greatbatch, R. J., Claus, M., Didwischus, S.-H., Hormann, V.,
Funk, A., Hahn, J., Krahmann, G., Fischer, J., and Körtzinger, A.:
Ventilation of the equatorial Atlantic by the equatorial deep jets, J.
Geophys. Res., 117, C12015, https://doi.org/10.1029/2012JC008118, 2012.
Breitburg, D., Levin, L. A., Oschlies, A., Grégoire, M., Chavez, F. P.,
Conley, D. J., Garçon, V., Gilbert, D., Gutiérrez, D., Isensee, K.,
Jacinto, G. S., Limburg, K. E., Montes, I., Naqvi, S. W. A., Pitcher, G. C.,
Rabalais, N. N., Roman, M. R., Rose, K. A., Seibel, B. A., Telszewski, M.,
Yasuhara, M., and Zhang, J.: Declining oxygen in the global ocean and
coastal waters, Science, 359, eaam7240, https://doi.org/10.1126/science.aam7240, 2018.
Busecke, J. J. M., Resplandy, L., and Dunne, J. P.: The Equatorial Undercurrent and the Oxygen Minimum Zone in the Pacific, Geophy. Res. Lett., 46, 6716–6725, https://doi.org/10.1029/2019gl082692, 2019.
Cabré, A., Marinov, I., Bernardello, R., and Bianchi, D.: Oxygen minimum
zones in the tropical Pacific across CMIP5 models: mean state differences
and climate change trends, Biogeosciences, 12, 5429–5454, https://doi.org/10.5194/bg-12-5429-2015, 2015.
Carrasco, C., Karstensen, J., and Farias, L.: On the Nitrous Oxide Accumulation in Intermediate Waters of the Eastern South Pacific Ocean, Front. Mar. Sci., 4, 4–24, https://doi.org/10.3389/fmars.2017.00024, 2017.
Cravatte, S., Kessler, W. S., and Marin, F.: Intermediate Zonal Jets in the
Tropical Pacific Ocean Observed by Argo Floats, J. Phys. Oceanogr., 42,
1475–1485, https://doi.org/10.1175/jpo-d-11-0206.1, 2012.
Cravatte, S., Kestenare, E., Marin, F., Dutrieux, P., and Firing, E.:
Subthermocline and Intermediate Zonal Currents in the Tropical Pacific
Ocean: Paths and Vertical Structure, J. Phys. Oceanogr., 47, 2305–2324,
https://doi.org/10.1175/jpo-d-17-0043.1, 2017.
Czeschel, R., Stramma, L., Schwarzkopf, F. U., Giese, B. S., Funk, A., and
Karstensen, J.: Middepth circulation of the eastern tropical South Pacific and its link to the oxygen minimum zone, J. Geophys. Res., 116, C01015,
https://doi.org/10.1029/2010JC006565, 2011.
Delworth, T. L., Rosati, A., Anderson, W., Adcroft, A. J., Balaji, V., Benson, R., Dixon, K., Griffies, S. M., Lee, H.-C., Pacanowski, R. C., Vecchi, G. A., Wittenberg, A. T., Zeng, F., and Zhang, R.: Simulated Climate
and Climate Change in the GFDL CM2.5 High-Resolution Coupled Climate Model,
J. Climate, 25, 2755–2781, https://doi.org/10.1175/JCLI-D-11-00316.1, 2012.
Deutsch, C., Berelson, W., Thunell, R., Weber, T., Tems, C., McManus, J., Crusius, J., Ito, T., Baumgartner, T., Ferreira, V., Mey, J., and van Geen, A.: Centennial changes in North Pacific anoxia linked to tropical trade winds, 345, 665–668, https://doi.org/10.1126/science.1252332, 2014.
Dietze, H. and Loeptien, U.: Revisiting “nutrient trapping” in global coupled biogeochemical ocean circulation models, Global Biogeochem. Cy., 27, 265–284, https://doi.org/10.1002/gbc.20029, 2013.
Dufour, C. O., Griffies, S. M., de Souza, G. F., Frenger, I., Morrison, A.
K., Palter, J. B., Sarmiento, J. L., Galbraith, E. D., Dunne, J. P., Anderson, W. G., and Slater, R. D.: Role of Mesoscale Eddies in Cross-Frontal Transport of Heat and Biogeochemical Tracers in the Southern Ocean, J. Phys. Oceanogr., 45, 3057–3081, https://doi.org/10.1175/JPO-D-14-0240.1, 2015.
Duteil, O.: Wind Synoptic Activity Increases Oxygen Levels in the Tropical
Pacific Ocean, Geophys. Res. Lett , 46, 2715–2725, https://doi.org/10.1029/2018gl081041, 2019.
Duteil, O. and Oschlies, A.: Sensitivity of simulated extent and future
evolution of marine suboxia to mixing intensity, Geophys. Res. Lett., 38,
L06607, https://doi.org/10.1029/2011gl046877, 2011.
Duteil, O., Koeve, W., Oschlies, A., Aumont, O., Bianchi, D., Bopp, L.,
Galbraith, E., Matear, R., Moore, J. K., Sarmiento, J. L., and Segschneider,
J.: Preformed and regenerated phosphate in ocean general circulation models:
can right total concentrations be wrong?, Biogeosciences, 9, 1797–1807,
https://doi.org/10.5194/bg-9-1797-2012, 2012.
Duteil, O., Böning, C. W., and Oschlies, A.: Variability in subtropical-tropical cells drives oxygen levels in the tropical Pacific
Ocean, Geophys. Res. Lett., 41, 8926–8934, https://doi.org/10.1002/2014gl061774, 2014.
Duteil, O., Oschlies, A., and Böning, C. W.: Pacific Decadal Oscillation
and recent oxygen decline in the eastern tropical Pacific Ocean,
Biogeosciences, 15, 7111–7126, https://doi.org/10.5194/bg-15-7111-2018, 2018.
Eby, M.: Earth System Climate Model UVIC [code], available at http://terra.seos.uvic.ca/model/, last access: 14 October 2021.
Eden, C. and Dengler, M.: Stacked jets in the deep equatorial Atlantic Ocean, J. Geophys. Res., 113, C04003, https://doi.org/10.1029/2007jc004298, 2008.
Emery, W. J.: Water types and water masses, in: Encyclopedia of Atmospheric
Sciences, 2nd Edn., edited by: Holton, J. R., Curry, J. A., and Pyle, J. A., Elsevier, Atlanta, GA, 1556–1567, 2003.
Firing, E.: Deep zonal currents in the central equatorial Pacific, J. Mar. Res., 45 791–812, https://doi.org/10.1357/002224087788327163, 1987.
Firing, E., Wijffels, S. E., and Hacker, P.: Equatorial subthermocline
currents across the Pacific, J. Geophys. Res.-Oceans, 103, 21413–21423, https://doi.org/10.1029/98jc01944, 1998.
Frenger, I., Bianchi, D., Stührenberg, C., Oschlies, A., Dunne, J., Deutsch, C., Galbraith, E., and Schütte, F.: Biogeochemical Role of
Subsurface Coherent Eddies in the Ocean: Tracer Cannonballs, Hypoxic Storms,
and Microbial Stewpots?, Global Biogeochem. Cy., 32, 226–249,
https://doi.org/10.1002/2017GB005743, 2018.
Galbraith, E. D., Dunne, J. P., Gnanadesikan, A., Slater, R. D., Sarmiento,
J. L., Dufour, C. O., de Souza, G. F., Bianchi, D., Claret, M., Rodgers, K.
B., and Marvasti, S. S.: Complex functionality with minimal computation:
Promise and pitfalls of reduced-tracer ocean biogeochemistry models, J. Adv.
Model. Earth Syst., 7, 2012–2028, https://doi.org/10.1002/2015MS000463, 2015.
Garcia, H. E., Weathers, K., Paver, C. R., Smolyar, I., Boyer, T. P., Locarnini, R. A., Zweng, M. M., Mishonov, A. V., Baranova, O. K., Seidov, D., and Reagan, J. R.: World Ocean Atlas 2018, in: Volume 3: Dissolved Oxygen, Apparent Oxygen Utilization, and Oxygen Saturation, Technical Edn., edited by: Mishonov, A., NOAA Atlas NESDIS 83, NOAA, 38 pp., available at: https://www.ncei.noaa.gov/sites/default/files/2020-04/woa18_vol3.pdf (last access: 14 October 2021), 2018.
Gent, P. R. and Mcwilliams, J. C.: Isopycnal Mixing in Ocean Circulation Models, J. Phys. Oceanogr., 20, 150–155, https://doi.org/10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2, 1990.
Getzlaff, J. and Dietze, H.: Effects of increased isopycnal diffusivity
mimicking the unresolved equatorial intermediate current system in an earth
system climate model, Geophys. Res. Lett., 40, 2166–2170, https://doi.org/10.1002/grl.50419, 2013.
Getzlaff, J., Dietze, H., and Oschlies, A.: Simulated effects of southern
hemispheric wind changes on the Pacific oxygen minimum zone, Geophys. Res.
Lett., 43, 728–734, https://doi.org/10.1002/2015GL066841, 2016.
Gnanadesikan, A., Bianchi, D., and Pradal, M.: Critical role for mesoscale
eddy diffusion in supplying oxygen to hypoxic ocean waters, Geophys. Res. Lett., 40, 5194–5198, https://doi.org/10.1002/grl.50998, 2013.
Gouriou, Y., Delcroix, T., and Eldin, G.: Upper and intermediate circulation
in the western equatorial Pacific Ocean in October 1999 and April 2000,
Geophys. Res. Lett., 33, L10603, https://doi.org/10.1029/2006gl025941, 2006.
Griffies, S. M., Winton, M., Anderson, W. G., Benson, R., Delworth, T. L., Dufour, C. O., Dunne, J. P., Goddard, P., Morrison, A. K., Rosati, A., Wittenberg, A. T., Yin, J., and Zhang, R.: Impacts on Ocean Heat from Transient Mesoscale Eddies in a Hierarchy of Climate Models, J. Climate, 28, 952–977, https://doi.org/10.1175/jcli-d-14-00353.1, 2015.
Gurvan, M., Bourdallé-Badie, R., Pierre-Antoine Bouttier, Bricaud, C.,
Bruciaferri, D., Calvert, D., Chanut, J., Clementi, E., Coward, A., Delrosso, D., Ethé, C., Flavoni, S., Graham, T., Harle, J., Iovino, D., Lea, D., Lévy, C., Lovato, T., Martin, N., Masson, S., Mocavero, S., Paul, J., Rousset, C., Storkey, D., Storto, A., and Vancoppenolle, M.: NEMO ocean engine, Zenodo, https://doi.org/10.5281/ZENODO.3248739, 2017.
Haarsma, R. J., Roberts, M. J., Vidale, P. L., Senior, C. A., Bellucci, A.,
Bao, Q., Chang, P., Corti, S., Fučkar, N. S., Guemas, V., von Hardenberg, J., Hazeleger, W., Kodama, C., Koenigk, T., Leung, L. R., Lu, J., Luo, J.-J., Mao, J., Mizielinski, M. S., Mizuta, R., Nobre, P., Satoh, M., Scoccimarro, E., Semmler, T., Small, J., and von Storch, J.-S.: High Resolution Model Intercomparison Project (HighResMIP v1.0) for CMIP6, Geosci. Model Dev., 9, 4185–4208, https://doi.org/10.5194/gmd-9-4185-2016, 2016.
Ito, T. and Deutsch, C.: Variability of the oxygen minimum zone in the tropical North Pacific during the late twentieth century: Variabilty Of Tropical Pacific OMZ, Global Biogeochem. Cy., 27, 1119–1128, https://doi.org/10.1002/2013GB004567, 2013.
Izumo, T.: The equatorial undercurrent, meridional overturning circulation,
and their roles in mass and heat exchanges during El Niño events in the
tropical Pacific ocean, Ocean Dynam., 55, 110–123, https://doi.org/10.1007/s10236-005-0115-1, 2005.
Karstensen, J., Stramma, L., and Visbeck, M.: Oxygen minimum zones in the eastern tropical Atlantic and Pacific oceans, Prog. Oceanogr., 77, 331–350, https://doi.org/10.1016/j.pocean.2007.05.009, 2008.
Kawabe, M. and Fujio, S.: Pacific ocean circulation based on observation, J. Oceanogr., 66, 389–403, https://doi.org/10.1007/s10872-010-0034-8, 2010.
Kawabe, M., Kashino, Y., and Kuroda, Y.: Variability and linkages of New
Guinea coastal undercurrent and lower equatorial intermediate current, J.
Phys. Oceanogr., 38, 1780–1793, https://doi.org/10.1175/2008JPO3916.1, 2008.
Keller, D. P., Oschlies, A., and Eby, M.: A new marine ecosystem model for
the University of Victoria Earth System Climate Model, Geosci. Model Dev., 5, 1195–1220, https://doi.org/10.5194/gmd-5-1195-2012, 2012.
Khatiwala, S., Tanhua, T., Mikaloff Fletcher, S., Gerber, M., Doney, S. C.,
Graven, H. D., Gruber, N., McKinley, G. A., Murata, A., Ríos, A. F., and Sabine, C. L.: Global ocean storage of anthropogenic carbon, Biogeosciences, 10, 21690–2191, https://doi.org/10.5194/bg-10-2169-2013, 2013.
Kriest, I., Khatiwala, S., and Oschlies, A.: Towards an assessment of simple
global marine biogeochemical models of different complexity, Prog. Oceanogr., 86, 337–360, https://doi.org/10.1016/j.pocean.2010.05.002, 2010.
Kwiatkowski, L., Torres, O., Bopp, L., Aumont, O., Chamberlain, M., Christian, J. R., Dunne, J. P., Gehlen, M., Ilyina, T., John, J. G., Lenton,
A., Li, H., Lovenduski, N. S., Orr, J. C., Palmieri, J., Santana-Falcón,
Y., Schwinger, J., Séférian, R., Stock, C. A., Tagliabue, A., Takano, Y., Tjiputra, J., Toyama, K., Tsujino, H., Watanabe, M., Yamamoto, A., Yool, A., and Ziehn, T.: Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections, Biogeosciences, 17, 3439–3470, https://doi.org/10.5194/bg-17-3439-2020, 2020.
Lachkar, Z., Orr, J. C., and Dutay, J.-C.: Seasonal and mesoscale variability
of oceanic transport of anthropogenic CO2, Biogeosciences, 6,
2509–2523, https://doi.org/10.5194/bg-6-2509-2009, 2009.
Large, W. G. and Yeager, S. G.: The global climatology of an interannually
varying air–sea flux data set, Clim. Dynam., 33, 341–364,
https://doi.org/10.1007/s00382-008-0441-3, 2008.
Large, W. G. and Yeager, S. G.: Forcing for Coordinated Ocean-ice Reference Experiments v2 (COREv2) [dataset], available at: https://data1.gfdl.noaa.gov/nomads/forms/core/COREv2.html, last access: 14 October 2021.
Locarnini, R. A., Boyer, T. P., Mishonov, A. V., Reagan, J. R., Zweng, M. M.,
Baranova, O. K., Garcia, H. E., Seidov, D., Weathers, K. W., Paver, C. R., and Smolyar, I. V.: World Ocean Atlas 2018, in: Volume 5: Density, editeded by: Mishonov, A., NOAA Atlas NESDIS 85, NOAA, 41 pp., available at: https://www.ncei.noaa.gov/sites/default/files/2021-03/WOA18_Vol5_Density.pdf
(last access: 14 October 2021), 2019.
Lübbecke, J. F., Böning, C. W., and Biastoch, A.: Variability in the
subtropical-tropical cells and its effect on near-surface temperature of the
equatorial Pacific: a model study, Ocean Sci., 4, 73–88,
https://doi.org/10.5194/os-4-73-2008, 2008.
Luyten, J. R., Pedlosky, J., and Stommel, H.: The ventilated thermocline, J. Phys. Oceanogr., 13, 292–309, 1983.
Marin, F., Kestenare, E., Delcroix, T., Durand, F., Cravatte, S., Eldin, G.,
and Bourdallé-Badie, R.: Annual Reversal of the Equatorial Intermediate
Current in the Pacific: Observations and Model Diagnostics, J. Phys. Oceanogr., 40, 915–933, https://doi.org/10.1175/2009jpo4318.1, 2010.
Meijers, A. J. S.: The Southern Ocean in the Coupled Model Intercomparison
Project phase 5, Philos. T. Roy. Soc. A, 372, 20130296,
https://doi.org/10.1098/rsta.2013.0296, 2014.
Ménesguen, C., Delpech, A., Marin, F., Cravatte, S., Schopp, R., and
Morel, Y.: Observations and Mechanisms for the Formation of Deep Equatorial
and Tropical Circulation, Earth Space Sci., 6, 370–386, https://doi.org/10.1029/2018ea000438, 2019.
Mignot, J., Swingedouw, D., Deshayes, J., Marti, O., Talandier, C., Séférian, R., Lengaigne, M., and Madec, G.: On the evolution of the oceanic component of the IPSL climate models from CMIP3 to CMIP5: A mean state comparison, Ocean Model., 72, 167–184, https://doi.org/10.1016/j.ocemod.2013.09.001, 2013.
Molinelli, E. J.: The Antarctic influence on Antarctic Intermediate Water, J.
Mar. Res., 39, 267–293, 1981.
Montes, I., Dewitte, B., Gutknecht, E., Paulmier, A., Dadou, I., Oschlies, A., and Garçon, V.: High-resolution modeling of the Eastern Tropical Pacific oxygen minimum zone: Sensitivity to the tropical oceanic circulation, J. Geophys. Res.-Oceans, 119, 5515–5532, https://doi.org/10.1002/2014JC009858, 2014.
NEMO consortium: Annual mean of sea surface salinity in ∘ (NEMO-WRF coupling), available at: https://www.nemo-ocean.eu/, last access: 14 October 2021.
Oschlies, A., Duteil, O., Getzlaff, J., Koeve, W., Landolfi, A., and Schmidtko, S.: Patterns of deoxygenation: sensitivity to natural and anthropogenic drivers, Philos. T. Roy. Soc. A, 375, 20160325, https://doi.org/10.1098/rsta.2016.0325, 2017.
Oschlies, A., Brandt, P., Stramma, L., and Schmidtko, S.: Drivers and mechanisms of ocean deoxygenation, Nat. Geosci., 11, 467–473, https://doi.org/10.1038/s41561-018-0152-2, 2018.
Palter, J. B., Sarmiento, J. L., Gnanadesikan, A., Simeon, J., and Slater, R. D.: Fueling export production: nutrient return pathways from the deep ocean and their dependence on the Meridional Overturning Circulation, Biogeosciences, 7, 3549–3568, https://doi.org/10.5194/bg-7-3549-2010, 2010.
Panassa, E., Santana-Casiano, J. M., González-Dávila, M., Hoppema, M., van Heuven, S. M. A. C., Völker, C., Wolf-Gladrow, D., and Hauck, J.: Variability of nutrients and carbon dioxide in the Antarctic Intermediate Water between 1990 and 2014, Ocean Dynam., 68, 295–308,
https://doi.org/10.1007/s10236-018-1131-2, 2018.
Pardo, P. C., Pérez, F. F., Velo, A., and Gilcoto, M.: Water masses
distribution in the Southern Ocean: Improvement of an extended OMP (eOMP)
analysis, Prog. Oceanogr., 103, 92–105, https://doi.org/10.1016/j.pocean.2012.06.002, 2012.
Paulmier, A. and Ruiz-Pino, D.: Oxygen minimum zones (OMZs) in the modern
ocean, Prog. Oceanogr., 80, 113–128, https://doi.org/10.1016/j.pocean.2008.08.001, 2009.
Qu, T., and Lindstrom, E. J.: Northward Intrusion of Antarctic Intermediate
Water in the Western Pacific, J. Phys. Oceanogr., 34, 2104–2118,
https://doi.org/10.1175/1520-0485(2004)034<2104:nioaiw>2.0.co;2, 2004.
Resplandy, L., Bopp, L., Orr, J. C., and Dunne, J. P.: Role of mode and
intermediate waters in future ocean acidification: Analysis of CMIP5 models,
Geophys. Res. Lett., 40, 3091–3095, https://doi.org/10.1002/grl.50414, 2013.
Rowe, G. D., Firing, E., and Johnson, G. C.: Pacific Equatorial Subsurface
Countercurrent Velocity, Transport, and Potential Vorticity, J. Phys. Oceanogr., 30, 1172–1187, https://doi.org/10.1175/1520-0485(2000)030<1172:pescvt>2.0.co;2, 2000.
Russell, J. L. and Dickson, A. G.: Variability in oxygen and nutrients in South Pacific Antarctic Intermediate Water, Global Biogeochem. Cy., 17, 1033, https://doi.org/10.1029/2000gb001317, 2003.
Sabine, C. L.: The Oceanic Sink for Anthropogenic CO2, Science, 305, 367–371, https://doi.org/10.1126/science.1097403, 2004.
Sabine, C. L., Feely, R. A., Gruber, N., Key, R. M., Lee, K., Bullister, J. L., Wanninkhof, R., Wong, C. S., Wallace, D. W. R., Tilbrook, B., Millero, F. J., Peng, T.-H., Kozyr, A., Ono, T., and Rios, A. F.: The Oceanic Sink for Anthropogenic CO2, Science, 305, 367–371, https://doi.org/10.1126/science.1097403, 2004.
Sallée, J.-B., Shuckburgh, E., Bruneau, N., Meijers, A. J. S., Bracegirdle, T. J., Wang, Z., and Roy, T.: Assessment of Southern Ocean water
mass circulation and characteristics in CMIP5 models: Historical bias and
forcing response, J. Geophys. Res.-Oceans, 118, 1830–1844,
https://doi.org/10.1002/jgrc.20135, 2013.
Schmidtko, S., Stramma, L., and Visbeck, M.: Decline in global oceanic oxygen
content during the past five decades, Nature, 542, 335–339,
https://doi.org/10.1038/nature21399, 2017.
Sen Gupta, A. and England, M. H.: Evaluation of Interior Circulation in a
High-Resolution Global Ocean Model. Part II: Southern Hemisphere Intermediate, Mode, and Thermocline Waters, J. Phys. Oceanogr., 37, 2612–2636, https://doi.org/10.1175/2007jpo3644.1, 2007.
Shigemitsu, M., Yamamoto, A., Oka, A., and Yamanaka, Y.: One possible uncertainty in CMIP5 projections of low-oxygen water volume in the Eastern
Tropical Pacific, Global Biogeochem. Cy., 31, 804–820, https://doi.org/10.1002/2016gb005447, 2017.
Sloyan, B. M. and Kamenkovich, I. V.: Simulation of Subantarctic Mode and
Antarctic Intermediate Waters in Climate Models, J. Climate, 20, 5061–5080, https://doi.org/10.1175/jcli4295.1, 2007.
Sloyan, B. M. and Rintoul, S. R.: Circulation, Renewal, and Modification of
Antarctic Mode and Intermediate Water, J. Phys. Oceanogr., 31, 1005–1030,
https://doi.org/10.1175/1520-0485(2001)031<1005:cramoa>2.0.co;2, 2001.
Stramma, L., Johnson, G. C., Firing, E., and Schmidtko, S.: Eastern Pacific oxygen minimum zones: Supply paths and multidecadal changes, J. Geophys. Res.-Oceans, 115, C09011, https://doi.org/10.1029/2009JC005976, 2010.
Takano, Y., Ito, T., and Deutsch, C.: Projected Centennial Oxygen Trends and
Their Attribution to Distinct Ocean Climate Forcings, Global Biogeochem. Cy., 32, 1329–1349, https://doi.org/10.1029/2018gb005939, 2018.
Talley, L. D.: Distribution and Formation of North Pacific Intermediate Water, J. Phys. Oceanogr., 23, 517–537, https://doi.org/10.1175/1520-0485(1993)023<0517:dafonp>2.0.co;2, 1993.
Weaver, A. J., Eby, M., Wiebe, E. C., Bitz, C. M., Duffy, P. B., Ewen, T.
L., Fanning, A. F., Holland, M. M., MacFadyen, A., Matthews, H. D., Meissner, K. J., Saenko, O., Schmittner, A., Wang, H., and Yoshimori, M.: The UVic earth system climate model: Model description, climatology, and applications to past, present and future climates, Atmos.-Ocean, 39, 361–428, https://doi.org/10.1080/07055900.2001.9649686, 2001.
Zenk, W., Siedler, G., Ishida, A., Holfort, J., Kashino, Y., Kuroda, Y., Miyama, T., and Müller, T. J.: Pathways and variability of the Antarctic
Intermediate Water in the western equatorial Pacific Ocean, Prog. Oceanogr., 67, 245–281, https://doi.org/10.1016/j.pocean.2005.05.003, 2005.
Zhu, C., Liu, Z., and Gu, S.: Model bias for South Atlantic Antarctic intermediate water in CMIP5, Clim. Dynam., 50, 3613–3624, https://doi.org/10.1007/s00382-017-3828-1, 2017.
Short summary
The large oxygen minimum zones in the tropical Pacific Ocean are still not well represented by typical climate models. We analyze a set of ocean models and highlight the fact that an oxygen concentration that is too low at intermediate depth in the subtropical regions associated with a sluggish representation of the intermediate equatorial current system may be responsible for the overly large extension of the modeled oxygen minimum zones, potentially hampering future projections.
The large oxygen minimum zones in the tropical Pacific Ocean are still not well represented by...