Articles | Volume 17, issue 1
https://doi.org/10.5194/os-17-131-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-17-131-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A clustering-based approach to ocean model–data comparison around Antarctica
Atmospheric and Environmental Research, Inc., Lexington, MA 02421, USA
Christopher M. Little
Atmospheric and Environmental Research, Inc., Lexington, MA 02421, USA
Alice M. Barthel
Los Alamos National Laboratory, Los Alamos, NM 87545, USA
Laurie Padman
Earth and Space Research, 3350 SW Cascade Ave., Corvallis, OR 97333, USA
Related authors
Sönke Dangendorf, Qiang Sun, Thomas Wahl, Philip Thompson, Jerry X. Mitrovica, and Ben Hamlington
Earth Syst. Sci. Data, 16, 3471–3494, https://doi.org/10.5194/essd-16-3471-2024, https://doi.org/10.5194/essd-16-3471-2024, 2024
Short summary
Short summary
Sea-level information from the global ocean is sparse in time and space, with comprehensive data being limited to the period since 2005. Here we provide a novel reconstruction of sea level and its contributing causes, as determined by a Kalman smoother approach applied to tide gauge records over the period 1900–2021. The new reconstruction shows a continuing acceleration in global mean sea-level rise since 1970 that is dominated by melting land ice. Contributors vary significantly by region.
Katherine Smith, Alice M. Barthel, LeAnn M. Conlon, Luke P. Van Roekel, Anthony Bartoletti, Jean-Christophe Golez, Chengzhu Zhang, Carolyn Branecky Begeman, James J. Benedict, Gautum Bisht, Yan Feng, Walter Hannah, Bryce E. Harrop, Nicole Jeffery, Wuyin Lin, Po-Lun Ma, Mathew E. Maltrud, Mark R. Petersen, Balwinder Singh, Qi Tang, Teklu Tesfa, Jonathan D. Wolfe, Shaocheng Xie, Xue Zheng, Karthik Balaguru, Oluwayemi Garuba, Peter Gleckler, Aixue Hu, Jiwoo Lee, Ben Moore-Maley, and Ana C. Ordonez
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-149, https://doi.org/10.5194/gmd-2024-149, 2024
Revised manuscript under review for GMD
Short summary
Short summary
Version 2.1 of the U.S. Department of Energy's Energy Exascale Earth System Model (E3SM) adds the Fox-Kemper et al. (2011) mixed layer eddy parameterization, which restratifies the ocean surface layer through an overturning streamfunction. Results include surface layer biases reduction in temperature, salinity, and sea-ice extent in the North Atlantic, a small strengthening of the Atlantic Meridional Overturning Circulation, and improvements in many atmospheric climatological variables.
Sönke Dangendorf, Qiang Sun, Thomas Wahl, Philip Thompson, Jerry X. Mitrovica, and Ben Hamlington
Earth Syst. Sci. Data, 16, 3471–3494, https://doi.org/10.5194/essd-16-3471-2024, https://doi.org/10.5194/essd-16-3471-2024, 2024
Short summary
Short summary
Sea-level information from the global ocean is sparse in time and space, with comprehensive data being limited to the period since 2005. Here we provide a novel reconstruction of sea level and its contributing causes, as determined by a Kalman smoother approach applied to tide gauge records over the period 1900–2021. The new reconstruction shows a continuing acceleration in global mean sea-level rise since 1970 that is dominated by melting land ice. Contributors vary significantly by region.
Indrani Das, Jowan Barnes, James Smith, Renata Constantino, Sidney Hemming, and Laurie Padman
EGUsphere, https://doi.org/10.5194/egusphere-2024-1564, https://doi.org/10.5194/egusphere-2024-1564, 2024
Short summary
Short summary
George VI Ice Shelf (GVIIS) on the Antarctic Peninsula is currently thinning and the glaciers feeding it are accelerating. Geologic evidence indicates that GVIIS had disintegrated several thousand years ago due to ocean and atmosphere warming. Here, we use remote sensing and numerical modeling to show that strain thinning reduces buttressing of grounded ice, creating a positive feedback of accelerated ice inflow to the southern GVIIS, likely making it more vulnerable than the northern sector.
Matthew J. Hoffman, Carolyn Branecky Begeman, Xylar S. Asay-Davis, Darin Comeau, Alice Barthel, Stephen F. Price, and Jonathan D. Wolfe
The Cryosphere, 18, 2917–2937, https://doi.org/10.5194/tc-18-2917-2024, https://doi.org/10.5194/tc-18-2917-2024, 2024
Short summary
Short summary
The Filchner–Ronne Ice Shelf in Antarctica is susceptible to the intrusion of deep, warm ocean water that could increase the melting at the ice-shelf base by a factor of 10. We show that representing this potential melt regime switch in a low-resolution climate model requires careful treatment of iceberg melting and ocean mixing. We also demonstrate a possible ice-shelf melt domino effect where increased melting of nearby ice shelves can lead to the melt regime switch at Filchner–Ronne.
Hélène Seroussi, Vincent Verjans, Sophie Nowicki, Antony J. Payne, Heiko Goelzer, William H. Lipscomb, Ayako Abe-Ouchi, Cécile Agosta, Torsten Albrecht, Xylar Asay-Davis, Alice Barthel, Reinhard Calov, Richard Cullather, Christophe Dumas, Benjamin K. Galton-Fenzi, Rupert Gladstone, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Tore Hattermann, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Nicolas C. Jourdain, Thomas Kleiner, Eric Larour, Gunter R. Leguy, Daniel P. Lowry, Chistopher M. Little, Mathieu Morlighem, Frank Pattyn, Tyler Pelle, Stephen F. Price, Aurélien Quiquet, Ronja Reese, Nicole-Jeanne Schlegel, Andrew Shepherd, Erika Simon, Robin S. Smith, Fiammetta Straneo, Sainan Sun, Luke D. Trusel, Jonas Van Breedam, Peter Van Katwyk, Roderik S. W. van de Wal, Ricarda Winkelmann, Chen Zhao, Tong Zhang, and Thomas Zwinger
The Cryosphere, 17, 5197–5217, https://doi.org/10.5194/tc-17-5197-2023, https://doi.org/10.5194/tc-17-5197-2023, 2023
Short summary
Short summary
Mass loss from Antarctica is a key contributor to sea level rise over the 21st century, and the associated uncertainty dominates sea level projections. We highlight here the Antarctic glaciers showing the largest changes and quantify the main sources of uncertainty in their future evolution using an ensemble of ice flow models. We show that on top of Pine Island and Thwaites glaciers, Totten and Moscow University glaciers show rapid changes and a strong sensitivity to warmer ocean conditions.
Bryony I. D. Freer, Oliver J. Marsh, Anna E. Hogg, Helen Amanda Fricker, and Laurie Padman
The Cryosphere, 17, 4079–4101, https://doi.org/10.5194/tc-17-4079-2023, https://doi.org/10.5194/tc-17-4079-2023, 2023
Short summary
Short summary
We develop a method using ICESat-2 data to measure how Antarctic grounding lines (GLs) migrate across the tide cycle. At an ice plain on the Ronne Ice Shelf we observe 15 km of tidal GL migration, the largest reported distance in Antarctica, dominating any signal of long-term migration. We identify four distinct migration modes, which provide both observational support for models of tidal ice flexure and GL migration and insights into ice shelf–ocean–subglacial interactions in grounding zones.
Cyrille Mosbeux, Laurie Padman, Emilie Klein, Peter D. Bromirski, and Helen A. Fricker
The Cryosphere, 17, 2585–2606, https://doi.org/10.5194/tc-17-2585-2023, https://doi.org/10.5194/tc-17-2585-2023, 2023
Short summary
Short summary
Antarctica's ice shelves (the floating extension of the ice sheet) help regulate ice flow. As ice shelves thin or lose contact with the bedrock, the upstream ice tends to accelerate, resulting in increased mass loss. Here, we use an ice sheet model to simulate the effect of seasonal sea surface height variations and see if we can reproduce observed seasonal variability of ice velocity on the ice shelf. When correctly parameterised, the model fits the observations well.
Nicolas C. Jourdain, Xylar Asay-Davis, Tore Hattermann, Fiammetta Straneo, Hélène Seroussi, Christopher M. Little, and Sophie Nowicki
The Cryosphere, 14, 3111–3134, https://doi.org/10.5194/tc-14-3111-2020, https://doi.org/10.5194/tc-14-3111-2020, 2020
Short summary
Short summary
To predict the future Antarctic contribution to sea level rise, we need to use ice sheet models. The Ice Sheet Model Intercomparison Project for AR6 (ISMIP6) builds an ensemble of ice sheet projections constrained by atmosphere and ocean projections from the 6th Coupled Model Intercomparison Project (CMIP6). In this work, we present and assess a method to derive ice shelf basal melting in ISMIP6 from the CMIP6 ocean outputs, and we give examples of projected melt rates.
Heiko Goelzer, Sophie Nowicki, Anthony Payne, Eric Larour, Helene Seroussi, William H. Lipscomb, Jonathan Gregory, Ayako Abe-Ouchi, Andrew Shepherd, Erika Simon, Cécile Agosta, Patrick Alexander, Andy Aschwanden, Alice Barthel, Reinhard Calov, Christopher Chambers, Youngmin Choi, Joshua Cuzzone, Christophe Dumas, Tamsin Edwards, Denis Felikson, Xavier Fettweis, Nicholas R. Golledge, Ralf Greve, Angelika Humbert, Philippe Huybrechts, Sebastien Le clec'h, Victoria Lee, Gunter Leguy, Chris Little, Daniel P. Lowry, Mathieu Morlighem, Isabel Nias, Aurelien Quiquet, Martin Rückamp, Nicole-Jeanne Schlegel, Donald A. Slater, Robin S. Smith, Fiamma Straneo, Lev Tarasov, Roderik van de Wal, and Michiel van den Broeke
The Cryosphere, 14, 3071–3096, https://doi.org/10.5194/tc-14-3071-2020, https://doi.org/10.5194/tc-14-3071-2020, 2020
Short summary
Short summary
In this paper we use a large ensemble of Greenland ice sheet models forced by six different global climate models to project ice sheet changes and sea-level rise contributions over the 21st century.
The results for two different greenhouse gas concentration scenarios indicate that the Greenland ice sheet will continue to lose mass until 2100, with contributions to sea-level rise of 90 ± 50 mm and 32 ± 17 mm for the high (RCP8.5) and low (RCP2.6) scenario, respectively.
Hélène Seroussi, Sophie Nowicki, Antony J. Payne, Heiko Goelzer, William H. Lipscomb, Ayako Abe-Ouchi, Cécile Agosta, Torsten Albrecht, Xylar Asay-Davis, Alice Barthel, Reinhard Calov, Richard Cullather, Christophe Dumas, Benjamin K. Galton-Fenzi, Rupert Gladstone, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Tore Hattermann, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Nicolas C. Jourdain, Thomas Kleiner, Eric Larour, Gunter R. Leguy, Daniel P. Lowry, Chistopher M. Little, Mathieu Morlighem, Frank Pattyn, Tyler Pelle, Stephen F. Price, Aurélien Quiquet, Ronja Reese, Nicole-Jeanne Schlegel, Andrew Shepherd, Erika Simon, Robin S. Smith, Fiammetta Straneo, Sainan Sun, Luke D. Trusel, Jonas Van Breedam, Roderik S. W. van de Wal, Ricarda Winkelmann, Chen Zhao, Tong Zhang, and Thomas Zwinger
The Cryosphere, 14, 3033–3070, https://doi.org/10.5194/tc-14-3033-2020, https://doi.org/10.5194/tc-14-3033-2020, 2020
Short summary
Short summary
The Antarctic ice sheet has been losing mass over at least the past 3 decades in response to changes in atmospheric and oceanic conditions. This study presents an ensemble of model simulations of the Antarctic evolution over the 2015–2100 period based on various ice sheet models, climate forcings and emission scenarios. Results suggest that the West Antarctic ice sheet will continue losing a large amount of ice, while the East Antarctic ice sheet could experience increased snow accumulation.
Sophie Nowicki, Heiko Goelzer, Hélène Seroussi, Anthony J. Payne, William H. Lipscomb, Ayako Abe-Ouchi, Cécile Agosta, Patrick Alexander, Xylar S. Asay-Davis, Alice Barthel, Thomas J. Bracegirdle, Richard Cullather, Denis Felikson, Xavier Fettweis, Jonathan M. Gregory, Tore Hattermann, Nicolas C. Jourdain, Peter Kuipers Munneke, Eric Larour, Christopher M. Little, Mathieu Morlighem, Isabel Nias, Andrew Shepherd, Erika Simon, Donald Slater, Robin S. Smith, Fiammetta Straneo, Luke D. Trusel, Michiel R. van den Broeke, and Roderik van de Wal
The Cryosphere, 14, 2331–2368, https://doi.org/10.5194/tc-14-2331-2020, https://doi.org/10.5194/tc-14-2331-2020, 2020
Short summary
Short summary
This paper describes the experimental protocol for ice sheet models taking part in the Ice Sheet Model Intercomparion Project for CMIP6 (ISMIP6) and presents an overview of the atmospheric and oceanic datasets to be used for the simulations. The ISMIP6 framework allows for exploring the uncertainty in 21st century sea level change from the Greenland and Antarctic ice sheets.
Donald A. Slater, Denis Felikson, Fiamma Straneo, Heiko Goelzer, Christopher M. Little, Mathieu Morlighem, Xavier Fettweis, and Sophie Nowicki
The Cryosphere, 14, 985–1008, https://doi.org/10.5194/tc-14-985-2020, https://doi.org/10.5194/tc-14-985-2020, 2020
Short summary
Short summary
Changes in the ocean around Greenland play an important role in determining how much the ice sheet will contribute to global sea level over the coming century. However, capturing these links in models is very challenging. This paper presents a strategy enabling an ensemble of ice sheet models to feel the effect of the ocean for the first time and should therefore result in a significant improvement in projections of the Greenland ice sheet's contribution to future sea level change.
Alice Barthel, Cécile Agosta, Christopher M. Little, Tore Hattermann, Nicolas C. Jourdain, Heiko Goelzer, Sophie Nowicki, Helene Seroussi, Fiammetta Straneo, and Thomas J. Bracegirdle
The Cryosphere, 14, 855–879, https://doi.org/10.5194/tc-14-855-2020, https://doi.org/10.5194/tc-14-855-2020, 2020
Short summary
Short summary
We compare existing coupled climate models to select a total of six models to provide forcing to the Greenland and Antarctic ice sheet simulations of the Ice Sheet Model Intercomparison Project (ISMIP6). We select models based on (i) their representation of current climate near Antarctica and Greenland relative to observations and (ii) their ability to sample a diversity of projected atmosphere and ocean changes over the 21st century.
Donald A. Slater, Fiamma Straneo, Denis Felikson, Christopher M. Little, Heiko Goelzer, Xavier Fettweis, and James Holte
The Cryosphere, 13, 2489–2509, https://doi.org/10.5194/tc-13-2489-2019, https://doi.org/10.5194/tc-13-2489-2019, 2019
Short summary
Short summary
The ocean's influence on the retreat of Greenland's tidewater glaciers is a key factor determining future sea level. By considering observations of ~200 glaciers from 1960, we find a significant relationship between retreat and melting in the ocean. Projected forwards, this relationship estimates the future evolution of Greenland's tidewater glaciers and provides a practical and empirically validated way of representing ice–ocean interaction in large-scale models used to estimate sea level rise.
Andrey Pnyushkov, Igor V. Polyakov, Laurie Padman, and An T. Nguyen
Ocean Sci., 14, 1329–1347, https://doi.org/10.5194/os-14-1329-2018, https://doi.org/10.5194/os-14-1329-2018, 2018
Short summary
Short summary
A total of 4 years of velocity and hydrography records from moored profilers over the Laptev Sea slope reveal multiple events of eddies passing through the mooring site. These events suggest that the advection of mesoscale eddies is an important component of ocean dynamics in the Eurasian Basin of the Arctic Ocean. Increased vertical shear of current velocities found within eddies produces enhanced diapycnal mixing, suggesting their importance for the redistribution of heat in the Arctic Ocean.
Rachael D. Mueller, Tore Hattermann, Susan L. Howard, and Laurie Padman
The Cryosphere, 12, 453–476, https://doi.org/10.5194/tc-12-453-2018, https://doi.org/10.5194/tc-12-453-2018, 2018
Short summary
Short summary
There is evidence that climate change in the Weddell Sea will cause warmer water to flow toward the icy continent and into the ocean cavity circulating beneath a thick (~ 1000 m) ice sheet extension that floats over the Weddell Sea, called the Filchner–Ronne Ice Shelf (FRIS). This paper addresses the impact of this potential warming on the melting of FRIS. It evaluates the previously unexplored feedbacks between ice melting, changes in cavity geometry, tides, and circulation.
Cited articles
Adusumilli, S., Fricker, H. A., Medley, B., Padman, L., and Siegfried, M. R.: Interannual variations in meltwater input to the Southern Ocean from
Antarctic ice shelves, Nat. Geosci., 13, 616–620, 2020.
Agosta, C., Fettweis, X., and Datta, R.: Evaluation of the CMIP5 models in the aim of regional modelling of the Antarctic surface mass balance, The Cryosphere, 9, 2311–2321, https://doi.org/10.5194/tc-9-2311-2015, 2015.
Arndt, J. E., Schenke, H. W., Jakobsson, M., Nitsche, F. O., Buys, G.,
Goleby, B., Rebesco, M., Bohoyo, F., Hong, J., Black, J., Greku, R.,
Udintsev, G., Barrios, F., Reynoso-Peralta, W., Taisei, M., and Wigley, R.:
The International Bathymetric Chart of the Southern Ocean (IBCSO) Version
1.0 – A new bathymetric compilation covering circum-Antarctic waters,
Geophys. Res. Lett., 40, 3111–3117, 2013.
Assmann, K. M., Hellmer, H. H., and Jacobs, S. S.: Amundsen Sea ice
production and transport, J. Geophys. Res.-Oceans, 110, C12013, https://doi.org/10.1029/2004JC002797, 2005.
Barthel, A., Agosta, C., Little, C. M., Hattermann, T., Jourdain, N. C.,
Goelzer, H., Nowicki, S., Seroussi, H., Straneo, F., and Bracegirdle, T. J.:
CMIP5 model selection for ISMIP6 ice sheet model forcing: Greenland and
Antarctica, The Cryosphere, 14, 855–879, https://doi.org/10.5194/tc-14-855-2020,
2020.
Bindoff, N. L., Rosenberg, M. A., and Warner, M. J.: On the circulation and
water masses over the Antarctic continental slope and rise between 80 and
150 E, Deep-Sea Res. Pt. II, 47, 2299–2326, 2000.
Briegleb, B. P., Danabasoglu, G., and Large, W. G.: An Overflow
parameterization for the ocean component of the Community Climate System
Model, University Corporation for Atmospheric Research, No. NCAR/TN-481+STR, https://doi.org/10.5065/D69K4863, 2010.
Bromwich, D. H., Nicolas, J. P., Monaghan, A. J., Lazzara, M. A., Keller, L. M., Weidner, G. A., and Wilson, A. B.: Central West Antarctica among the
most rapidly warming regions on Earth, Nat. Geosci., 6, 139–145, https://doi.org/10.1038/ngeo1671, 2013.
Carmack, E. C.: Water characteristics of the Southern Ocean south of the
Polar Front, in: Voyage of Discovery: George Deacon 70th Anniversary, edited
by: Angel, M., Pergamon, Oxford, 1977.
Castagno, P., Capozzi, V., DiTullio, G. R., Falco, P., Fusco, G., Rintoul, S. R., Spezie, G., and Budillon, G.: Rebound of shelf water salinity in the Ross Sea, Nat. Commun., 10, 1–6, 2019.
Cook, A. J., Holland, P. R., Meredith, M. P., Murray, T., Luckman, A., and
Vaughan, D. G.: Ocean forcing of glacier retreat in the western Antarctic
Peninsula, Science, 353, 283–286, 2016.
Danabasoglu, G., Lamarque, J. F., Bachmeister, J., Bailey, D. A., DuVivier, A. K., Edwards, J., Emmons, L. K., Fasullo, J., Garcia, R., Gettelman, A.,
Hannay, C., Holland, M. M., Large, W. G., Lawrence, D. M., Lenaerts, J. T. M., Lindsay, K., Lipscomb, W. H., Mills, M. J., Neale, R., Oleson, K. W.,
Otto-Bliesner, B., Phillips, A. S., Sacks, W., Tilmes, S., van Kampenhout, L., Vertenstein, M., Bertini, A., Dennis, J., Deser, C., Fischer, C.,
Fox-Kember, B., Kay, J. E., Kinnison, D., Kushner, P. J., Long, M. C.,
Mickelson, S., Moore, J. K., Nienhouse, E., Polvani, L., Rasch, P. J., and
Strand, W. G.: The Community Earth System Model version 2 (CESM2), J. Adv. Model. Earth Sy., 12, e2019MS001916, https://doi.org/10.1029/2019MS001916, 2020.
DeConto, R. M. and Pollard, D.: Contribution of Antarctica to past and
future sea-level rise, Nature, 531, 591–597, 2016.
Dinniman, M. S., Asay-Davis, X. S., Galton-Fenzi, B. K., Holland, P. R., Jenkins, A., and Timmermann, R.: Modeling ice shelf/ocean interaction in Antarctica: A review, Oceanography, 29, 144–153, 2016.
Dunn, J. R. and Ridgway, K. R.: Mapping ocean properties in regions of
complex topography, Deep-Sea Res. Pt. I, 49, 591–604, 2002.
Emery, W. J.: Water types and water masses, Encyclopedia of Ocean
Sciences, 6, 3179–3187, 2011.
Ester, M., Kriegel, H. P., Sander, J., and Xu, X.: A density-based algorithm
for discovering clusters in large spatial databases with noise, KDD, 96,
226–231, 1996.
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016.
Foster, T. D. and Carmack, E. C.: Frontal zone mixing and Antarctic Bottom
Water formation in the southern Weddell Sea, Deep Sea Research and Oceanographic Abstracts, 23, 301–317, 1976.
Gardner, A. S., Moholdt, G., Scambos, T., Fahnstock, M., Ligtenberg, S., van den Broeke, M., and Nilsson, J.: Increased West Antarctic and unchanged East Antarctic ice discharge over the last 7 years, The Cryosphere, 12, 521–547, https://doi.org/10.5194/tc-12-521-2018, 2018.
Gordon, A. L., Mensch, M., Zhaoqian, D., Smethie Jr., W. M., and De
Bettencourt, J.: Deep and bottom water of the Bransfield Strait eastern and
central basins, J. Geophys. Res.-Oceans, 105, 11337–11346, 2000.
Hjelmervik, K. T. and Hjelmervik, K.: Improved estimation of oceanographic
climatology using empirical orthogonal functions and clustering, in: 2013 MTS/IEEE OCEANS-Bergen, 1–5, IEEE, Bergen, Norway, https://doi.org/10.1109/OCEANS-Bergen.2013.6607987,
2013.
Hobbs, W. R., Massom, R., Stammerjohn, S., Reid, P., Williams, G., and
Meier, W.: A review of recent changes in Southern Ocean sea ice, their
drivers and forcings, Global Planet. Change, 143, 228–250, 2016.
Holland, M. M., Landrum, L., Raphael, M., and Stammerjohn, S.: Springtime
winds drive Ross Sea ice variability and change in the following autumn,
Nat. Commun., 8, 1–8, 2017.
Hosking, J. S., Orr, A., Bracegirdle, T. J., and Turner, J.: Future
circulation changes off West Antarctica: Sensitivity of the Amundsen Sea Low
to projected anthropogenic forcing, Geophys. Res. Lett., 43, 367–376, 2016.
Hunke, E. C., Lipscomb, W. H., Turner, A. K., Jeffery, N., and Elliott, S.:
CICE: The Los Alamos Sea Ice Model, Documentation and Software User's
Manual, Version 5.1, T-3 Fluid Dynamics Group, Los Alamos National Laboratory, Tech. Rep. LA-CC-06-012, 2015.
Jacobs, S. S. and Giulivi, C. F.: Large multidecadal salinity trends near
the Pacific–Antarctic continental margin, J. Climate, 23, 4508–4524, 2010.
Jourdain, N. C., Mathiot, P., Merino, N., Durand, G., Le Sommer, J., Spence, P., Dutrieux, P., and Madec, G.: Ocean circulation and sea-ice thinning
induced by melting ice shelves in the Amundsen Sea, J. Geophys. Res.-Oceans, 122, 2550–2573, 2017.
Little, C. M. and Urban, N. M.: CMIP5 temperature biases and 21st century
warming around the Antarctic coast, Ann. Glaciol., 57, 69–78, 2016.
Locarnini, R. A., Mishonov, A. V., Baranova, O. K., Boyer, T. P., Zweng, M. M., Garcia, H. E., Reagan, J. R., Seidov, D., Weathers, K. W., Paver, C. R.,
and Smolyar, I. V.: World Ocean Atlas 2018, Volume 1: Temperature, in: NOAA Atlas NESDIS 81, edited by:
Mishonov, A., available at: https://archimer.ifremer.fr/doc/00651/76338/ (last access: 16 January 2021), 2019.
McDougall, T. J. and Barker, P. M.: Getting started with TEOS-10 and the
Gibbs Seawater (GSW) oceanographic toolbox, SCOR/IAPSO WG, 127, 1–28, ISBN: 978-0-6465-5621-5, 2011.
Moffat, C., Beardsley, R. C., Owens, B., and Van Lipzig, N.: A first
description of the Antarctic Peninsula Coastal Current, Deep-Sea Res. Pt. II, 55, 277–293,
2008.
Nicholls, K. W., Østerhus, S., Makinson, K., Gammelsrød, T., and
Fahrbach, E.: Ice-ocean processes over the continental shelf of the southern
Weddell Sea Antarctica: A review, Rev. Geophys., 47, RG3003, https://doi.org/10.1029/2007RG000250, 2009.
NOAA: World Ocean Atlas 2018, available at: https://www.nodc.noaa.gov/OC5/woa18/woa18data.html, last access: 16 January 2021a.
NOAA: World Ocean Database 2018, available at: https://www.nodc.noaa.gov/OC5/WOD/pr_wod.html, last access: 16 January 2021b.
Orsi, A. H. and Wiederwohl, C. L.: A recount of Ross Sea waters, Deep-Sea Res. Pt. II, 56,
778–795, 2009.
Orsi, A. H., Johnson, G. C., and Bullister, J. L.: Circulation, mixing, and
production of Antarctic Bottom Water, Prog. Oceanogr., 43, 55–109, 1999.
Padman, L., Costa, D. P., Bolmer, S. T., Goebel, M. E., Huckstadt, L. A.,
Jenkins, A., McDonald, B. I., and Shoosmith, D. R.: Seals map bathymetry of
the Antarctic continental shelf, Geophys. Res. Lett., 37, L21601, https://doi.org/10.1029/2010GL044921,
2010.
Paolo, F. S., Fricker, H. A., and Padman, L.: Volume loss from Antarctic ice
shelves is accelerating, Science, 348, 327–331, 2015.
Parkinsona, C. L.: A 40-y record reveals gradual Antarctic sea ice increases
followed by decreases at rates far exceeding the rates seen in the Arctic,
P. Natl. Acad. Sci. USA, 116, 14414–14423, 2019.
Porter, F. D., Springer, S. R., Padman, Laurie, Fricker, Helen A., Tinto, K. J., Riser, S. C., Bell, R. E., the ROSETTA-Ice Team: volution of the
Seasonal Surface Mixed Layerof the Ross Sea, Antarctica, ObservedWith
Autonomous Profiling Floats, J. Geophys. Res.-Oceans, 124, 4934–4953, 2019.
Post, A. L., Beaman, R. J., O'Brien, P. E., Eléaume, M., and Riddle, M. J.: Community structure and benthic habitats across the George V Shelf, East
Antarctica: trends through space and time, Deep-Sea Res. Pt. II, 58, 105–118, 2011.
Rickard, G. and Behrens, E.: CMIP5 Earth system models with
biogeochemistry: A Ross Sea assessment, Antarct. Sci., 28, 327–346, 2016.
Rignot, E., Bamber, J. L., Van Den Broeke, M. R., Davis, C., Li, Y., Van De
Berg, W. J., and Van Meijgaard, E.: Recent Antarctic ice mass loss from
radar interferometry and regional climate modelling, Nat. Geosci., 1, 106–110, 2008.
Rignot, E., Jacobs, S., Mouginot, E., and Scheuchl, B.: Ice-shelf melting
around Antarctica, Science, 341, 266–270, 2013.
Sallée, J. B., Shuckburgh, E., Bruneau, N., Meijers, A. J., Bracegirdle, T. J., Wang, Z., and Roy, T.: Assessment of Southern Ocean water mass
circulation and characteristics in CMIP5 models: Historical bias and forcing
response, J. Geophys. Res.-Oceans, 118, 1830–1844, 2013.
Schmidtko, S., Johnson, G. C., and Lyman, J. M.: MIMOC: A global monthly
isopycnal upper-ocean climatology, J. Geophys. Res.-Oceans, 118, 1658–1672, 2013.
Schmidtko, S., Heywood, K. J., Thompson, A. F., and Aoki, S.: Multidecadal
warming of Antarctic waters, Science, 346, 1227–1231, 2014.
Singh, H. K., Landrum, L., Holland, M. M., Bailey, D. A., and DuVivier, A. K.: An Overview of Antarctic Sea Ice in the Community Earth System Model
version 2, Part I: Analysis of the Seasonal Cycle in the Context of Sea Ice
Thermodynamics and Coupled Atmosphere-Ocean-Ice Processes, J. Adv. Model. Earth Sy., https://doi.org/10.1029/2020MS002143, online first,
2020.
Stammerjohn, S., Massom, R., Rind, D., and Martinson, D.: Regions of rapid
sea ice change: An inter-hemispheric seasonal comparison, Geophys. Res. Lett., 39, L06501, https://doi.org/10.1029/2012GL050874, 2012.
Sun, Q., Whitney, M. M., Bryan, F. O., and Tseng, Y.-h.: A box model for
representing estuarine physical processes in Earth system models, Ocean Model., 112, 139–153,
2017.
Sun, Q., Whitney, M. M., Bryan, F. O., and Tseng, Y.-h.: Assessing the skill
of the improved treatment of riverine freshwater in the Community Earth
System Model relative to a new salinity climatology, J. Adv. Model. Earth Sy., 11, 1189–1206,
https://doi.org/10.1029/2018MS001349, 2019.
Sutterley, T. C., Velicogna, I., Rignot, E., Mouginot, J., Flament, T., Van
Den Broeke, J. M., Van Wessem, J. M., and Reijmer, C. H.: Mass loss of the
Amundsen Sea Embayment of West Antarctica from four independent techniques,
Geophys. Res. Lett., 41, 8421–8428, 2014.
Thompson, A. F., Stewart, A. L., Spence, P., and Heywood, K. J.: The
Antarctic Slope Current in a changing climate, Rev. Geophys., 56, 741–770, 2018.
Thorndike, R. L.: Who Belongs in the Family? Psychometrika, 18, 267–276, 1953.
Timmermans, M. L., Proshutinsky, A., Golubeva, E., Jackson, J. M.,
Krishfield, R., McCall, M., Platov, G., Toole, J., Williams, W., Kikuchi, T., and Nishino, S.: Mechanisms of Pacific summer water variability in the
Arctic's Central Canada Basin, J. Geophys. Res.-Oceans, 119, 7523–7548, 2014.
Tseng, Y.-H., Bryan, F. O., and Whitney, M. M.: Impacts of the
representation of riverine freshwater input in the community earth system
model, Ocean Model., 105, 71–86, 2016.
WCRP: CMIP6, CESM2 data, available at: https://esgf-node.llnl.gov/search/cmip6/, last access: 16 January 2021.
Zweng, M. M., Reagan, J. R., Seidov, D., Boyer, T. P., Locarnini, R. A.,
Garcia, H. E., Mishonov, A. V., Baranova, O. K., Weathers, K. W.,
Paver, C. R., and Smolyar, I. V.: World Ocean Atlas 2018, Volume 2: Salinity,
in: NOAA Atlas NESDIS 82, edited by:
Mishonov, A., available at: https://archimer.ifremer.fr/doc/00651/76339/ (last access: 16 January 2021), 2019.