Articles | Volume 17, issue 1
https://doi.org/10.5194/os-17-1-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-17-1-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Glider-based observations of CO2 in the Labrador Sea
Nicolai von Oppeln-Bronikowski
CORRESPONDING AUTHOR
Department of Physics and Physical Oceanography, Memorial University, 283 Prince Phillip Drive, St. John's, NL, A1B3X7, Canada
Brad de Young
Department of Physics and Physical Oceanography, Memorial University, 283 Prince Phillip Drive, St. John's, NL, A1B3X7, Canada
Dariia Atamanchuk
Department of Oceanography, Dalhousie University, 1355 Oxford Street, Halifax, NS, B3H4R2, Canada
Douglas Wallace
Department of Oceanography, Dalhousie University, 1355 Oxford Street, Halifax, NS, B3H4R2, Canada
Related authors
No articles found.
Alizée Dale, Marion Gehlen, Douglas W. R. Wallace, Germain Bénard, Christian Éthé, and Elena Alekseenko
EGUsphere, https://doi.org/10.5194/egusphere-2023-2538, https://doi.org/10.5194/egusphere-2023-2538, 2023
Short summary
Short summary
Diatom, which is at the base of a productive food chain that supports valuable fisheries, dominates the total primary production of the Labrador Sea (LS). The synthesis of biogenic silica frustules makes them peculiar among phytoplankton but also dependent on dissolved silicate (DSi). Regular oceanographic surveys show declining DSi concentrations since the mid-1990s. With a model-based approach, we show that weakening deep winter convection was the proximate cause of DSi decline in the LS.
Mathilde Jutras, Alfonso Mucci, Gwenaëlle Chaillou, William A. Nesbitt, and Douglas W. R. Wallace
Biogeosciences, 20, 839–849, https://doi.org/10.5194/bg-20-839-2023, https://doi.org/10.5194/bg-20-839-2023, 2023
Short summary
Short summary
The deep waters of the lower St Lawrence Estuary and gulf have, in the last decades, experienced a strong decline in their oxygen concentration. Below 65 µmol L-1, the waters are said to be hypoxic, with dire consequences for marine life. We show that the extent of the hypoxic zone shows a seven-fold increase in the last 20 years, reaching 9400 km2 in 2021. After a stable period at ~ 65 µmol L⁻¹ from 1984 to 2019, the oxygen level also suddenly decreased to ~ 35 µmol L-1 in 2020.
Jannes Koelling, Dariia Atamanchuk, Johannes Karstensen, Patricia Handmann, and Douglas W. R. Wallace
Biogeosciences, 19, 437–454, https://doi.org/10.5194/bg-19-437-2022, https://doi.org/10.5194/bg-19-437-2022, 2022
Short summary
Short summary
In this study, we investigate oxygen variability in the deep western boundary current in the Labrador Sea from multiyear moored records. We estimate that about half of the oxygen taken up in the interior Labrador Sea by air–sea gas exchange during deep water formation is exported southward the same year. Our results underline the complexity of the oxygen uptake and export in the Labrador Sea and highlight the important role this region plays in supplying oxygen to the deep ocean.
Krysten Rutherford, Katja Fennel, Dariia Atamanchuk, Douglas Wallace, and Helmuth Thomas
Biogeosciences, 18, 6271–6286, https://doi.org/10.5194/bg-18-6271-2021, https://doi.org/10.5194/bg-18-6271-2021, 2021
Short summary
Short summary
Using a regional model of the northwestern North Atlantic shelves in combination with a surface water time series and repeat transect observations, we investigate surface CO2 variability on the Scotian Shelf. The study highlights a strong seasonal cycle in shelf-wide pCO2 and spatial variability throughout the summer months driven by physical events. The simulated net flux of CO2 on the Scotian Shelf is out of the ocean, deviating from the global air–sea CO2 flux trend in continental shelves.
Luca Possenti, Ingunn Skjelvan, Dariia Atamanchuk, Anders Tengberg, Matthew P. Humphreys, Socratis Loucaides, Liam Fernand, and Jan Kaiser
Ocean Sci., 17, 593–614, https://doi.org/10.5194/os-17-593-2021, https://doi.org/10.5194/os-17-593-2021, 2021
Short summary
Short summary
A Seaglider was deployed for 8 months in the Norwegian Sea mounting an oxygen and, for the first time, a CO2 optode and a chlorophyll fluorescence sensor. The oxygen and CO2 data were used to assess the spatial and temporal variability and calculate the net community production, N(O2) and N(CT). The dataset was used to calculate net community production from inventory changes, air–sea flux, diapycnal mixing and entrainment.
Triona McGrath, Margot Cronin, Elizabeth Kerrigan, Douglas Wallace, Clynton Gregory, Claire Normandeau, and Evin McGovern
Earth Syst. Sci. Data, 11, 355–374, https://doi.org/10.5194/essd-11-355-2019, https://doi.org/10.5194/essd-11-355-2019, 2019
Short summary
Short summary
We report results from an intercomparison exercise on the analysis of nutrients at sea. Two independent teams (Marine Institute, Ireland and Dalhousie University Canada) carried out an analysis of a GO-SHIP hydrographic section. The cruise provided a unique opportunity to assess the likely comparability of nutrient data collected following GO-SHIP protocols. Datasets were high quality and compared well but highlighted a number of issues relevant to the comparability of global nutrient data.
Qiang Shi and Douglas Wallace
Ocean Sci., 14, 1385–1403, https://doi.org/10.5194/os-14-1385-2018, https://doi.org/10.5194/os-14-1385-2018, 2018
Short summary
Short summary
Time series observations can reveal processes and controlling factors underlying the production and loss of iodocarbons in the ocean and provide data for testing hypotheses and models. We report weekly observations from May 2015 to December 2017 at four depths in Bedford Basin, Canada. Iodocarbons in near-surface waters showed strong seasonal variability and similarities and differences in their correlation with temporal variations of potentially related properties and causal factors.
Cited articles
Avsic, T., Karstensen, J., Send, U., and Fischer, J.: Interannual variability
of newly formed Labrador Sea Water from 1994 to 2005, Geophys. Res.
Lett., 33, L21S02, https://doi.org/10.1029/2006GL026613, 2006. a
Bakker, D. C. E., Pfeil, B., Landa, C. S., Metzl, N., O'Brien, K. M., Olsen, A., Smith, K., Cosca, C., Harasawa, S., Jones, S. D., Nakaoka, S., Nojiri, Y., Schuster, U., Steinhoff, T., Sweeney, C., Takahashi, T., Tilbrook, B., Wada, C., Wanninkhof, R., Alin, S. R., Balestrini, C. F., Barbero, L., Bates, N. R., Bianchi, A. A., Bonou, F., Boutin, J., Bozec, Y., Burger, E. F., Cai, W.-J., Castle, R. D., Chen, L., Chierici, M., Currie, K., Evans, W., Featherstone, C., Feely, R. A., Fransson, A., Goyet, C., Greenwood, N., Gregor, L., Hankin, S., Hardman-Mountford, N. J., Harlay, J., Hauck, J., Hoppema, M., Humphreys, M. P., Hunt, C. W., Huss, B., Ibánhez, J. S. P., Johannessen, T., Keeling, R., Kitidis, V., Körtzinger, A., Kozyr, A., Krasakopoulou, E., Kuwata, A., Landschützer, P., Lauvset, S. K., Lefèvre, N., Lo Monaco, C., Manke, A., Mathis, J. T., Merlivat, L., Millero, F. J., Monteiro, P. M. S., Munro, D. R., Murata, A., Newberger, T., Omar, A. M., Ono, T., Paterson, K., Pearce, D., Pierrot, D., Robbins, L. L., Saito, S., Salisbury, J., Schlitzer, R., Schneider, B., Schweitzer, R., Sieger, R., Skjelvan, I., Sullivan, K. F., Sutherland, S. C., Sutton, A. J., Tadokoro, K., Telszewski, M., Tuma, M., van Heuven, S. M. A. C., Vandemark, D., Ward, B., Watson, A. J., and Xu, S.: A multi-decade record of high-quality fCO2 data in version 3 of the Surface Ocean CO2 Atlas (SOCAT), Earth Syst. Sci. Data, 8, 383–413, https://doi.org/10.5194/essd-8-383-2016, 2016. a
Borges, A., Alin, S., Chavez, F., Vlahos, P., Johnson, K., Holt, J., Balch, W.,
Bates, N., Brainard, R., Cai, W.-J., Chen, C. T. A., Currie, K., Dai, M., Degrandpre, M., Delille, B., Dickson, A., Evans, W., Feely, R. A., Friederich, G. E., Gong, G.-C., Hales, B., Hardman-Mountford, N., Hendee, J., Hernandez-Ayon, J. M., Hood, M., Huertas, E., Hydes, D. J., Ianson, D., Krasakopoulou, E., Litt, E., Luchetta, A., Mathis, J., McGillis, W. R., Murata, A., Newton, J., Olafsson, J., Omar, A., Perez, F. F., Sabine, C., Salisbury, J. E., Salm, R., Sarma, V. V. S. S., Schneider, B., Sigler, M., Thomas, H., Turk, D., Vandermark, D., Wanninkhof, R., and Ward, B.: A global sea surface carbon observing system: inorganic and organic carbon dynamics in coastal oceans, edited by: Hall, J., Harrison, D. E., and Stammer, D., in: Proceedings of OceanObs'09: Sustained Ocean Observations and Information for Society, Vol. 2, European Space Agency, 67–88, 2010. a
Broecker, W. S.: The Great Ocean Conveyor, Oceanography, 4, 79–89, 1991. a
Clarke, J. S., Achterberg, E. P., Connelly, D. P., Schuster, U., and Mowlem,
M.: Developments in marine pCO2 measurement technology; towards
sustained in situ observations, TrAC Trend. Anal. Chem., 88,
53–61, 2017a. a
Clarke, J. S., Humphreys, M. P., Tynan, E., Kitidis, V., Brown, I., Mowlem, M.,
and Achterberg, E. P.: Characterization of a time-domain dual lifetime
referencing pCO2 optode and deployment as a high-resolution
underway sensor across the high latitude North Atlantic Ocean, Front.
Mar. Sci., 4, p. 396, 2017b. a
Cohen, A. L. and Holcomb, M.: Why corals care about ocean acidification:
uncovering the mechanism, Oceanography, 22, 118–127, 2009. a
DeGrandpre, M., Körtzinger, A., Send, U., Wallace, D. W., and Bellerby, R.:
Uptake and sequestration of atmospheric CO2 in the Labrador Sea
deep convection region, Geophys. Res. Lett., 33, L21S03, https://doi.org/10.1029/2006GL026881, 2006. a
Dickson, A. G.: Standard potential of the reaction: AgCl(s) + 12H2(g) = Ag(s) + HCl(aq), and and the standard acidity constant of the ion HSO in
synthetic sea water from 273.15 to 318.15 K, J. Chem.
Thermodyn., 22, 113–127,
https://doi.org/10.1016/0021-9614(90)90074-Z, 1990. a
Dickson, A. G. and Millero, F. J.: A comparison of the equilibrium constants
for the dissociation of carbonic acid in seawater media, Deep-Sea Res.
Pt. A, 34, 1733–1743,
https://doi.org/10.1016/0198-0149(87)90021-5, 1987. a
Doney, S. C., Lima, I., Feely, R. A., Glover, D. M., Lindsay, K., Mahowald, N.,
Moore, J. K., and Wanninkhof, R.: Mechanisms governing interannual
variability in upper-ocean inorganic carbon system and air–sea
CO2 fluxes: Physical climate and atmospheric dust, Deep-Sea
Res. Pt. II, 56, 640–655, 2009. a
Fontela, M., García-Ibáñez, M. I., Hansell, D. A., Mercier, H.,
and Pérez, F. F.: Dissolved organic carbon in the North Atlantic
Meridional Overturning Circulation, Sci. Rep., 6, 26931, https://doi.org/10.1038/srep26931, 2016. a
Friedlingstein, P., Jones, M. W., O'Sullivan, M., Andrew, R. M., Hauck, J., Peters, G. P., Peters, W., Pongratz, J., Sitch, S., Le Quéré, C., Bakker, D. C. E., Canadell, J. G., Ciais, P., Jackson, R. B., Anthoni, P., Barbero, L., Bastos, A., Bastrikov, V., Becker, M., Bopp, L., Buitenhuis, E., Chandra, N., Chevallier, F., Chini, L. P., Currie, K. I., Feely, R. A., Gehlen, M., Gilfillan, D., Gkritzalis, T., Goll, D. S., Gruber, N., Gutekunst, S., Harris, I., Haverd, V., Houghton, R. A., Hurtt, G., Ilyina, T., Jain, A. K., Joetzjer, E., Kaplan, J. O., Kato, E., Klein Goldewijk, K., Korsbakken, J. I., Landschützer, P., Lauvset, S. K., Lefèvre, N., Lenton, A., Lienert, S., Lombardozzi, D., Marland, G., McGuire, P. C., Melton, J. R., Metzl, N., Munro, D. R., Nabel, J. E. M. S., Nakaoka, S.-I., Neill, C., Omar, A. M., Ono, T., Peregon, A., Pierrot, D., Poulter, B., Rehder, G., Resplandy, L., Robertson, E., Rödenbeck, C., Séférian, R., Schwinger, J., Smith, N., Tans, P. P., Tian, H., Tilbrook, B., Tubiello, F. N., van der Werf, G. R., Wiltshire, A. J., and Zaehle, S.: Global Carbon Budget 2019, Earth Syst. Sci. Data, 11, 1783–1838, https://doi.org/10.5194/essd-11-1783-2019, 2019. a
Fritzsche, E., Staudinger, C., Fischer, J. P., Thar, R., Jannasch, H. W.,
Plant, J. N., Blum, M., Massion, G., Thomas, H., Hoech, J., Johnson, K. S., Borisov, S. M., and Klimant, I.: A
validation and comparison study of new, compact, versatile optodes for
oxygen, pH and carbon dioxide in marine environments, Mar. Chem., 207,
63–76, 2018. a
Garau, B., Ruiz, S., Zhang, W. G., Pascual, A., Heslop, E., Kerfoot, J., and
Tintoré, J.: Thermal lag correction on Slocum CTD glider data, J. Atmos. Ocean. Technol., 28, 1065–1071, 2011. a
Goodin, W. R., McRae, G. J., and Seinfeld, J. H.: A Comparison of
Interpolation Methods for Sparse Data: Application to Wind and Concentration
Fields, J. Appl. Meteorol., 18, 761–771,
1979. a
Gourcuff, C.: ANFOG Slocum Oxygen data: new computation, 14 pp., 2014. a
Guinotte, J. and Fabry, V. J.: The threat of acidification to ocean
ecosystems, Ocean acidification – from ecological impacts to policy
Opportunities, 25, 2–7, 2009. a
Jiang, Z.-P., Hydes, D. J., Hartman, S. E., Hartman, M. C., Campbell, J. M.,
Johnson, B. D., Schofield, B., Turk, D., Wallace, D., Burt, W. J., Thomas, H., Cosca, C., and Feely, R.:
Application and assessment of a membrane-based pCO2 sensor under
field and laboratory conditions, Limnol. Oceanogr.-Method., 12,
264–280, 2014. a
Johnson, K., Wills, K., Butler, D., Johnson, W., and Wong, C.: Coulometric
total carbon dioxide analysis for marine studies: maximizing the performance
of an automated gas extraction system and coulometric detector, Mar.
Chem., 44, 167–187, https://doi.org/10.1016/0304-4203(93)90201-X, 1993. a
Johnson, K. S., Berelson, W. M., Boss, E. S., Chase, Z., Claustre, H., Emerson,
S. R., Gruber, N., Körtzinger, A., Perry, M. J., and Riser, S. C.:
Observing biogeochemical cycles at global scales with profiling floats and
gliders: prospects for a global array, Oceanography, 22, 216–225, 2009. a
Johnson, K. S., Jannasch, H. W., Coletti, L. J., Elrod, V. A., Martz, T. R.,
Takeshita, Y., Carlson, R. J., and Connery, J. G.: Deep-Sea DuraFET: A
pressure tolerant pH sensor designed for global sensor networks, Anal.
Chem., 88, 3249–3256, 2016. a
Johnson, K. S., Plant, J. N., Coletti, L. J., Jannasch, H. W., Sakamoto, C. M.,
Riser, S. C., Swift, D. D., Williams, N. L., Boss, E., Haëntjens, N.,
Talley, L. D., and Sarmiento, J. L.: Biogeochemical sensor performance in the SOCCOM profiling float
array, J. Geophys. Res.-Ocean., 122, 6416–6436, 2017. a
Khatiwala, S., Tanhua, T., Mikaloff Fletcher, S., Gerber, M., Doney, S. C., Graven, H. D., Gruber, N., McKinley, G. A., Murata, A., Ríos, A. F., and Sabine, C. L.: Global ocean storage of anthropogenic carbon, Biogeosciences, 10, 2169–2191, https://doi.org/10.5194/bg-10-2169-2013, 2013. a
Koelling, J., Wallace, D. W., Send, U., and Karstensen, J.: Intense oceanic
uptake of oxygen during 2014–2015 winter convection in the Labrador Sea,
Geophys. Res. Lett., 44, 7855–7864, 2017. a
Lavender, K. L., Davis, R. E., and Owens, W. B.: Observations of open-ocean
deep convection in the Labrador Sea from subsurface floats, J.
Phys. Oceanogr., 32, 511–526, 2002. a
Lee, K., Kim, T., Byrne, R. H., Millero, F. J., Feely, R. A., and Liu, Y.: The
universal ratio of boron to chlorinity for the North Pacific and North
Atlantic oceans, Geochim. Cosmochim. Ac., 74, 1801–1811, 2010. a
Mehrbach, C., Culberson, C. H., Hawley, J. E., and Pytkowicx, R. M.:
Measurement of the apparent dissociation constants of carbonic acid in
seawater at atmospheric pressure, Limnol. Oceanogr., 18,
897–907, https://doi.org/10.4319/lo.1973.18.6.0897, 1973. a
Mintrop, L., Pérez, F., González-Dávila, M., Santana-Casiano, M.,
and Körtzinger, A.: Alkalinity determination by potentiometry:
Intercalibration using three different methods, Ciencias Marinas, 26, 23–27, 2000. a
Okazaki, R. R., Sutton, A. J., Feely, R. A., Dickson, A. G., Alin, S. R.,
Sabine, C. L., Bunje, P. M., and Virmani, J. I.: Evaluation of marine pH
sensors under controlled and natural conditions for the Wendy Schmidt Ocean
Health X-PRIZE, Limnol. Oceanogr.-Method., 15, 586–600, 2017. a
Peeters, F., Atamanchuk, D., Tengberg, A., Encinas-Fernández, J., and
Hofmann, H.: Lake metabolism: Comparison of lake metabolic rates estimated
from a diel CO2 and the common diel O2 technique, PloS One,
11, e0168393, https://doi.org/10.1371/journal.pone.0168393, 2016. a
Robbins, L. L., Hansen, M. E., Kleypas, J. A., and Meylan, S. C.: CO2calc – a
user-friendly seawater carbon calculator for Windows, Max OS X, and iOS
(iPhone), US Geological Survey open-file report, 1280, https://doi.org/10.3133/ofr20101280, 2010. a
Sabine, C. L., Feely, R. A., Gruber, N., Key, R. M., Lee, K., Bullister, J. L.,
Wanninkhof, R., Wong, C., Wallace, D. W., Tilbrook, B., Millero, F. J., Peng, T.-H., Kozyr, A., Ono, T., and Rios, A. F.: The oceanic
sink for anthropogenic CO2, Science, 305, 367–371, 2004. a
Sathiyamoorthy, S. and Moore, G.: Buoyancy flux at ocean weather station
Bravo, J. Phys. Oceanogr., 32, 458–474, 2002. a
Schillinger, D. J., deYoung, B., and Foley, J. S.: Physical and Biological
Tow-Yo Data from Trinity Bay, July 2000, Tech. Rep., Memorial University, in St. John's, Newfoundland, Canada,
2000. a
Takeshita, Y., Martz, T. R., Johnson, K. S., and Dickson, A. G.:
Characterization of an ion sensitive field effect transistor and chloride
ion selective electrodes for pH measurements in seawater, Anal.
Chem., 86, 11189–11195, 2014. a
Tengberg, A., Hovdenes, J., Andersson, H. J., Brocandel, O., Diaz, R., Hebert,
D., Arnerich, T., Huber, C., Körtzinger, A., Khripounoff, A., Rey, F., Rönning, C., Schimanski, J., Sommer, S., and Stangelmayer, A.:
Evaluation of a lifetime-based optode to measure oxygen in aquatic systems,
Limnol. Oceanogr.-Method., 4, 7–17, 2006. a
Testor, P., de Young, B., Rudnick, D., et al.: Ocean Gliders: a
component of the integrated GOOS, Front. Mar. Sc., 6, 422 pp., https://doi.org/10.3389/fmars.2019.00422, 2019. a
Tittensor, D. P., deYoung, B., and Foley, J. S.: Analysis of Physical
Oceanographic Data from Trinity Bay, May-August 2002, Tech. Rep., Memorial
University, 2002. a
Uchida, H., Kawano, T., Kaneko, I., and Fukasawa, M.: In situ calibration of
optode-based oxygen sensors, J. Atmos. Ocean. Technol.,
25, 2271–2281, 2008. a
van Heuven, S. M., Hoppema, M., Jones, E. M., and de Baar, H. J.: Rapid
invasion of anthropogenic CO2 into the deep circulation of the
Weddell Gyre, Philos. T. R. Soc. A, 372, 20130056, https://doi.org/10.1098/rsta.2013.0056, 2014. a
Volk, T. and Hoffert, M. I.: Ocean carbon pumps: Analysis of relative
strengths and efficiencies in ocean-driven atmospheric CO2
changes, The carbon cycle and atmospheric CO2: natural
variations Archean to present, American Geophysical Union, Geophysical Monograph 32, 99–110, 1985. a
von Oppeln-Bronikowski, N.: Glider data from VITALS 2016 deployment, SEANOE,
https://doi.org/10.17882/62358, 2019. a
Zeebe, R. E., Ridgwell, A., and Zachos, J. C.: Anthropogenic carbon release
rate unprecedented during the past 66 million years, Nat. Geosci., 9,
325–329, 2016. a
Short summary
This paper describes challenges around the direct measurement of CO2 in the ocean using ocean gliders. We discuss our method of using multiple sensor platforms as test beds to carry out observing experiments and highlight the implications of our study for future glider missions. We also show high-resolution measurements and discuss challenges and lessons learned in the context of future ocean gas measurements.
This paper describes challenges around the direct measurement of CO2 in the ocean using ocean...