Articles | Volume 16, issue 3
https://doi.org/10.5194/os-16-637-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-16-637-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Circulation of the European northwest shelf: a Lagrangian perspective
Marcel Ricker
CORRESPONDING AUTHOR
Institute for Chemistry and Biology of the
Marine Environment, University of Oldenburg, Carl-von-Ossietzky-Straße 9–11, 26111 Oldenburg,
Germany
Institute of Coastal Research, Helmholtz-Zentrum Geesthacht,
Max-Planck-Straße 1, 21502 Geesthacht, Germany
Emil V. Stanev
Institute of Coastal Research, Helmholtz-Zentrum Geesthacht,
Max-Planck-Straße 1, 21502 Geesthacht, Germany
Related authors
No articles found.
Johannes Pein, Annika Eisele, Richard Hofmeister, Tina Sanders, Ute Daewel, Emil V. Stanev, Justus van Beusekom, Joanna Staneva, and Corinna Schrum
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-265, https://doi.org/10.5194/bg-2019-265, 2019
Revised manuscript not accepted
Short summary
Short summary
The Elbe estuary is subject to vigorous tidal forcing from the sea side and considerable biological inputs from the land side. Our 3D numerical coupled physical-biogeochemical integrates these forcing signals and provides highly realistic hindcasts of the associated dynamics. Model simulations show that the freshwater part of Elbe estuary is inhabited by plankton. According to simulations these organism play a key role in converting organic inputs into nitrate, the major inorganic nutrient.
Burkard Baschek, Friedhelm Schroeder, Holger Brix, Rolf Riethmüller, Thomas H. Badewien, Gisbert Breitbach, Bernd Brügge, Franciscus Colijn, Roland Doerffer, Christiane Eschenbach, Jana Friedrich, Philipp Fischer, Stefan Garthe, Jochen Horstmann, Hajo Krasemann, Katja Metfies, Lucas Merckelbach, Nino Ohle, Wilhelm Petersen, Daniel Pröfrock, Rüdiger Röttgers, Michael Schlüter, Jan Schulz, Johannes Schulz-Stellenfleth, Emil Stanev, Joanna Staneva, Christian Winter, Kai Wirtz, Jochen Wollschläger, Oliver Zielinski, and Friedwart Ziemer
Ocean Sci., 13, 379–410, https://doi.org/10.5194/os-13-379-2017, https://doi.org/10.5194/os-13-379-2017, 2017
Short summary
Short summary
The Coastal Observing System for Northern and Arctic Seas (COSYNA) was established in order to better understand the complex interdisciplinary processes of northern seas and the Arctic coasts in a changing environment. Particular focus is given to the heavily used German Bight in the North Sea. The automated observing and modelling system is designed to monitor real-time conditions, to provide short-term forecasts and data products, and to assess the impact of anthropogenically induced change.
Kathrin Wahle, Joanna Staneva, Wolfgang Koch, Luciana Fenoglio-Marc, Ha T. M. Ho-Hagemann, and Emil V. Stanev
Ocean Sci., 13, 289–301, https://doi.org/10.5194/os-13-289-2017, https://doi.org/10.5194/os-13-289-2017, 2017
Short summary
Short summary
Reduction of wave forecasting errors is a challenge, especially in dynamically complicated coastal ocean areas such as the southern part of the North Sea area. We study the effects of coupling between an atmospheric and two nested-grid wind wave models. Comparisons with data from in situ and satellite altimeter observations indicate that two-way coupling improves the simulation of wind and wave parameters of the model and justifies its implementation for both operational and climate simulation.
Joanna Staneva, Kathrin Wahle, Wolfgang Koch, Arno Behrens, Luciana Fenoglio-Marc, and Emil V. Stanev
Nat. Hazards Earth Syst. Sci., 16, 2373–2389, https://doi.org/10.5194/nhess-16-2373-2016, https://doi.org/10.5194/nhess-16-2373-2016, 2016
Short summary
Short summary
This study addresses the impact of wind, waves, tidal forcing and baroclinicity on the sea level of the German Bight during extreme storm events. The role of wave-induced processes, tides and baroclinicity is quantified, and the results are compared with in situ measurements and satellite data. Considering a wave-dependent approach and baroclinicity, the surge is significantly enhanced in the coastal areas and the model results are closer to observations, especially during the extreme storm.
Emil V. Stanev, Johannes Schulz-Stellenfleth, Joanna Staneva, Sebastian Grayek, Sebastian Grashorn, Arno Behrens, Wolfgang Koch, and Johannes Pein
Ocean Sci., 12, 1105–1136, https://doi.org/10.5194/os-12-1105-2016, https://doi.org/10.5194/os-12-1105-2016, 2016
Short summary
Short summary
This paper describes coastal ocean forecasting practices exemplified for the North Sea and Baltic Sea. It identifies new challenges, most of which are associated with the nonlinear behavior of coastal oceans. It describes the assimilation of remote sensing, in situ and HF radar data, prediction of wind waves and storm surges, as well as applications to search and rescue operations. Seamless applications to coastal and estuarine modeling are also presented.
Jun She, Icarus Allen, Erik Buch, Alessandro Crise, Johnny A. Johannessen, Pierre-Yves Le Traon, Urmas Lips, Glenn Nolan, Nadia Pinardi, Jan H. Reißmann, John Siddorn, Emil Stanev, and Henning Wehde
Ocean Sci., 12, 953–976, https://doi.org/10.5194/os-12-953-2016, https://doi.org/10.5194/os-12-953-2016, 2016
Short summary
Short summary
This white paper addresses key scientific challenges and research priorities for the development of operational oceanography in Europe for the next 5–10 years. Knowledge gaps and deficiencies are identified in relation to common scientific challenges in four EuroGOOS knowledge areas: European ocean observations, modelling and forecasting technology, coastal operational oceanography, and operational ecology.
Joanna Staneva, Kathrin Wahle, Heinz Günther, and Emil Stanev
Ocean Sci., 12, 797–806, https://doi.org/10.5194/os-12-797-2016, https://doi.org/10.5194/os-12-797-2016, 2016
Short summary
Short summary
This study addresses the impact of coupling between wind wave and circulation models on the quality of coastal ocean predicting systems. This topic reflects the increased interest in operational oceanography to reduce prediction errors of state estimates at coastal scales. The improved skill of the coupled forecasts compared to the non-coupled ones, in particular during extreme events, justifies the further enhancements of coastal operational systems by including wind wave models.
Arthur Capet, Emil V. Stanev, Jean-Marie Beckers, James W. Murray, and Marilaure Grégoire
Biogeosciences, 13, 1287–1297, https://doi.org/10.5194/bg-13-1287-2016, https://doi.org/10.5194/bg-13-1287-2016, 2016
Short summary
Short summary
We show that the Black Sea oxygen inventory has decreased by 44 % from 1955 to 2015, while oxygen penetration depth decreased from 140 to 90 m. A transient increase of the oxygen inventory during 1985–1995 supported the perception of a stable oxic interface and of a general recovery of the Black Sea after a strong eutrophication phase (1970–1990). Instead, we show that ongoing high oxygen consumption was masked by high ventilation rates, which are now limited by atmospheric warming.
L. Holinde, T. H. Badewien, J. A. Freund, E. V. Stanev, and O. Zielinski
Earth Syst. Sci. Data, 7, 289–297, https://doi.org/10.5194/essd-7-289-2015, https://doi.org/10.5194/essd-7-289-2015, 2015
Short summary
Short summary
We present water level data derived from long-term measurements of water pressure at the Time Series Station Spiekeroog (southern North Sea). Problems addressed during data processing include outliers, data gaps and sensor drift. For quality control, we compared the processed data to measurements of water level obtained nearby. We also carried out a storm flood analysis and a Fourier analysis to identify major tidal components.
E. V. Stanev, Y. He, J. Staneva, and E. Yakushev
Biogeosciences, 11, 5707–5732, https://doi.org/10.5194/bg-11-5707-2014, https://doi.org/10.5194/bg-11-5707-2014, 2014
J. Friedrich, F. Janssen, D. Aleynik, H. W. Bange, N. Boltacheva, M. N. Çagatay, A. W. Dale, G. Etiope, Z. Erdem, M. Geraga, A. Gilli, M. T. Gomoiu, P. O. J. Hall, D. Hansson, Y. He, M. Holtappels, M. K. Kirf, M. Kononets, S. Konovalov, A. Lichtschlag, D. M. Livingstone, G. Marinaro, S. Mazlumyan, S. Naeher, R. P. North, G. Papatheodorou, O. Pfannkuche, R. Prien, G. Rehder, C. J. Schubert, T. Soltwedel, S. Sommer, H. Stahl, E. V. Stanev, A. Teaca, A. Tengberg, C. Waldmann, B. Wehrli, and F. Wenzhöfer
Biogeosciences, 11, 1215–1259, https://doi.org/10.5194/bg-11-1215-2014, https://doi.org/10.5194/bg-11-1215-2014, 2014
Related subject area
Approach: Numerical Models | Depth range: Shelf-sea depth | Geographical range: Shelf Seas | Phenomena: Current Field
Dynamical connections between large marine ecosystems of austral South America based on numerical simulations
Numerical issues of the Total Exchange Flow (TEF) analysis framework for quantifying estuarine circulation
Large-scale forcing of the European Slope Current and associated inflows to the North Sea
Different approaches to model the nearshore circulation in the south shore of O'ahu, Hawaii
Residual circulation and freshwater transport in the Dutch Wadden Sea: a numerical modelling study
Simulated melt rates for the Totten and Dalton ice shelves
Effect of tidal stream power generation on the region-wide circulation in a shallow sea
Karen Guihou, Alberto R. Piola, Elbio D. Palma, and Maria Paz Chidichimo
Ocean Sci., 16, 271–290, https://doi.org/10.5194/os-16-271-2020, https://doi.org/10.5194/os-16-271-2020, 2020
Short summary
Short summary
The exchange between the Humboldt and Patagonian large marine ecosystems, the largest marine ecosystems in the Southern Hemisphere, is investigated with numerical simulations. Most of the southern Patagonian Shelf waters originate from the South Pacific's upper layer. The exchange takes place mainly through the shelf break via the Cape Horn shelf. The interannual variability of shelf exchange is partly explained by the large-scale wind variability and associated with the Southern Annular Mode.
Marvin Lorenz, Knut Klingbeil, Parker MacCready, and Hans Burchard
Ocean Sci., 15, 601–614, https://doi.org/10.5194/os-15-601-2019, https://doi.org/10.5194/os-15-601-2019, 2019
Short summary
Short summary
Estuaries are areas where riverine and oceanic waters meet and mix. The exchange flow of an estuary describes the water properties of the inflowing and outflowing water. These can be described by simple bulk values for volume fluxes and salinities. This work focuses on the numerics of one computational method for these values, the Total Exchange Flow. We show that only the so-called dividing salinity method is able to reliably calculate the correct values, even for complex situations.
Robert Marsh, Ivan D. Haigh, Stuart A. Cunningham, Mark E. Inall, Marie Porter, and Ben I. Moat
Ocean Sci., 13, 315–335, https://doi.org/10.5194/os-13-315-2017, https://doi.org/10.5194/os-13-315-2017, 2017
Short summary
Short summary
To the west of Britain and Ireland, a strong ocean current follows the steep slope that separates the deep Atlantic and the continental shelf. This “Slope Current” exerts an Atlantic influence on the North Sea and its ecosystems. Using a combination of computer modelling and archived data, we find that the Slope Current weakened over 1988–2007, reducing Atlantic influence on the North Sea, due to a combination of warming of the subpolar North Atlantic and weakening winds to the west of Scotland.
Joao Marcos Azevedo Correia de Souza and Brian Powell
Ocean Sci., 13, 31–46, https://doi.org/10.5194/os-13-31-2017, https://doi.org/10.5194/os-13-31-2017, 2017
Short summary
Short summary
The relevance of including the wave effect into a nearshore circulation model is discussed. Two different approaches are tested in the framework of an operational forecast system. It is shown that the waves are essential to represent the circulation patterns near the coast. While it seams to be ideal to consider the full coupling between surface waves and ocean currents, a computationally cheaper alternative is tested and shown to give equivalent qualitative results.
M. Duran-Matute, T. Gerkema, G. J. de Boer, J. J. Nauw, and U. Gräwe
Ocean Sci., 10, 611–632, https://doi.org/10.5194/os-10-611-2014, https://doi.org/10.5194/os-10-611-2014, 2014
D. E. Gwyther, B. K. Galton-Fenzi, J. R. Hunter, and J. L. Roberts
Ocean Sci., 10, 267–279, https://doi.org/10.5194/os-10-267-2014, https://doi.org/10.5194/os-10-267-2014, 2014
G. I. Shapiro
Ocean Sci., 7, 165–174, https://doi.org/10.5194/os-7-165-2011, https://doi.org/10.5194/os-7-165-2011, 2011
Cited articles
Backhaus, J.: First Results of a Three-Dimensional Model on the Dynamics in
the German Bighta, in: Elsev. Oceanogr. Serie. Vol. 25, edited by: Nihoul,
J. C. J., Elsevier, Amsterdam, the Netherlands, 333–349, https://doi.org/10.1016/S0422-9894(08)71138-3,
1979.
Backhaus, J. O.: A three-dimensional model for the simulation of shelf sea
dynamics, Deutsche Hydrografische Zeitschrift, 38, 165–187,
https://doi.org/10.1007/BF02328975, 1985.
Baschek, B., Schroeder, F., Brix, H., Riethmüller, R., Badewien, T. H., Breitbach, G., Brügge, B., Colijn, F., Doerffer, R., Eschenbach, C., Friedrich, J., Fischer, P., Garthe, S., Horstmann, J., Krasemann, H., Metfies, K., Merckelbach, L., Ohle, N., Petersen, W., Pröfrock, D., Röttgers, R., Schlüter, M., Schulz, J., Schulz-Stellenfleth, J., Stanev, E., Staneva, J., Winter, C., Wirtz, K., Wollschläger, J., Zielinski, O., and Ziemer, F.: The Coastal Observing System for Northern and Arctic Seas (COSYNA), Ocean Sci., 13, 379–410, https://doi.org/10.5194/os-13-379-2017, 2017.
Belkin, I. M., Cornillon, P. C., and Sherman, K.: Fronts in Large Marine
Ecosystems, Prog. Oceanogr., 81, 223–236,
https://doi.org/10.1016/j.pocean.2009.04.015, 2009.
Beron-Vera, F. J., Hadjighasem, A., Xia, Q., Olascoaga, M. J., and Haller, G.: Coherent Lagrangian swirls among submesoscale motions, P. Natl. Acad. Sci. USA, 116, 18251–18256, https://doi.org/10.1073/pnas.1701392115, 2019.
Blanke, B. and Raynaud, S.: Kinematics of the Pacific Equatorial
Undercurrent: An Eulerian and Lagrangian Approach from GCM Results, J. Phys.
Oceanogr., 27, 1038–1053,
https://doi.org/10.1175/1520-0485(1997)027<1038:KOTPEU>2.0.CO;2, 1997.
Blanke, B., Arhan, M., Madec, G., and Roche, S.: Warm Water Paths in the
Equatorial Atlantic as Diagnosed with a General Circulation Model, J. Phys.
Oceanogr., 29, 2753–2768,
https://doi.org/10.1175/1520-0485(1999)029<2753:WWPITE>2.0.CO;2, 1999.
Booth, D. A.: Eddies in the Rockall Trough, Oceanolog. Acta, 11,
213–219, 1988.
Bower, A. S., Lozier, M. S., Gary, S. F., and Böning, C. W.: Interior
pathways of the North Atlantic meridional overturning circulation, Nature,
459, 243–247, https://doi.org/10.1038/nature07979, 2009.
Callies, U., Plüß, A., Kappenberg, J., and Kapitza, H.: Particle
tracking in the vicinity of Helgoland, North Sea: a model comparison, Ocean
Dynam., 61, 2121–2139, https://doi.org/10.1007/s10236-011-0474-8, 2011.
Callies, U., Groll, N., Horstmann, J., Kapitza, H., Klein, H., Maßmann, S., and Schwichtenberg, F.: Surface drifters in the German Bight: model validation considering windage and Stokes drift, Ocean Sci., 13, 799–827, https://doi.org/10.5194/os-13-799-2017, 2017.
Carrasco, R. and Horstmann, J.: German Bight surface drifter data from
Heincke cruise HE 445, 2015, PANGAEA,
https://doi.org/10.1594/PANGAEA.874511, 2017.
Daewel, U., Peck, M. A., Kühn, W., St. John, M. A., Alekseeva, I., and
Schrum, C.: Coupling ecosystem and individual-based models to simulate the
influence of environmental variability on potential growth and survival of
larval sprat (Sprattus sprattus L.) in the North Sea, Fish. Oceanogr.,
17, 333–351, https://doi.org/10.1111/j.1365-2419.2008.00482.x, 2008.
Dagestad, K.-F., Röhrs, J., Breivik, Ø., and Ådlandsvik, B.: OpenDrift v1.0: a generic framework for trajectory modelling, Geosci. Model Dev., 11, 1405–1420, https://doi.org/10.5194/gmd-11-1405-2018, 2018.
Davies, A. M. and Xing, J.: Modelling processes influencing shelf edge
currents, mixing, across shelf exchange, and sediment movement at the shelf
edge, Dynam. Atmos. Oceans, 34, 291–326,
https://doi.org/10.1016/S0377-0265(01)00072-0, 2001.
Davies, A. M., Sauvel, J., and Evans, J.: Computing near coastal tidal
dynamics from observations and a numerical model, Cont. Shelf Res., 4,
341–366, https://doi.org/10.1016/0278-4343(85)90047-0, 1985.
de Boer, G. J., Pietrzak, J. D., and Winterwerp, J. C.: SST observations of
upwelling induced by tidal straining in the Rhine ROFI, Cont. Shelf Res.,
29, 263–277, https://doi.org/10.1016/j.csr.2007.06.011, 2009.
Donlon, C. J., Martin, M., Stark, J., Roberts-Jones, J., Fiedler, E., and
Wimmer, W.: The Operational Sea Surface Temperature and Sea Ice Analysis
(OSTIA) system, Remote Sens. Environ., 116, 140–158,
https://doi.org/10.1016/j.rse.2010.10.017, 2012.
Flament, P. and Armi, L.: The Shear, Convergence, and Thermohaline
Structure of a Front, J. Phys. Oceanogr., 30, 51–66,
https://doi.org/10.1175/1520-0485(2000)030<0051:TSCATS>2.0.CO;2, 2000.
Flather, R. A.: A Storm Surge Prediction Model for the Northern Bay of
Bengal with Application to the Cyclone Disaster in April 1991, J. Phys.
Oceanogr., 24, 172–190,
https://doi.org/10.1175/1520-0485(1994)024<0172:ASSPMF>2.0.CO;2, 1994.
Froyland, G., Stuart, R. M., and van Sebille, E.: How well-connected is the
surface of the global ocean?, Chaos, 24, 033126,
https://doi.org/10.1063/1.4892530, 2014.
Garrett, C. J. R. and Loder, J. W.: Circulation and fronts in continental
shelf seas – Dynamical aspects of shallow sea fronts, Philos. T. Roy. Soc.
A, 302, 563–581, https://doi.org/10.1098/rsta.1981.0183, 1981.
Graham, J. A., Rosser, J. P., O'Dea, E., and Hewitt, H. T.: Resolving Shelf
Break Exchange Around the European Northwest Shelf, Geophys. Res. Lett.,
45, 12386–12395, https://doi.org/10.1029/2018GL079399, 2018.
Guihou, K., Polton, J., Harle, J., Wakelin, S., O'Dea, E., and Holt, J.:
Kilometric Scale Modeling of the North West European Shelf Seas: Exploring
the Spatial and Temporal Variability of Internal Tides, J. Geophys.
Res.-Oceans, 123, 688–707, https://doi.org/10.1002/2017JC012960, 2018.
Gutow, L., Ricker, M., Holstein, J., Dannheim, J., Stanev, E. V., and Wolff,
J.-O.: Distribution and trajectories of floating and benthic marine
macrolitter in the south-eastern North Sea, Mar. Pollut. Bull., 131,
763–772, https://doi.org/10.1016/j.marpolbul.2018.05.003, 2018.
Hainbucher, D., Pohlmann, T., and Backhaus, J.: Transport of conservative
passive tracers in the North Sea: first results of a circulation and
transport model, Cont. Shelf Res., 7, 1161–1179,
https://doi.org/10.1016/0278-4343(87)90083-5, 1987.
Haller, G. and Yuan, G.: Lagrangian coherent structures and mixing in
two-dimensional turbulence, Physica D, 147, 352–370,
https://doi.org/10.1016/S0167-2789(00)00142-1, 2000.
Heaps, N. S.: Density currents in a two-layered coastal system, with
application to the Norwegian Coastal Current, Geophys. J. Roy. Astr. S.,
63, 289–310, https://doi.org/10.1111/j.1365-246X.1980.tb02622.x, 1980.
Hill, A. E., James, I. D., Linden, P. F., Matthews, J. P., Prandle, D.,
Simpson, J. H., Gmitrowicz, E. M., Smeed, D. A., Lwiza, K. M. M., Durazo,
R., Fox, A. D., and Bowers, D. G.: Understanding the North Sea system –
Dynamics of tidal mixing fronts in the North Sea, Philos. T. Roy. Soc. A,
343, 431–446, https://doi.org/10.1098/rsta.1993.0057, 1993.
Hill, A. E., Brown, J., Fernand, L., Holt, J., Horsburgh, K. J., Proctor,
R., Raine, R., and Turrell, W. R.: Thermohaline circulation of shallow tidal
seas, Geophys. Res. Lett., 35, L11605,
https://doi.org/10.1029/2008GL033459, 2008.
Holt, J. T. and James, I. D.: A simulation of the Southern North Sea in
comparison with measurements from the North Sea Project. Part 1:
Temperature, Cont. Shelf Res., 19, 1087–1112,
https://doi.org/10.1016/S0278-4343(99)00015-1, 1999.
Holt, J. and Umlauf, L.: Modelling the tidal mixing fronts and seasonal
stratification of the Northwest European Continental shelf, Cont. Shelf
Res., 28, 887–903, https://doi.org/10.1016/j.csr.2008.01.012, 2008.
Holt, J., Wakelin, S., and Huthnance, J.: Down-welling circulation of the
northwest European continental shelf: A driving mechanism for the
continental shelf carbon pump, Geophys. Res. Lett., 36, L14602,
https://doi.org/10.1029/2009GL038997, 2009.
Howarth, M. J.: North Sea Circulation, in: Encyclopedia of Ocean Sciences:
Vol. 1, edited by: Steele, J. H., Turekian, K. K., and Thorpe, S. A,
Academic Press, Oxford, UK, 1912–1921, 2001.
Huntley, H. S., Lipphardt, B. L., Jacobs, G., and Kirwan, A. D.: Clusters,
deformation, and dilation: Diagnostics for material accumulation regions, J.
Geophys. Res.-Oceans, 120, 6622–6636,
https://doi.org/10.1002/2015JC011036, 2015.
Huthnance, J. M.: Physical oceanography of the North Sea, Ocean and
Shoreline Management, 16, 199–231,
https://doi.org/10.1016/0951-8312(91)90005-M, 1991.
Huthnance, J. M.: Circulation, exchange and water masses at the ocean
margin: the role of physical processes at the shelf edge, Prog. Oceanogr.,
35, 353–431, https://doi.org/10.1016/0079-6611(95)80003-C, 1995.
Huthnance, J. M., Holt, J. T., and Wakelin, S. L.: Deep ocean exchange with west-European shelf seas, Ocean Sci., 5, 621–634, https://doi.org/10.5194/os-5-621-2009, 2009.
Jacob, B. and Stanev, E. V.: Interactions between wind and tidally induced
currents in coastal and shelf basins, Ocean Dynam., 67, 1263–1281,
https://doi.org/10.1007/s10236-017-1093-9, 2017.
Koszalka, I. M. and LaCasce, J. H.: Lagrangian analysis by clustering,
Ocean Dynam., 60, 957–972, https://doi.org/10.1007/s10236-010-0306-2,
2010.
Koszalka, I. M., LaCasce, J. H., Andersson, M., Orvik, K. A., and Mauritzen,
C.: Surface circulation in the Nordic Seas from clustered drifters, Deep-Sea
Res. Pt. I, 58, 468–485,
https://doi.org/10.1016/j.dsr.2011.01.007, 2011.
Krause, G., Budeus, G., Gerdes, D., Schaumann, K., and Hesse, K.: Frontal
Systems in the German Bight and their Physical and Biological Effects, in:
Elsev. Oceanogr. Series, vol. 42, edited by: Nihoul, J. C. J., Elsevier, Amsterdam, the Netherlands,
119–140, https://doi.org/10.1016/S0422-9894(08)71042-0, 1986.
Le Fèvre, J.: Aspects of the Biology of Frontal Systems, Adv. Mar.
Biol., 23, 163–299, 1986.
Lentz, S. J. and Fewings, M. R.: The wind- and wave-driven inner-shelf
circulation, Annu. Rev. Mar. Sci., 4, 317–343,
https://doi.org/10.1146/annurev-marine-120709-142745, 2012.
Lohmann, R. and Belkin, I. M.: Organic pollutants and ocean fronts across
the Atlantic Ocean: A review, Prog. Oceanogr., 128, 172–184,
https://doi.org/10.1016/j.pocean.2014.08.013, 2014
Madec, G.: NEMO ocean engine, Note du Pôle de modélisation, Institut
Pierre-Simon Laplace (IPSL), France, 27, 2008.
Mahadevan, A.: The Impact of Submesoscale Physics on Primary Productivity of
Plankton, Annu. Rev. Mar. Sci., 8, 161–184,
https://doi.org/10.1146/annurev-marine-010814-015912, 2016.
Maier-Reimer, E.: Residual circulation in the North Sea due to the M2-tide
and mean annual wind stress, Deutsche Hydrografische Zeitschrift, 30,
69–80, https://doi.org/10.1007/BF02227045, 1977.
Marsh, R., Haigh, I. D., Cunningham, S. A., Inall, M. E., Porter, M., and Moat, B. I.: Large-scale forcing of the European Slope Current and associated inflows to the North Sea, Ocean Sci., 13, 315–335, https://doi.org/10.5194/os-13-315-2017, 2017.
Maximenko, N., Hafner, J., Kamachi, M., and MacFadyen, A.: Numerical
simulations of debris drift from the Great Japan Tsunami of 2011 and their
verification with observational reports, Mar. Pollut. Bull., 132, 5–5,
https://doi.org/10.1016/j.marpolbul.2018.03.056, 2018.
McWilliams, J. C.: Submesoscale currents in the ocean, P. Roy. Soc. A-Math.
Phy., 472, 20160117, https://doi.org/10.1098/rspa.2016.0117, 2016.
Molinari, R. and Kirwan, A. D.: Calculations of Differential Kinematic
Properties from Lagrangian Observations in the Western Caribbean Sea, J.
Phys. Oceanogr., 5, 483–491,
https://doi.org/10.1175/1520-0485(1975)005<0483:CODKPF>2.0.CO;2, 1975.
Neumann, D., Callies, U., and Matthies, M.: Marine litter ensemble transport
simulations in the southern North Sea, Mar. Pollut. Bull., 86, 219–228,
https://doi.org/10.1016/j.marpolbul.2014.07.016, 2014.
O'Dea, E. J., Arnold, A. K., Edwards, K. P., Furner, R., Hyder, P., Martin,
M. J., Siddorn, J. R., Storkey, D., While, J., Holt, J. T., and Liu, H.: An
operational ocean forecast system incorporating NEMO and SST data
assimilation for the tidally driven European North-West shelf, J. Oper.
Oceanogr., 5, 3–17, https://doi.org/10.1080/1755876X.2012.11020128,
2012.
O'Dea, E., Furner, R., Wakelin, S., Siddorn, J., While, J., Sykes, P., King, R., Holt, J., and Hewitt, H.: The CO5 configuration of the 7 km Atlantic Margin Model: large-scale biases and sensitivity to forcing, physics options and vertical resolution, Geosci. Model Dev., 10, 2947–2969, https://doi.org/10.5194/gmd-10-2947-2017, 2017.
Otto, L., Zimmerman, J. T. F., Furnes, G. K., Mork, M., Saetre, R., and
Becker, G.: Review of the physical oceanography of the North Sea, Neth, J.
Sea Res., 26, 161–238, https://doi.org/10.1016/0077-7579(90)90091-T,
1990.
Paparella, F., Babiano, A., Basdevant, C., Provenzale, A., and Tanga, P.: A
Lagrangian study of the Antarctic polar vortex, J. Geophys. Res.-Atmos.,
102, 6765–6773, https://doi.org/10.1029/96JD03377, 1997.
Pätsch, J., Burchard, H., Dieterich, C., Gräwe, U., Gröger, M.,
Mathis, M., Kapitza, H., Bersch, M., Moll, A., Pohlmann, T., Su, J.,
Ho-Hagemann, H. T. M., Schulz, A., Elizalde, A., and Eden, C.: An evaluation
of the North Sea circulation in global and regional models relevant for
ecosystem simulations, Ocean Model., 116, 70–95,
https://doi.org/10.1016/j.ocemod.2017.06.005, 2017.
Pietrzak, J. D., de Boer, G. J., and Eleveld, M. A.: Mechanisms controlling
the intra-annual mesoscale variability of SST and SPM in the southern North
Sea, Cont. Shelf Res., 31, 594–610,
https://doi.org/10.1016/j.csr.2010.12.014, 2011.
Pingree, R. D. and Griffiths, D. K.: Tidal fronts on the shelf seas around
the British Isles, J. Geophys. Res.-Oceans, 83, 4615–4622,
https://doi.org/10.1029/JC083iC09p04615, 1978.
Pohlmann, T.: A meso-scale model of the central and southern North Sea:
Consequences of an improved resolution, Cont. Shelf Res., 26,
2367–2385, https://doi.org/10.1016/j.csr.2006.06.011, 2006.
Porter, M., Inall, M. E., Green, J. A. M., Simpson, J. H., Dale, A. C., and
Miller, P. I.: Drifter observations in the summer time Bay of Biscay slope
current, J. Marine Syst., 157, 65–74,
https://doi.org/10.1016/j.jmarsys.2016.01.002, 2016.
Postma, H.: Introduction to the symposium on organic matter in the Wadden
Sea, in: The role of organic matter in the Wadden Sea, edited by: Laane, R.
W. P. M. and Wolff, W. J., Texel, the Netherlands, 15–22, 1984.
Reisser, J., Shaw, J., Wilcox, C., Hardesty, B. D., Proietti, M., Thums, M.,
and Pattiaratchi, C.: Marine Plastic Pollution in Waters around Australia:
Characteristics, Concentrations, and Pathways, PLOS ONE, 8, e80466,
https://doi.org/10.1371/journal.pone.0080466, 2013.
Rodhe, J.: The large-scale circulation in the Skagerrak; interpretation of
some observations, Tellus A, 39A, 245–253,
https://doi.org/10.3402/tellusa.v39i3.11757, 1987.
Röhrs, J., Christensen, K. H., Hole, L. R., Broström, G., Drivdal,
M., and Sundby, S.: Observation-based evaluation of surface wave effects on
currents and trajectory forecasts, Ocean Dynam., 62, 1519–1533,
https://doi.org/10.1007/s10236-012-0576-y, 2012.
Rolinski, S.: On the dynamics of suspended matter transport in the tidal
river Elbe: Description and results of a Lagrangian model, J. Geophys.
Res.-Oceans, 104, 26043–26057, https://doi.org/10.1029/1999JC900230,
1999.
Schönfeld, W.: Numerical simulation of the dispersion of artificial
radionuclides in the English Channel and the North Sea, J. Marine Syst.,
6, 529–544, https://doi.org/10.1016/0924-7963(95)00022-H, 1995.
Simpson, J. H. and Hunter, J. R.: Fronts in the Irish Sea, Nature,
250, 404–406, https://doi.org/10.1038/250404a0, 1974.
Simpson, J. H. and Pingree, R. D.: Shallow Sea Fronts Produced by Tidal
Stirring, in: Oceanic Fronts in Coastal Processes, edited by: Bowman, M. J.,
and Esaias, W. E., Springer, Berlin, 29–42,
https://doi.org/10.1007/978-3-642-66987-3_5, 1978.
Simpson, J. H. and Sharples, J.: Introduction to the Physical and
Biological Oceanography of Shelf Seas, Cambridge University Press,
Cambridge, UK, 2012.
Smagorinsky, J.: General circulation experiments with the primitive
equations, Mon. Weather Rev., 91, 99–164,
https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2, 1963.
Stanev, E. V. and Ricker, M.: Interactions between barotropic tides and
mesoscale processes in deep ocean and shelf regions, Ocean Dynam., 70,
713–728, https://doi.org/10.1007/s10236-020-01348-6, 2020.
Stanev, E. V., Ziemer, F., Schulz-Stellenfleth, J., Seemann, J., Staneva,
J., and Gurgel, K. W.: Blending Surface Currents from HF Radar Observations
and Numerical Modelling: Tidal Hindcasts and Forecasts, J. Atmos. Ocean.
Tech., 32, 256–281, https://doi.org/10.1175/JTECH-D-13-00164.1, 2015.
Stanev, E. V., Badewien, T. H., Freund, H., Grayek, S., Hahner, F.,
Meyerjürgens, J., Ricker, M., Schöneich-Argent, R. I., Wolff, J.-O.,
and Zielinski, O.: Extreme westward surface drift in the North Sea: Public
reports of stranded drifters and Lagrangian tracking, Cont. Shelf Res., 177,
24–32, https://doi.org/10.1016/j.csr.2019.03.003, 2019.
van Aken, H. M.: The hydrography of the mid-latitude Northeast Atlantic
Ocean – Part III: the subducted thermocline water mass, Deep-Sea Res. Pt.
I, 48, 237–267,
https://doi.org/10.1016/S0967-0637(00)00059-5, 2001.
van Aken, H. M., van Heijst, G. J. F., and Maas, L. R. M.: Observations of
fronts in the North Sea, J. Mar. Res., 45, 579–600,
https://doi.org/10.1357/002224087788326830, 1987.
van der Molen, J., García-García, L. M., Whomersley, P., Callaway,
A., Posen, P. E., and Hyder, K.: Connectivity of larval stages of sedentary
marine communities between hard substrates and offshore structures in the
North Sea, Sci. Rep.-UK, 8, 14772,
https://doi.org/10.1038/s41598-018-32912-2, 2018.
van Sebille, E., England, M. H., and Froyland, G.: Origin, dynamics and
evolution of ocean garbage patches from observed surface drifters, Environ.
Res. Lett., 7, 044040, https://doi.org/10.1088/1748-9326/7/4/044040,
2012.
van Sebille, E., Wilcox, C., Lebreton, L., Maximenko, N., Hardesty, B. D.,
van Franeker, J. A., Eriksen, M., Siegel, D., Galgani, F., and Law, K. L.: A
global inventory of small floating plastic debris, Environ. Res. Lett.,
10, 124006, https://doi.org/10.1088/1748-9326/10/12/124006, 2015.
van Sebille, E., Griffies, S. M., Abernathey, R., Adams, T. P., Berloff, P.,
Biastoch, A., Blanke, B., Chassignet, E. P., Cheng, Y., Cotter, C. J.,
Deleersnijder, E., Döös, K., Drake, H. F., Drijfhout, S., Gary, S.
F., Heemink, A. W., Kjellsson, J., Koszalka, I. M., Lange, M., Lique, C.,
MacGilchrist, G. A., Marsh, R., Adame, C. G. M., McAdam, R., Nencioli, F.,
Paris, C. B., Piggott, M. D., Polton, J. A., Rühs, S., Shah, S. H. A.
M., Thomas, M. D., Wang, J., Wolfram, P. J., Zanna, L., and Zika, J. D.:
Lagrangian ocean analysis: Fundamentals and practices, Ocean Model., 121,
49–75, https://doi.org/10.1016/j.ocemod.2017.11.008, 2018.
Zhang, Y. J., Stanev, E. V., and Grashorn, S.: Unstructured-grid model for
the North Sea and Baltic Sea: Validation against observations, Ocean Model.,
97, 91–108, https://doi.org/10.1016/j.ocemod.2015.11.009, 2016.
Short summary
The dynamics of the European northwest shelf are analysed using both classical Eulerian and Lagrangian data from simulated particles. Focussing on the latter, a quantity named
normalised cumulative particle densitymeasures particle accumulation. Yearly averages reveal no surface accumulation areas in the deep ocean and elongated patterns on the shelf mainly along fronts. Sensitivity experiments show the influence of tides and wind, unveiling important vertical dynamics in coastal areas.
The dynamics of the European northwest shelf are analysed using both classical Eulerian and...