Journal cover Journal topic
Ocean Science An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 2.864
IF2.864
IF 5-year value: 3.337
IF 5-year
3.337
CiteScore value: 4.5
CiteScore
4.5
SNIP value: 1.259
SNIP1.259
IPP value: 3.07
IPP3.07
SJR value: 1.326
SJR1.326
Scimago H <br class='widget-line-break'>index value: 52
Scimago H
index
52
h5-index value: 30
h5-index30
Volume 7, issue 1
Ocean Sci., 7, 165–174, 2011
https://doi.org/10.5194/os-7-165-2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.
Ocean Sci., 7, 165–174, 2011
https://doi.org/10.5194/os-7-165-2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 24 Feb 2011

Research article | 24 Feb 2011

Effect of tidal stream power generation on the region-wide circulation in a shallow sea

G. I. Shapiro G. I. Shapiro
  • University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK

Abstract. This paper quantifies the backward effect on the ocean currents caused by a tidal stream farm located in the open shallow sea. Recent studies in channels with 1-D models have indicated that the power potential is not given purely by the flux of kinetic energy, as has been commonly assumed. In this study, a 3-D ocean circulation model is used to estimate (i) practically extractable energy resource at different levels of rated generation capacity of the farm, (ii) changes in the strength of currents due to energy extraction, and (iii) alterations in the pattern of residual currents and the pathways of passive tracers. As well as tidal streams, the model also takes into account the wind-driven and density-driven ocean currents. Numerical modelling has been carried out for a hypothetical tidal farm located in the Celtic Sea north of Cornwall, an area known for its high level of tidal energy. Modelling results clearly indicate that the extracted power does not grow linearly with the increase in the rated capacity of the farm. For the case study covered in this paper, a 100-fold increase in the rated generation capacity of the farm results in only 7-fold increase in extracted power. In the case of a high power farm, kinetic energy of currents is altered significantly as far as 10–20 km away from the farm. At high levels of extracted energy the currents tend to avoid flowing through the farm, an effect which is not captured with 1-D models. Residual currents are altered as far as a hundred kilometres away. The magnitude of changes in the dispersion of tracers is highly sensitive to the location. Some of the passive drifters analysed in this study experience significant variations in the end-to-start distance due to energy extraction ranging from 13% to 238% while others are practically unaffected. This study shows that both energy extraction estimates and effects on region wide circulation depend on a complex combination of factors, and the specific figures given in the paper should be generally considered as first estimates.

Publications Copernicus
Download
Citation