Articles | Volume 16, issue 6
https://doi.org/10.5194/os-16-1367-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.Random noise attenuation of sparker seismic oceanography data with machine learning
Cited articles
Araya-Polo, M., Farris, S., and Florez, M.: Deep learning-driven velocity
model building workflow, The Leading Edge, 38, 872a1–872a9,
https://doi.org/10.1190/tle38110872a1.1, 2019.
Blacic, T. M., Jun, H., Rosado, H., and Shin, C.: Smooth 2-D ocean sound
speed from Laplace and Laplace-Fourier domain inversion of seismic
oceanography data, Geophys. Res. Lett., 43, 1211–1218,
https://doi.org/10.1002/2015GL067421, 2016.
Dagnino, D., Sallares, V., Biescas, B., and Ranero, C. R.: Fine-scale
thermohaline ocean structure retrieved with 2-D prestack full-waveform
inversion of multichannel seismic data: Application to the Gulf of Cadiz (SW
Iberia), J. Geophys. Res.-Ocean., 121, 5452–5469,
https://doi.org/10.1002/2016JC011844, 2016.
Den Bok, H.: SMAART publicly released data sets,
available at: http://www.delphi.tudelft.nl/SMAART/ (last access: 6 November 2020), 2002.
Den Bok, H.: SMARRT publicly released data sets, available at: http://www.delphi.tudelft.nl/SMAART/, last access: 06 November 2020.