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Abstract. Seismic oceanography (SO) acquires water col-
umn reflections using controlled source seismology and pro-
vides high lateral resolution that enables the tracking of the
thermohaline structure of the oceans. Most SO studies ob-
tain data using air guns, which can produce acoustic energy
below 100 Hz bandwidth, with vertical resolution of approx-
imately 10 m or more. For higher-frequency bands, with ver-
tical resolution ranging from several centimeters to several
meters, a smaller, low-cost seismic exploration system may
be used, such as a sparker source with central frequencies
of 250 Hz or higher. However, the sparker source has a rel-
atively low energy compared to air guns and consequently
produces data with a lower signal-to-noise (S/N) ratio. To at-
tenuate the random noise and extract reliable signal from the
low S/N ratio of sparker SO data without distorting the true
shape and amplitude of water column reflections, we applied
machine learning. Specifically, we used a denoising convo-
lutional neural network (DnCNN) that efficiently suppresses
random noise in a natural image. One of the most important
factors of machine learning is the generation of an appro-
priate training dataset. We generated two different training
datasets using synthetic and field data. Models trained with
the different training datasets were applied to the test data,
and the denoised results were quantitatively compared. To
demonstrate the technique, the trained models were applied
to an SO sparker seismic dataset acquired in the Ulleung
Basin, East Sea (Sea of Japan), and the denoised seismic sec-
tions were evaluated. The results show that machine learning
can successfully attenuate the random noise in sparker water
column seismic reflection data.

1 Introduction

Conventional physical oceanography measurements from
cruises are performed by deploying instruments such as a
conductivity–temperature–depth (CTD) probe, an expend-
able conductivity–temperature–depth (XCTD) probe or an
expendable bathythermograph (XBT) at observation stations.
In general, due to time and cost limitations, the distance be-
tween observation points is large, from hundreds of meters
to tens of kilometers; thus, the acquired water column in-
formation has a low horizontal resolution. Seismic oceanog-
raphy (SO) is a method that obtains the water column re-
flections via seismic exploration and analyzes seismic sec-
tions to estimate the oceanographic characteristics of sea wa-
ter. This method was first implemented by Gonella and Mi-
chon (1988) to measure deep internal waves in the eastern
Atlantic and later became popularized after the work of Hol-
brook et al. (2003). Spatial differences in temperature and
salinity generate an acoustic impedance contrast that results
in the reflection of seismic signals. The reflected seismic sig-
nals are processed to image the thermohaline fine structure
of the ocean (Ruddick et al., 2009). Seismic exploration ac-
quires data continuously in the horizontal direction; thus, it
has the advantage of generating data with improved horizon-
tal resolution relative to that obtained by conventional probe-
based oceanographic methods (Dagnino et al., 2016). There-
fore, SO is used to image the structure of water layers (Tsuji
et al., 2005; Sheen et al., 2012; Piété et al., 2013; Moon et
al., 2017) and provide quantitative information, such as the
physical properties (i.e., temperature, salinity) (Papenberg et
al., 2010; Blacic et al., 2016; Dagnino et al., 2016; Jun et al.,
2019) or the spectral distribution of the internal waves and
turbulence (Sheen et al., 2009; Holbrook et al., 2013; Fortin
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et al., 2016) after analysis where temperature or salinity con-
trasts produce clear seismic reflections.

SO has been conducted mainly using air guns, a high-
energy source, and the central frequency, the geometric cen-
ter of the frequency band (Wang, 2015), of air guns is usu-
ally below 100 Hz. Therefore, the vertical resolution of the
acquired seismic data using air guns is approximately 10 m
or more, which is coarser than that of conventional physical
oceanography observation equipment. SO also has the dis-
advantage of high exploration expenses when using air guns
and streamers several kilometers long, which require large
vessels and many operators. Ruddick (2018) highlighted the
limitations of current SO studies using multichannel seis-
mic (MCS) exploration and argued that using a small-scale
source instead of a large-scale air gun and a relatively shorter
streamer with a length shorter than 500 m can make SO more
widely available.

Piété et al. (2013) implemented a sparker source with a
central frequency of 250 Hz and a short 450 m streamer (72
channels at 6.25 m intervals) to examine the oceanographic
structure. Since high-frequency band sources were imple-
mented, data with vertical resolution theoretically as fine as
1.5 m were acquired, and the short source signature enabled
the thermocline structure to be imaged even in very shal-
low areas between 10 and 40 m. However, the signal-to-noise
(S/N) ratio of the seismic section was lower than that of the
air gun source, and the amplitude of the thermocline feature
was small; thus, it was difficult to interpret. Generally, us-
ing a low-energy source and a short streamer in seismic ex-
ploration causes the low-S/N ratio problem. This problem is
more accentuated in SO because the maximum impedance
contrasts between the water layers are smaller than the max-
imum impedance contrasts between the layers beneath the
sea bed. If a low-energy source is used, the water column re-
flections recorded by the receiver become too weak, and the
influence of the background noise becomes larger than when
using a high-energy source. The improvement in vertical res-
olution is evident when using higher-frequency band sources
such as a sparker source; therefore, if appropriate methods
can effectively suppress the random noise in the seismic sec-
tion, more useful information can be derived compared to SO
data using an air gun source.

There are various types of noise recorded by the receiver
in seismic exploration, and several data processing steps are
usually applied to the seismic data to attenuate noise. How-
ever, the noise attenuation method not only removes noise but
also potentially alters important seismic signals (Jun et al.,
2014). Especially for SO data, careful processing is essential
to recover the actual shape of the water column reflections
(Fortin et al., 2016), which contain internal wave and tur-
bulence information. It is difficult to apply various noise at-
tenuation methods to SO data because analyzing the internal
wave and turbulent subranges of the water column requires
the horizontal wavenumber spectrum (Klymak and Moum,
2007) of the seismic data, which is liable to be damaged

by data processing. Therefore, minimized noise attenuation
processes have been applied to SO data, and for this reason,
studies calculating the wavenumber spectrum by using SO
data such as those by Holbrook et al. (2013) and Fortin et
al. (2016, 2017) have only applied bandpass and notch filters
to remove random and harmonic noise. However, when the
sparker is used as a seismic source, the bandpass filter alone
is not sufficient to attenuate random noise, resulting in great
difficulties in analyzing the wavenumber spectrum. There-
fore, it is necessary to apply additional data processing to
properly attenuate noise without damaging the wavenumber
characteristics of SO data.

The use of artificial intelligence (AI) has been studied in
geophysics for decades (McCormack, 1991; McCormack et
al., 1993; Van der Baan and Jutten, 2000), but recent ad-
vances in computer resources and algorithms have spurred
AI research, and several studies have been conducted to ap-
ply machine learning in the field of seismic data processing
(Araya-Polo et al., 2019; Yang and Ma, 2019; Zhao et al.,
2019). Among them, one of the most actively studied areas
is pre-stack and post-stack data noise attenuation. After con-
volutional neural networks (CNNs) were introduced, various
noise attenuation methods based on the CNN architecture
have been proposed (Jain and Seung, 2009; Gondara, 2016;
Lefkimmiatis, 2017), and the denoising convolutional neural
network (DnCNN) suggested by Zhang et al. (2017) attained
good results in random noise suppression in natural images.
Recently, the DnCNN was applied to attenuate various types
of noise in seismic data (Li et al., 2018; Si and Yuan, 2018;
Liu et al., 2020). The DnCNN uses residual learning (He et
al., 2016) and has the advantage of minimizing damage to
the seismic signal by estimating the noise from seismic data
rather than directly analyzing the signal. The original shape
of the water column reflector in SO data remains unchanged
during data processing, so the DnCNN, which learns noise
characteristics, is a suitable SO data denoising algorithm.

As important as the proper neural network architecture
when conducting training through machine learning is the
use of an appropriate training dataset. When using the
DnCNN to attenuate noise, the training data require noise-
free and noise-only (or noise containing) data. In this study,
we use both field and synthetic data as training data and com-
pare which training data are more suitable for the DnCNN in
attenuating random noise in SO data.

First, we introduce the DnCNN architecture used in this
study and explain the construction method for the training
and test datasets using field and synthetic data, respectively.
Then, we perform training using the constructed training
datasets and verify the trained models using test datasets. Fi-
nally, the trained models are applied to the Ulleung Basin,
East Sea (Sea of Japan) sparker SO data, and the results are
compared and evaluated.
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2 Data and methodology

2.1 Review of the DnCNN

The purpose of this study is to attenuate the random noise in
sparker SO data, and the machine learning architecture used
in this study is the DnCNN, which was suggested by Zhang
et al. (2017). DnCNN is a neural network architecture based
on the CNN for the purpose of removing the random noise
in natural images. DnCNN reads the noisy image in the in-
put layer and extracts the noise from the noisy image in the
hidden layer. A layer is a module containing several comput-
ing processes (e.g., convolution, pooling, or activation). At
the output layer, the extracted noise is subtracted from the
noisy image and generates the denoised result. The DnCNN
has three distinctive characteristics: (1) residual learning,
(2) batch normalization, and (3) the same input and output
data size for each layer.

Residual learning was first suggested by He et al. (2016)
and the neural network which uses residual learning (residual
network) contains several residual blocks. The residual block
is a building block of the residual network and consists of
several convolution processes and a shortcut connection. The
DnCNN adopted residual learning and used a single short-
cut to estimate the noise from natural images. The estimated
noise was subtracted from the noisy natural image, and the
noise-attenuated image remained. If the DnCNN is applied
to seismic data denoising, the target noise is estimated from
the noisy pre-stack or post-stack seismic data, and the esti-
mated noise is subtracted from the noisy seismic data. The
seismic data including noise (y) can be expressed as the sum
of the true seismic data (x) and noise (n) as follows:

y = x+ n. (1)

When the deep learning architecture that estimates noise
from the noisy seismic data is D(y,n), the cost function of
the DnCNN (C) can be expressed as follows:

C=
1

2N

N∑
i=1

‖D(yi;ni)− (yi − xi)‖
2, (2)

where n is the estimated noise from the original noisy seis-
mic data (y), N is the number of the training data and ‖ ‖2

is the sum of squared errors (SSE). Although the DnCNN
uses residual learning, it is different from the conventional
residual network. The conventional residual network utilizes
residual learning to solve the performance degradation prob-
lem when the network depth increases; thus, it includes many
residual blocks. On the other hand, the DnCNN uses residual
learning to predict noise from noisy images and includes a
single residual block. For example, ResNet (He et al., 2016),
which is a well-known image recognition network using
residual learning, has more than tens or hundreds of network
depth layers with many residual blocks, but the DnCNN has
fewer than 20 network depth layers with a single residual

block. Moreover, the DnCNN applies batch normalization
(Ioffe and Szegedy, 2015) after each convolution layer. In-
stead of using the entire training data at the same time, the
machine learning sequentially uses mini-batches that repre-
sent a small part of the entire data as input for efficient train-
ing. The distribution of input data varies during training and
the neural network has a risk of updating the weights in the
wrong direction. Batch normalization is a method to normal-
ize the distribution of each mini-batch by making the mean
and variance of the mini-batch equal to 0 and 1, respec-
tively. The normalized mini-batch is transformed through
scaling and shifting. Batch normalization is widely used in
many deep learning neural networks because it can stabilize
learning and increase the learning speed (Ioffe and Szegedy,
2015). The authors of the DnCNN empirically found that
residual learning and batch normalization create a synergistic
effect. In addition, unlike the encoder–decoder-type denois-
ing architecture, the size of the input data of the DnCNN is
the same as the size of the output data in each layer. The
DnCNN directly pads zeros at the boundaries during con-
volution and does not contain any pooling layer; thus, the
data size remains unchanged during training. This procedure
has the advantage of minimizing the data loss occurring dur-
ing the encoding and decoding process. As mentioned above,
the amplitude and shape of the seismic reflections are impor-
tant for spectrum analysis using SO data. To minimize pos-
sible deformation of the seismic signals during the denoising
procedure, the DnCNN, which predicts noise using residual
learning and avoids information loss due to the absence of
an encoding–decoding model, could be an appropriate algo-
rithm.

2.2 Network architecture

The DnCNN uses three different kinds of layers, and we use
the same layers as suggested by Zhang et al. (2017). Figure 1
shows the DnCNN architecture used in this study, where
Conv, BN, and ReLU indicate convolution, batch normal-
ization, and rectified linear units (Krizhevsky et al., 2012),
respectively.

The first layer type consists of convolution and rectified
linear units and is used only at the first layer of the net-
work architecture. This layer is shown as “Conv+ReLU” in
Fig. 1. In the convolution process, two-dimensional convolu-
tion between a certain size of kernel and data is performed.
The outputs of the convolution process are passed through
the ReLU activation function which returns input value for
the positive input and 0 for the negative input to add the non-
linearity in the network (Huang and Babri, 1998). The size
of the convolution filter is 3× 3× c and generates 64 feature
maps which is the same number of feature maps in Zhang
et al. (2017), where c is the number of channels of the in-
put data. This study extracts noise from binary files; thus,
a 3× 3× 1 convolution filter is adopted. The second layer
type consists of convolution, batch normalization, and recti-
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Figure 1. DnCNN architecture. 64@50× 50 indicates 64 feature maps with 50× 50 size, Conv is the two-dimensional 3× 3 convolution
kernel, BN is batch normalization, and ReLU is the rectified linear unit activation function.

fied linear units and is applied from layers 2 to L− 1, where
L is the total number of network layers. This layer is shown
as “Conv+BN+ReLU” in Fig. 1. Here, 64 3× 3× 64 con-
volution filters are used because the number of feature maps
of the hidden layer is 64, which is the same for all hidden
layers. After convolution, batch normalization and the ReLU
activation function are applied. The third layer type is con-
volution and uses only the last layer to generate output noise
data, and one 3×3×64 convolution filter is used. This layer
is shown as “Conv” in Fig. 1. After training is completed, the
predicted noise is subtracted from the input data to produce
denoised data.

2.3 Sparker SO data

The purpose of this study is to attenuate the random noise in
the sparker SO data. The sparker SO data were obtained with
a 5000-J SIG PULSE L5 sparker source to investigate the
propagation of the internal tide and characteristics of turbu-
lent mixing. Two seismic lines were explored: line 1 traveled
from southwest to northeast, and line 2 traveled from north-
east to southwest (Fig. 2). The survey was performed from
7 to 11 October in 2018 (approximately 38 h for one line)
and the vessel speed was 5.5 kn. The seismic data include
the shallow continental shelf and slope with a water depth
of ∼ 200 m, but we removed the continental shelf and slope
area and used 280.4 km of line 1 and 280.9 km of line 2 be-
cause the data from these sections did not target the layers
below the sea floor but the water layer. The shot interval was
approximately 15 m, and 24 receivers were used in intervals
of 6.25 m.

The acquired seismic data were processed through con-
ventional time processing consisting of instrument delay and
amplitude corrections, bandpass filtering, common-midpoint
(CMP) sorting and stacking. Amplitude correction was per-
formed by empirically multiplying by the square root of time
at each time step. The corner frequencies of the trapezoidal
bandpass filter (Dickinson et al. 2017) were 60, 80, 250, and
300 Hz, which were higher than those in air gun seismic data

Figure 2. Location of seismic exploration. The solid gray and black
line shows the survey line. The gray line indicates the shelf and
slope parts, which were removed from the seismic section during
data processing, and black line indicates the target area of this study.
The dashed black lines with arrows indicate the exploration direc-
tions of lines 1 and 2, and red dots are the locations of XBTs and
XCTDs.

processing. Sparker source data have a lower S/N ratio due
to the weak energy source compared to air gun source data
and generally rely on a shorter streamer length; thus, it is
common to generate supergathers (Piété et al., 2013) to en-
hance the S/N ratio. We combined four neighboring CMP
gathers (Tang et al., 2016) to construct one supergather. A
constant sound speed of 1500 m s−1 was adopted for normal
move-out. After CMP stacking, data recorded before 0.03 s
were eliminated from the stack section because only direct
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waves and noise were present, and water layer reflections
were rarely recorded. The processed seismic sections are
shown in Fig. 3. The calculated vertical and horizontal res-
olutions (Yilmaz, 2001) of the processed seismic section are
approximately 1.5 and 17.3 m, respectively, when the central
frequency is 250 Hz, sound speed is 1500 m s−1, and reflec-
tor depth is 100 m. The internal waves in the research area
propagate above a depth of 200 m, which is approximately
0.26 s in the seismic section. In addition, the physical prop-
erties of the research area were measured with oceanographic
equipment, such as XCTD and XBT, during exploration. Fig-
ure 4a shows the temperature profiles from two XBTs and
two XCTDs. From the measurement data, the mixed layer
ranged from the sea surface to a depth of 30 m, the depth
of the thermocline ranged approximately from 30 to 200 m
and deep water occurred below approximately 200 m depth.
Figure 4b shows the reflection coefficients, defining the ra-
tio between the reflected and incident wave, calculated with
the XBT (assuming a constant density 1 g cm−3) and XCTD
data. The reflection coefficients are very small (∼ 0.00005)
at depths shallower than 30 m, which seems to be the mixed
layer, and deeper than approximately 200 m, which seems to
be the deep water layer. Deep water exhibits a very slight
water temperature/salinity variation with the depth, which
makes it difficult to generate reflections, as indicated by the
seismic sections and reflection coefficients. Therefore, data
after 0.28 s are considered random noise, and we used this
part as noise data for the DnCNN. Random noise in the seis-
mic data can be created by rough weather conditions, ocean
swells, tail buoy jerks, the engine and propeller of the ves-
sel, etc. For conventional noise attenuation methods, it is im-
portant to estimate the noise sources and their properties. In
contrast, for machine-learning-based noise attenuation sug-
gested in this study, these properties do not need to be esti-
mated because noise itself is used as training data.

2.4 Training data

The most important noise attenuation aspect of machine
learning is generating an appropriate training dataset. Noise-
free seismic sections (the ground truth) and sections with
noise are required to generate the training dataset, and the
training dataset can be constructed by combining these two
datasets. As previously explained, the purpose of this study
is to effectively attenuate noise in the water column seismic
section acquired in the study area. Thus, the noisy section
can be easily obtained by extracting the deep water zone
of the water column seismic section without reflections. At
this point, we assume that the random noise of the top and
bottom parts of the water column seismic section exhibits
similar features. The noisy parts of the sparker SO data are
shown as red boxes in Fig. 3. There are no notable reflec-
tions in the noisy parts. However, it is almost impossible to
obtain noise-free seismic sections from field data. Therefore,

we constructed training datasets using two different methods
and compared these datasets.

Training dataset 1 obtains the ground truth based on the
field sparker seismic section below the sea floor. The reflec-
tion coefficients of the major reflectors below the sea floor are
tens to hundreds of times larger than those of the water col-
umn; thus, the seismic data below the sea floor have a better
S/N ratio than the SO data. In addition, after the proper data
processing steps, the S/N ratio of the seismic data beneath
the sea bed can be further enhanced. We used 14 lines of field
sparker seismic data targeting below the sea floor (southeast
zone of Korea data; SEZ data) acquired with the same equip-
ment used to record the sparker SO data. We used the interval
from 0.2 to 0.6 s of the original data where the noise level is
lower than in other parts of the data. A bandpass filter, FX
(frequency spatial domain) deconvolution, a Gaussian filter,
and noise muting above the sea floor were applied. Figure 5a
shows an example of the SEZ data used to generate training
dataset 1. This method has the advantage of using data with
similar characteristics to those of the target data (the sparker
SO data) as the ground truth because the data are collected
by the same equipment. Even if the S/N ratio of the sparker
seismic data beneath the sea bed is relatively higher than that
of the sparker seismic data of the water column and noise
is suppressed during processing, it is difficult to completely
eliminate noise from seismic data. Therefore, this method has
the disadvantage that there is a possibility that the remaining
noise would have a detrimental effect on training.

Training dataset 2 uses synthetic data as the ground truth.
The method for generating a synthetic seismic section from
the velocity model is to perform time or depth domain pro-
cessing using pre-stack synthetic data or to convolve the re-
flection coefficient and source wavelet. The former method
has the advantage of generating synthetic seismic sections
with features more similar to those of the actual field seis-
mic section, but the generation and processing of pre-stack
data are time consuming, and artificial noise is often gener-
ated during processing. The latter method has the advantage
of generating noise-free seismic sections with a very sim-
ple procedure. However, the generated synthetic seismic sec-
tion has much different features from the target seismic sec-
tion, which is, in this study, the water column sparker seismic
section. Therefore, when the trained model is applied to the
target seismic section, there is a risk that the trained model
will regard the reflection signal as noise. In this study, we
used the latter method to generate the ground truth because
we needed to avoid artificial noise. Marmousi2 (Martin et
al., 2006) and Sigsbee2A (Den Bok, 2002) synthetic veloc-
ity models with a constant density (1 g cm−3) were employed
to calculate the reflection coefficient, and the first derivative
Gaussian wavelet was the synthetic source wavelet. The orig-
inal Marmousi2 and Sigsbee2A synthetic velocity models are
depth domain velocity models, but we assumed that these
velocity models were time domain models to generate time
domain seismic sections via one-dimensional convolutional
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Figure 3. Processed seismic section: (a) line 1 and (b) line 2. The seismic section in the red rectangle is the noisy part used to generate the
training data. SW indicates southwest, NE indicates northeast, and the black arrow indicates the data acquisition direction.

modeling. Figure 5b and c show the generated seismic sec-
tions of Marmousi2 and Sigsbee2A, respectively.

Each ground truth was first divided into 300× 300 sec-
tions. Then, amplitude values higher than the top 1 % and
lower than the bottom 1 % were replaced by the top 1 % and
bottom 1 % values, respectively, to prevent outliers from sig-
nificantly affecting training. In addition, the outlier-removed
ground truth and noise section were normalized to the maxi-
mum value of each section. This procedure balances the am-
plitudes of the ground truth and noise before generating the
training dataset. Finally, training data with field seismic noise
were generated by combining the ground truth and noise at
a random ratio. Equation (3) is the method to construct the
training data, and Fig. 6 shows an example of the training
data compilation.

T = r1×G+ r2×N, (3)

where T is the noise-added seismic patch (training data),
G is the ground truth patch, N is the noise patch extracted
from the noisy part of the target seismic section (noisy data),
and r1 and r2 are random values ranging from 0.2∼ 0.8
(r1+ r2 = 1). The dimensions of T , G, and N are 50× 50;
G and N were extracted at a random location of the ground
truth and noisy section. To increase the number of ground
truth data, data augmentation was applied by zooming in/out
and randomly rotating or flipping the data. The number of
training data used in the training is determined by the size

of the mini-batch and the number of iterations per epoch.
Each training cycle using one mini-batch is an “iteration” and
each training cycle using all the training data is an “epoch”.
If one mini-batch passes through the training, then one itera-
tion ends. If all mini-batches pass through the training and all
the training data have been used for training, then one epoch
ends. In this study, training data were newly generated at ev-
ery epoch with the fit_generator function in Keras (Keras,
2020). The mini-batch size was 128 and the number of iter-
ations within an epoch was 220; thus, the fit_generator func-
tion generated 28 160 training data patches at every epoch.

3 Training

3.1 Experimental setting

The experiment was conducted using 28 160 training data
patches per epoch, and the size of each patch was 50× 50.
The mini-batch size was 128, the network depth which is the
total number of layers in the network architecture was 17,
the number of feature maps of each layer was 64, and the
Adam optimizer (Kingma and Ba, 2015) was implemented
by following Zhang et al. (2017)’s DnCNN experiments. The
network architecture used in this study is shown in Fig. 1.
We performed training by using the two different training
datasets generated from the field data (training dataset 1) and
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Figure 4. (a) Temperature and (b) reflection coefficient profiles ob-
tained using two XBTs and two XCTDs.

synthetic data (training dataset 2). The DnCNN model was
trained for 40 epochs, and the total training time was approx-
imately 1 h using a single NVIDIA Quadro P4000 GPU.

3.2 Experiment using training dataset 1

Training dataset 1 was generated with the SEZ field data and
noise obtained from the sparker SO data. After training the
DnCNN model (D1 model) using training dataset 1, we eval-
uated the trained model against the test data. The test data
were generated with the same procedure as that for the train-
ing data, and we used the other lines of SEZ data that were
not used to generate the training data. Overall, 86 300× 300
size test data were divided into 50×50 size patches, which is
the same size as the training data patch, and 3096 patches
(50× 50) were generated. Among 3096 patches, we used
3072 patches which was 24 times the mini-batch size (128)
for the test because of computational efficiency. Figure 7
shows six randomly selected test data subset patches, ground
truths and denoised results after applying the D1 model at
the 5th, 10th, 20th, and 40th epochs. The depicted test data
patches (1 to 6) include noise, but most of the noise has been
successfully removed after training for 40 epochs. In the third
and sixth patches of test data subset in particular, the reflec-
tions are hardly recognized because of the severe noise, but
the D1 model successfully attenuated the noise and gener-
ated a denoised section almost identical to the ground truth.
In addition, there is a water layer without any signal at the
top of the fourth test data patch, and the trained model prop-
erly attenuated the noise at the water layer. This means that
the trained model can determine those parts where no signal
occurs.

Figure 5. (a) Processed SEZ field seismic section, (b) Marmousi2
synthetic seismic section, and (c) Sigsbee2A seismic section used
to generate the training data.

Figure 6. Example of constructing the training data.

However, the trained model using training dataset 1 has
one problem. The ground truth of the fifth test data patch
contains noise in the bottom right part, and training dataset
1 might also contain noise in some parts of the ground truth.
Although the ground truth of training dataset 1 was gener-
ated from a processed sparker seismic section below the sea
floor, noise still remained because it is almost impossible to
perfectly remove noise from field data. The ground truth of
training dataset 1 (SEZ data in Fig. 5a) is obtained using the
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Figure 7. Test data, ground truth, and denoised results after apply-
ing the DnCNN models trained using training dataset 1.

same equipment as was used for the sparker SO data, which
is the target of this study. Therefore, the ground truth sig-
nal has similar characteristics to the signal of the sparker SO
data, but its noise feature could also be similar to the noise of
the sparker SO data. This means that noise with similar char-
acteristics would be trained to be eliminated in some cases
and not in other cases during training. Training inconsistency
can degrade the performance of the trained model.

To evaluate the test result quantitatively, we calculated the
peak S/N ratio (PSNR) and structural similarity index mea-
sure (SSIM) by using entire test data. The PSNR reflects the
amount of noise contained in the data and can be calculated
as follows (Hore and Ziou, 2010):

PSNR= 20log10 (MAXI )− 10log10(MSE), (4)

where MAXI is the maximum value of the image and MSE
is the mean squared error between the data with and with-
out noise. The PSNR is high when noise is successfully re-
moved, while the PSNR is low when noise is not sufficiently
removed. Figure 8a shows the average PSNR and standard
deviation of the test results. At the early stage of training, the
average PSNR is low, which indicates that noise has not been
sufficiently removed, but it increases as training progresses
and converges at approximately 36 dB after 25 epochs. Al-
though the denoising algorithm attenuates noise successfully,
the reflection shape, which is important information of the
SO data, can be altered. Therefore, it is necessary to mea-
sure the structural distortion to verify the effectiveness of the
proposed method. The SSIM is a quality metric that calcu-
lates the structural similarity between two datasets and can

be calculated as follows (Hore and Ziou, 2010):

SSIM=

(
2µxµy + c1

)(
2σxy + c2

)(
µ2
x +µ

2
y + c1

)(
σ 2
x + σ

2
y + c2

) , (5)

where µ is the average, σ 2 is the variance, σxy is the covari-
ance of the reference image (x) and test image (y), and c is a
stabilizing parameter. The value of SSIM ranges from 0 to 1,
and if the structure is distorted during the denoising process,
the SSIM will be low. On the other hand, the SSIM will be
close to 1 if the denoised data are similar to the ground truth.
Figure 8b shows the average SSIM of the test results. Similar
to the PSNR result, the SSIM is also low at the early stage of
training but increases as training progresses and converges
at approximately 0.88 after 21 epochs. We also plotted the
PSNR and SSIM histogram of the test data before applying
the D1 model and after applying the D1 model (40th epoch)
in Fig. 9. Both the PSNR and SSIM are clearly improved af-
ter applying the D1 model.

For seismic data, it is important to determine how well
the actual amplitude and shape of the true reflection are re-
covered through the denoising process. Therefore, we ex-
tracted seismic traces from the denoised section and ground
truth and compared the extracted traces, as shown in Fig. 10,
to ensure that the trained model recovers the actual ampli-
tude of the signal. We extracted the 20th (Fig. 10a) and 30th
(Fig. 10b) vertical traces from the last (sixth) patch of the test
data, which had a size of 50× 50. For the denoised trace, we
extracted trace from the denoised patch of the 40th epoch.
The amplitude and shape of the trace from the noisy data are
different from those of the ground truth because the data are
severely contaminated with noise. Although a considerable
amount of noise is observed, the denoised traces have simi-
lar amplitudes and shapes to those of the ground truth. These
results indicate that the DnCNN can recover important infor-
mation of the true reflections and can be useful for random
noise attenuation of sparker SO data.

3.3 Experiment using training dataset 2

Training dataset 2 was generated by using the modified
Marmousi2 and Sigsbee2A synthetic seismic sections and
noise obtained from the sparker SO data. After training the
DnCNN model (D2 model) with training dataset 2, we eval-
uated the trained model against test data. The test data were
generated with the same procedure used to generate the train-
ing data, and we selected part of the 1994 Amoco static test
dataset (SEG Wiki, 2020), which is a different model from
that used for the training data. The size of the test data patch
was the same as that of the training data patch (50×50), and
the number of test data patches was 3072. Figure 11 shows
six randomly selected test data subset patches, ground truths
and denoised results after applying the D2 model at the 5th,
10th, 20th, and 40th epochs. Although the test data patches
contain noise at different levels, the trained model at the 40th
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Figure 8. Average (a) PSNR and (b) SSIM with standard deviation of the test result of the first experiment.

Figure 9. (a) PSNR and (b) SSIM histogram of the test data before applying the D1 model and after applying the 40th epoch of the D1
model.

epoch attenuated most of the noise successfully and gener-
ated almost identical seismic sections to the ground truth.
The second test data patch contained relatively little noise
compared to other test data patches, and most of the noise
was removed after approximately 10 training epochs. Test
data patches 1 and 3 contained simple reflections with much
noise, and the noise was sufficiently removed after approx-
imately 20 training epochs. The noise in test data patches 4
and 6 was more severe than the noise in the other test data
patches. After 40 training epochs, most of the noise was at-
tenuated but not perfectly removed. The noise was dominant
in test data patch 5, and only a weak signal existed in the
bottom part of ground truth 5. If we evaluate the denoised
result of the fifth test data patch, noise had been successfully
removed, and only a weak signal remained in the bottom part
of the patch after 40 training epochs. This indicates that the
trained DnCNN model can accurately discriminate between
signal and noise.

Unlike training dataset 1, training dataset 2 was generated
with synthetic data. Therefore, it has the advantage of using
noise-free seismic sections as the ground truth. In addition,

generating many different kinds of synthetic seismic sections
does not require much time or effort; thus, it is easy to in-
crease the amount of training data compared to using field
data as training data. However, the features of synthetic seis-
mic sections can be different from those of the target data
requiring noise attenuation because the synthetic seismic sec-
tions were generated by simply convolving the reflection co-
efficient with the source wavelet. Several studies have ap-
plied machine learning to field seismic data by training the
model using synthetic data, such as automated fault detection
with synthetic training data (Wu et al., 2019), but machine-
learning-based noise attenuation of SO data using synthetic
training data has not yet been studied.

Similar to the first experiment, the average PSNR
(Fig. 12a) and SSIM (Fig. 12b) converged after approxi-
mately 25 epochs. The histograms of PSNR and SSIM of the
test data before applying the D2 model and after applying the
D2 model (40th epoch) are also plotted in Fig. 13. As shown,
the PSNR and SSIM are improved after DnCNN is applied.
The average PSNR and SSIM in the second experiment are
higher than those in the first experiment. These results could
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Figure 10. Comparison of the extracted traces before applying the
D1 model and after applying the 40th epoch of the D1 model. The
solid green line shows the trace from the noisy data, the dashed red
line shows the trace from the ground truth, and the solid blue line
shows the trace from the denoised data after applying the D1 model.
Panel (a) shows the 20th and (b) shows the 30th vertical trace of the
last test patch in Fig. 7.

be caused by the use of a noise-free synthetic seismic section
as the ground truth of training dataset 2 and might indicate
that training dataset 2 is more appropriate for random noise
attenuation of SO data. Figure 14 shows the extracted traces
before and after applying the D2 model. We extracted the
20th (Fig. 14a) and 30th (Fig. 14b) vertical traces from the
first patch of the test data. The denoised traces successfully
recovered the true amplitude and shape, although the input
data were severely contaminated by random noise.

In the second experiment, the noise-attenuated traces are
closer to the ground truth traces than those in the first ex-
periment. However, the comparison of the several extracted
traces does not indicate which training data are more suit-
able for suppressing noise of sparker SO data. Therefore, we
calculated the root-mean-square (rms) error between the de-
noised test data and ground truth of the test data and evalu-
ated which training data produced a lower rms error. The rms
error was calculated as follows:

rmserror=

√√√√ 1
ntest

ntest∑
i=1

nnode∑
j=1

(
gij − dij

)2
, (6)

where g is the ground truth of the test data, d is the denoised
test data, “ntest” is the number of test data patches (3072),
and “nnode” is the size of each data patch (50×50). Although

Figure 11. Test data, ground truth, and denoised results after apply-
ing the DnCNN models trained using training dataset 2.

test datasets 1 and 2 were generated using the same noisy
data (the part containing noise of the sparker SO section), the
initial rms errors of test datasets 1 and 2 before noise atten-
uation were different (6.37 and 6.34, respectively), because
noise was randomly extracted from the noise data. Therefore,
we normalized the rms error by that of the test data before
noise attenuation. Figure 15 illustrates the normalized rms
error of the first and second experiments at every epoch, and
the normalized rms errors were properly decreased in both
results. The normalized errors converged at 0.27 in the first
experiment and at 0.15 in the second experiment. The nor-
malized rms error of the second experiment is lower than that
of the first experiment, indicating that the performance of the
D2 model is better.

3.4 Calculation of the data slope spectrum from the
synthetic seismic section

Water column reflection data can be used to obtain the physi-
cal oceanographic information by calculating the slope spec-
trum. The data slope spectrum is a slope spectrum obtained
directly from the seismic amplitude instead of tracked seis-
mic reflections. The obtained horizontal wavenumber (kx)
spectrum of the seismic reflection amplitude is multiplied by
(2πkx)2 to produce a data slope spectrum, which is useful for
identifying noise contamination of seismic data to reveal the
cutoffs from an internal wave to turbulence subrange (Hol-
brook et al., 2013; Fortin et al., 2017). Holbrook et al. (2013)
suggested analyzing the data slope spectrum for the complete
data before calculating the slope spectrum from the water
reflections because the noise that needs to be suppressed is
more evident in the spectrum of the complete data. There-
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Figure 12. Average (a) PSNR and (b) SSIM with standard deviation of the test result of the second experiment.

Figure 13. (a) PSNR and (b) SSIM histogram of the test data before applying the D2 model and after applying the 40th epoch of the D2
model.

fore, we calculated and compared the data slope spectrum
of noise-free, noise-added, and noise-attenuated seismic data
by using synthetic seismic section to verify that the proposed
denoising method can recover the true data slope spectrum.
The synthetic seismic section was generated by convolving
the source wavelet with a randomly generated reflection co-
efficient section. Then, the noise extracted from the sparker
SO data was added. Figure 16a shows the generated syn-
thetic water column reflection section, and Fig. 16b shows
the noise-added section. We applied the trained D1 model
and D2 model to attenuate the noise, and the results are in
Fig. 16c (D1 model) and d (D2 model). Most of the noise was
successfully attenuated, but the noise was not perfectly re-
moved in the D1 model result at a distance of 20 to 25 km and
depth of 140 to 180 m. Figure 17 shows the calculated data
slope spectra. The data slope spectrum of the noise-added
section follows a k2

x slope, which is the slope of the random
noise. After the noise attenuation, the data slope spectrum of
the D2 model result (red line) follows the data slope spec-
trum of the noise-free section (greed line) almost identically.
The data slope spectrum of the D1 model result (blue line)

does not follow the noise slope, but the data slope spectrum
is distorted compared to the noise-free data. The comparison
of data slope spectra using synthetic data shows that the D2
model can recover the true data slope spectrum better than
the D1 model.

4 Application to the sparker SO data

The DnCNN models trained with training datasets 1 and 2
(the D1 and D2 models, respectively) were applied to the
sparker SO data. We applied the trained DnCNN models to
the seismic sections from 0.03 to 0.28 s (approximately 22.5
to 210 m) where the reflections exist.

Figure 18 shows the results of applying the DnCNN to
line 1. Figure 18a shows the line 1 seismic section from 0 to
0.28 s before the noise attenuation. The seismic section shal-
lower than 0.03 s is dominated by noise from direct waves,
which is muted at the data processing stage, and the sec-
tion deeper than 0.28 s mainly contains random noise. Fig-
ure 18b and c show the denoised seismic section after ap-
plying the D1 and D2 models, respectively. In both results,
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Figure 14. Comparison of the extracted traces before applying the
D2 model and after applying the 40th epoch of the D2 model. The
solid green line shows the trace from the noisy data, the dashed red
line shows the trace from the ground truth, and the solid blue line
shows the trace from the denoised data after applying the D2 model.
Panel (a) shows the 20th and (b) shows the 30th vertical trace of the
first test patch in Fig. 11.

Figure 15. Normalized rms error between the ground truth and de-
noised result of the first (solid) and second (dashed) experiments.

most of the random noise was successfully removed, and the
reflections became clearer. The strong random noise that oc-
curred in the shallow part of the processed seismic sections
was substantially attenuated, and the noise located between
150 and 200 km were also properly removed. Since noise was
successfully attenuated, reflections that were difficult to dis-
tinguish due to a low S/N ratio were improved. In particular,
the weak signals between 0 and 50 km and between approxi-
mately 0.1 and 0.18 s became clearer after noise attenuation.
Figure 18d and e show the estimated noise using the D1 and

D2 models, respectively. As shown, both models successfully
discriminated the noise component from the reflections; thus,
the estimated noise sections are almost identical to the noise
component of the processed seismic section. Although both
models successfully attenuated the noise in the seismic sec-
tion of line 1, there are several differences. Reflections are
not observed from 150 to 200 km and at approximately 0.2 s
in the line 1 seismic section. The result from the D1 model
still contains noise in that part, while the result from the D2
model contains lower noise levels compared to that from the
D1 model.

Figure 19 shows the results of applying the DnCNN to line
2. Figure 19a shows the line 2 seismic section from 0 to 0.28 s
before the noise attenuation. Figure 19b and c show the de-
noised seismic section after applying the D1 and D2 models,
respectively. The seismic section of line 2 was contaminated
by severe noise, but the D1 and D2 models properly removed
the noise. In particular, the strong random noise located be-
tween 0 to 50 km was removed; thus, it became possible to
recognize the reflections that were illegible. In addition, the
reflections with steep slopes between 240 and 260 km and
between 0.12 and 0.2 s were obscured by severe noise, but
the D1 and D2 models successfully attenuated the noise and
clearly recovered the reflections. However, similar to the line
1 result, the D2 model attenuated the noise better than the D1
model in some parts of the section. From 20 to 50 km, noise
can still be observed when the D1 model is applied, but most
of the noise has been sufficiently suppressed when the D2
model is applied.

Despite the successful noise attenuation of the D1 and D2
models, we found some differences. We presume that these
differences are caused by the characteristics of the SEZ data
which are the ground truth used to train the D1 model. The
SEZ data are field data and contain noise to a certain degree
because it is almost impossible to perfectly remove the noise
from the field data. In other words, the D1 model is likely
to regard the noise in the seismic section with similar char-
acteristics to those contained in the ground truth as a signal
rather than noise. On the other hand, the D2 model does not
suffer from this kind of problem because its ground truth is
noise-free synthetic data.

To validate the noise attenuation results, we also calcu-
lated and compared the data slope spectra by using the out-
come of the D1 and D2 models. Before calculating the data
slope spectrum, we scaled the seismic sections again by mul-
tiplying the signal by the square root of time at each time
step (consequently multiplying the seismic signal by the time
at each time step) for the spherical divergence correction.
Then, we converted the seismic section from the time axis
to the depth axis using a constant sound speed of 1500 m s−1

and extracted the part from 150 to 175 km and at a depth
from 75 to 150 m. Figure 20a–c show the seismic sections
extracted from the section before and after noise attenuation
using models D1 and D2, respectively. The seismic section
before noise attenuation was severely contaminated with ran-
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Figure 16. (a) Noise-free and (b) noise-added synthetic water column reflection section and noise-attenuated results using (c) the D1 model
and (d) the D2 model.

Figure 17. Data slope spectra of noise-free (green) and noise-added
(black) synthetic seismic sections and noise-attenuated synthetic
seismic section using the D1 model (blue) and D2 model (red).

dom noise, but most of the noise was removed in the sec-
tions after noise attenuation. Figure 20d shows the calcu-
lated data slope spectra. From the KM07 model (Klymak
and Moum, 2007), noise has a k2

x slope in the slope spec-
trum, and we plotted the k2

x slope with the dashed green line
in Fig. 20d for comparison. The data slope spectrum of the
section before noise attenuation has a k2

x slope at wavenum-

bers above 0.002 cpm, which indicates that noise dominates
these wavenumbers. Because of the severe noise, it is im-
possible to analyze the seismic data before noise attenua-
tion. On the other hand, the data slope spectra after noise
attenuation seem to contain an internal wave subrange from
0.0015 to 0.006 cpm and a turbulence subrange from 0.009
to 0.015 cpm that approximately follow the k−1/2

x (dashed
yellow line) and k1/3

x (dashed purple line) slopes (Klymak
and Moum, 2007), respectively. This result indicates that
noise was properly attenuated and the seismic data could
be analyzed, even though noise with a slope of k2

x still oc-
curred at wavenumbers above 0.02 cpm. There is a shift in
the data slope spectrum after noise attenuation at wavenum-
bers smaller than 0.001 cpm. This shift is also observed in the
synthetic data slope spectrum experiments. In Fig. 17, there
is a difference between the spectrum of the noise-added sec-
tion and that of the noise-attenuated sections at wavenumbers
smaller than 0.001 cpm. However, the difference is also ob-
served between the spectrum of the noise-free section and
that of the noise-added section. Therefore, this shift seems to
be caused by the characteristic of the noise extracted from
the sparker SO data.

From the noise attenuation results obtained by applying
the trained models to the sparker SO data, we showed that
the DnCNN architecture used in this study can successfully
suppress random noise. The comparison of the D1 and D2
model results showed that the training data generated using
noise-free synthetic data are more suitable for random noise
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Figure 18. (a) Line 1 seismic section before applying DnCNN,
noise-attenuated result using (b) the D1 model and (c) the D2
model, and estimated noise using (d) the D1 model and (e) the D2
model.

attenuation of sparker SO data than those generated using
field data with a relatively high S/N ratio.

5 Summary

Random noise is one of the major obstacles in analyzing SO
data. Conventionally, the noise in SO data has been attenu-
ated through simple data processing methods because most
of the SO data are obtained with air guns, which generate
data with a high S/N ratio. However, the simple noise at-
tenuation method is not sufficient for data with a low S/N
ratio, such as sparker SO data. Despite the low S/N prob-
lem, the sparker source has advantage of generating a higher-
frequency band signal than an air gun source and can provide
information with finer vertical resolution. Therefore, we ap-

Figure 19. (a) Line 2 seismic section before applying DnCNN,
noise-attenuated result using (b) the D1 model and (c) the D2
model, and estimated noise using (d) the D1 model and (e) the D2
model.

plied machine learning to attenuate the random noise in the
sparker SO data, which contains significant random noise.
The DnCNN architecture was used to construct a neural net-
work, and training data were generated by combining the
ground truth and noise extracted from the target seismic data
at random amplitude ratios. Two different training datasets
were generated, and they used either field or synthetic data as
the ground truth. The trained DnCNN models were applied to
the test datasets that were generated with the same procedure
of generating the training datasets. The test results were veri-
fied based on the PSNR, SSIM, trace extraction, and normal-
ized rms error. The data slope spectrum test using synthetic
seismic section was also performed. The test results revealed
that both trained DnCNN models were able to successfully
attenuate random noise and the training data generated us-
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Figure 20. Extracted seismic sections (panel a shows the section before noise attenuation, b shows the section after applying the D1 model,
and c shows the section after applying the D2 model). Panel (d) shows the calculated data slope spectra of (a–c).

ing noise-free synthetic data showed better results than the
training data generated using high-S/N ratio field data. We
applied the trained DnCNN models to the sparker SO data,
which is the target of this study, and the models successfully
attenuated random noise. The comparison of the denoised
seismic sections after applying the two different trained mod-
els also showed that the training dataset generated from the
noise-free synthetic data was more suitable for sparker SO
data noise attenuation than that generated from the high-S/N
ratio field data.

Although random noise is almost completely attenuated in
the seismic section, the proposed method still needs several
improvements. First, the calculated data slope spectrum indi-
cates that a noise with a slope of k2

x is not removed com-
pletely at wavenumbers above 0.02 cpm. Therefore, future
studies should include a detailed analysis of the slope spectra
of the SO data and establish an improved noise attenuation
algorithm suitable for higher wavenumbers. Moreover, the
data were collected and processed using 2-D seismic explo-
ration technology, which cannot efficiently deal with out-of-
plane contamination. We expect that 3-D seismic exploration
can improve the resolution of SO data.

The network architecture used in this study is straightfor-
ward and efficient. In addition, the proposed method of gen-
erating the training dataset is very simple and easy because it
only requires synthetic data, which are readily generated, and
noise data, which can be extracted from the target seismic
data. Moreover, only approximately 1 h is required to train
the DnCNN model with a single GPU. Therefore, the noise
attenuation method suggested in this study can be widely and
easily applied for noise attenuation of the various kinds of SO
data.

Data availability. The code, synthetic training data samples, and
field noise data are available at https://www.doi.org/10.5281/
zenodo.4020335 (Jun et al., 2020). The Marmousi2 model
is available at https://wiki.seg.org/wiki/AGL_Elastic_Marmousi
(SEG Wiki, 2020a), the Sigsbee2A model is available at http:
//www.delphi.tudelft.nl/SMAART/ (Den Bok, 2020), and 1994
BP statics benchmark model is available at https://wiki.seg.org/
wiki/1994_BP_statics_benchmark_model (SEG Wiki, 2020b). The
sparker field seismic data can be made available upon request to
authors.
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