Articles | Volume 16, issue 6
https://doi.org/10.5194/os-16-1347-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-16-1347-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Influence of intraseasonal eastern boundary circulation variability on hydrography and biogeochemistry off Peru
GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker
Weg 20, Kiel, Germany
Marcus Dengler
GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker
Weg 20, Kiel, Germany
Stefan Sommer
GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker
Weg 20, Kiel, Germany
David Clemens
GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker
Weg 20, Kiel, Germany
Sören Thomsen
LOCEAN-IPSL, IRD/CNRS/Sorbonnes Universites (UPMC)/MNHN, UMR 7159,
Paris, France
Gerd Krahmann
GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker
Weg 20, Kiel, Germany
Andrew W. Dale
GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker
Weg 20, Kiel, Germany
Eric P. Achterberg
GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker
Weg 20, Kiel, Germany
Faculty of Mathematics and Natural Sciences, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
Martin Visbeck
GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker
Weg 20, Kiel, Germany
Faculty of Mathematics and Natural Sciences, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
Related authors
Ruifang C. Xie, Frédéric A. C. Le Moigne, Insa Rapp, Jan Lüdke, Beat Gasser, Marcus Dengler, Volker Liebetrau, and Eric P. Achterberg
Biogeosciences, 17, 4919–4936, https://doi.org/10.5194/bg-17-4919-2020, https://doi.org/10.5194/bg-17-4919-2020, 2020
Short summary
Short summary
Thorium-234 (234Th) is widely used to study carbon fluxes from the surface ocean to depth. But few studies stress the relevance of oceanic advection and diffusion on the downward 234Th fluxes in nearshore environments. Our study in offshore Peru showed strong temporal variations in both the importance of physical processes on 234Th flux estimates and the oceanic residence time of 234Th, whereas salinity-derived seawater 238U activities accounted for up to 40 % errors in 234Th flux estimates.
Hannah Krüger, Gerhard Schmiedl, Zvi Steiner, Zhouling Zhang, Eric P. Achterberg, and Nicolaas Glock
J. Micropalaeontol., 44, 193–211, https://doi.org/10.5194/jm-44-193-2025, https://doi.org/10.5194/jm-44-193-2025, 2025
Short summary
Short summary
The biodiversity and abundance of benthic foraminifera tend to increase with distance within a transect from the Rainbow hydrothermal vent field. Miliolids dominate closer to the vents and may be better adapted to the potentially hydrothermal conditions than hyaline and agglutinated species. The reason for this remains unclear, but there are indications that elevated trace-metal concentrations in the porewater and intrusion of acidic hydrothermal fluids could have an influence on the foraminifera.
Pankan Linsy, Stefan Sommer, Jens Kallmeyer, Simone Bernsee, Florian Scholz, Habeeb Thanveer Kalapurakkal, and Andrew W. Dale
EGUsphere, https://doi.org/10.5194/egusphere-2025-2905, https://doi.org/10.5194/egusphere-2025-2905, 2025
Short summary
Short summary
Bottom trawling is a fishing method that disturbs the seafloor and affects marine ecosystems. This study conducted experimental trawling and monitored biogeochemical changes over three weeks. Results showed reduced nutrient and alkalinity fluxes, decreased benthic carbon respiration, and disrupted biogeochemical processes. While the decline in alkalinity had only a minor effect on atmospheric CO2, the study highlights the lasting ecological impacts of bottom trawling.
Frank Förster, Sebastian Flöter, Lucie Sauzéat, Stéphanie Reynaud, Eric Achterberg, Alexandra Tsay, Christine Ferrier-Pagès, and Tom E. Sheldrake
EGUsphere, https://doi.org/10.5194/egusphere-2025-1713, https://doi.org/10.5194/egusphere-2025-1713, 2025
Short summary
Short summary
Explosive volcanic eruptions produce ash that, upon ocean deposition, alters seawater chemistry by leaching or adsorbing metals. Corals like Stylophora pistillata incorporate these metals in its various compartments (tissue, symbionts and skeleton), with most metal changes appearing in the coral skeleton. We present a novel dataset of ash-seawater leaching results, trace metal analysis in the different coral compartments from cultured corals maintained under a control and ash exposed condition.
Astrid Hylen, Nils Ekeroth, Hannah Berk, Andy W. Dale, Mikhail Kononets, Wytze K. Lenstra, Aada Palo, Anders Tengberg, Sebastiaan J. van de Velde, Stefan Sommer, Caroline P. Slomp, and Per O. J. Hall
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-146, https://doi.org/10.5194/essd-2025-146, 2025
Preprint under review for ESSD
Short summary
Short summary
Phosphorus is an essential element for life and its cycling strongly impact primary production. Here, we present a dataset of sediment-water fluxes of dissolved inorganic phosphorus from the Baltic Sea, an area with a long history of eutrophication. The fluxes were measured in situ with three types of benthic chamber landers at 59 stations over 20 years. The data show clear spatial patterns and will be important for marine management and studies on mechanisms in benthic phosphorus cycling.
Swantje Bastin, Aleksei Koldunov, Florian Schütte, Oliver Gutjahr, Marta Agnieszka Mrozowska, Tim Fischer, Radomyra Shevchenko, Arjun Kumar, Nikolay Koldunov, Helmuth Haak, Nils Brüggemann, Rebecca Hummels, Mia Sophie Specht, Johann Jungclaus, Sergey Danilov, Marcus Dengler, and Markus Jochum
Geosci. Model Dev., 18, 1189–1220, https://doi.org/10.5194/gmd-18-1189-2025, https://doi.org/10.5194/gmd-18-1189-2025, 2025
Short summary
Short summary
Vertical mixing is an important process, for example, for tropical sea surface temperature, but cannot be resolved by ocean models. Comparisons of mixing schemes and settings have usually been done with a single model, sometimes yielding conflicting results. We systematically compare two widely used schemes with different parameter settings in two different ocean models and show that most effects from mixing scheme parameter changes are model-dependent.
Hans Segura, Xabier Pedruzo-Bagazgoitia, Philipp Weiss, Sebastian K. Müller, Thomas Rackow, Junhong Lee, Edgar Dolores-Tesillos, Imme Benedict, Matthias Aengenheyster, Razvan Aguridan, Gabriele Arduini, Alexander J. Baker, Jiawei Bao, Swantje Bastin, Eulàlia Baulenas, Tobias Becker, Sebastian Beyer, Hendryk Bockelmann, Nils Brüggemann, Lukas Brunner, Suvarchal K. Cheedela, Sushant Das, Jasper Denissen, Ian Dragaud, Piotr Dziekan, Madeleine Ekblom, Jan Frederik Engels, Monika Esch, Richard Forbes, Claudia Frauen, Lilli Freischem, Diego García-Maroto, Philipp Geier, Paul Gierz, Álvaro González-Cervera, Katherine Grayson, Matthew Griffith, Oliver Gutjahr, Helmuth Haak, Ioan Hadade, Kerstin Haslehner, Shabeh ul Hasson, Jan Hegewald, Lukas Kluft, Aleksei Koldunov, Nikolay Koldunov, Tobias Kölling, Shunya Koseki, Sergey Kosukhin, Josh Kousal, Peter Kuma, Arjun U. Kumar, Rumeng Li, Nicolas Maury, Maximilian Meindl, Sebastian Milinski, Kristian Mogensen, Bimochan Niraula, Jakub Nowak, Divya Sri Praturi, Ulrike Proske, Dian Putrasahan, René Redler, David Santuy, Domokos Sármány, Reiner Schnur, Patrick Scholz, Dmitry Sidorenko, Dorian Spät, Birgit Sützl, Daisuke Takasuka, Adrian Tompkins, Alejandro Uribe, Mirco Valentini, Menno Veerman, Aiko Voigt, Sarah Warnau, Fabian Wachsmann, Marta Wacławczyk, Nils Wedi, Karl-Hermann Wieners, Jonathan Wille, Marius Winkler, Yuting Wu, Florian Ziemen, Janos Zimmermann, Frida A.-M. Bender, Dragana Bojovic, Sandrine Bony, Simona Bordoni, Patrice Brehmer, Marcus Dengler, Emanuel Dutra, Saliou Faye, Erich Fischer, Chiel van Heerwaarden, Cathy Hohenegger, Heikki Järvinen, Markus Jochum, Thomas Jung, Johann H. Jungclaus, Noel S. Keenlyside, Daniel Klocke, Heike Konow, Martina Klose, Szymon Malinowski, Olivia Martius, Thorsten Mauritsen, Juan Pedro Mellado, Theresa Mieslinger, Elsa Mohino, Hanna Pawłowska, Karsten Peters-von Gehlen, Abdoulaye Sarré, Pajam Sobhani, Philip Stier, Lauri Tuppi, Pier Luigi Vidale, Irina Sandu, and Bjorn Stevens
EGUsphere, https://doi.org/10.5194/egusphere-2025-509, https://doi.org/10.5194/egusphere-2025-509, 2025
Short summary
Short summary
The nextGEMS project developed two Earth system models that resolve processes of the order of 10 km, giving more fidelity to the representation of local phenomena, globally. In its fourth cycle, nextGEMS performed simulations with coupled ocean, land, and atmosphere over the 2020–2049 period under the SSP3-7.0 scenario. Here, we provide an overview of nextGEMS, insights into the model development, and the realism of multi-decadal, kilometer-scale simulations.
Jana Krause, Dustin Carroll, Juan Höfer, Jeremy Donaire, Eric P. Achterberg, Emilio Alarcón, Te Liu, Lorenz Meire, Kechen Zhu, and Mark J. Hopwood
The Cryosphere, 18, 5735–5752, https://doi.org/10.5194/tc-18-5735-2024, https://doi.org/10.5194/tc-18-5735-2024, 2024
Short summary
Short summary
Here we analysed calved ice samples from both the Arctic and Antarctic to assess the variability in the composition of iceberg meltwater. Our results suggest that low concentrations of nitrate and phosphate in ice are primarily from the ice matrix, whereas sediment-rich layers impart a low concentration of silica and modest concentrations of iron and manganese. At a global scale, there are very limited differences in the nutrient composition of ice.
Ingeborg Bussmann, Eric P. Achterberg, Holger Brix, Nicolas Brüggemann, Götz Flöser, Claudia Schütze, and Philipp Fischer
Biogeosciences, 21, 3819–3838, https://doi.org/10.5194/bg-21-3819-2024, https://doi.org/10.5194/bg-21-3819-2024, 2024
Short summary
Short summary
Methane (CH4) is an important greenhouse gas and contributes to climate warming. However, the input of CH4 from coastal areas to the atmosphere is not well defined. Dissolved and atmospheric CH4 was determined at high spatial resolution in or above the North Sea. The atmospheric CH4 concentration was mainly influenced by wind direction. With our detailed study on the spatial distribution of CH4 fluxes we were able to provide a detailed and more realistic estimation of coastal CH4 fluxes.
Matthew D. Eisaman, Sonja Geilert, Phil Renforth, Laura Bastianini, James Campbell, Andrew W. Dale, Spyros Foteinis, Patricia Grasse, Olivia Hawrot, Carolin R. Löscher, Greg H. Rau, and Jakob Rønning
State Planet, 2-oae2023, 3, https://doi.org/10.5194/sp-2-oae2023-3-2023, https://doi.org/10.5194/sp-2-oae2023-3-2023, 2023
Short summary
Short summary
Ocean-alkalinity-enhancement technologies refer to various methods and approaches aimed at increasing the alkalinity of seawater. This chapter explores technologies for increasing ocean alkalinity, including electrochemical-based approaches, ocean liming, accelerated weathering of limestone, hydrated carbonate addition, and coastal enhanced weathering, and suggests best practices in research and development.
Ulf Riebesell, Daniela Basso, Sonja Geilert, Andrew W. Dale, and Matthias Kreuzburg
State Planet, 2-oae2023, 6, https://doi.org/10.5194/sp-2-oae2023-6-2023, https://doi.org/10.5194/sp-2-oae2023-6-2023, 2023
Short summary
Short summary
Mesocosm experiments represent a highly valuable tool in determining the safe operating space of ocean alkalinity enhancement (OAE) applications. By combining realism and biological complexity with controllability and replication, they provide an ideal OAE test bed and a critical stepping stone towards field applications. Mesocosm approaches can also be helpful in testing the efficacy, efficiency and permanence of OAE applications.
Peter Brandt, Gaël Alory, Founi Mesmin Awo, Marcus Dengler, Sandrine Djakouré, Rodrigue Anicet Imbol Koungue, Julien Jouanno, Mareike Körner, Marisa Roch, and Mathieu Rouault
Ocean Sci., 19, 581–601, https://doi.org/10.5194/os-19-581-2023, https://doi.org/10.5194/os-19-581-2023, 2023
Short summary
Short summary
Tropical upwelling systems are among the most productive ecosystems globally. The tropical Atlantic upwelling undergoes a strong seasonal cycle that is forced by the wind. Local wind-driven upwelling and remote effects, particularly via the propagation of equatorial and coastal trapped waves, lead to an upward and downward movement of the nitracline. Turbulent mixing results in upward supply of nutrients. Here, we review the different physical processes responsible for biological productivity.
Pierre L'Hégaret, Florian Schütte, Sabrina Speich, Gilles Reverdin, Dariusz B. Baranowski, Rena Czeschel, Tim Fischer, Gregory R. Foltz, Karen J. Heywood, Gerd Krahmann, Rémi Laxenaire, Caroline Le Bihan, Philippe Le Bot, Stéphane Leizour, Callum Rollo, Michael Schlundt, Elizabeth Siddle, Corentin Subirade, Dongxiao Zhang, and Johannes Karstensen
Earth Syst. Sci. Data, 15, 1801–1830, https://doi.org/10.5194/essd-15-1801-2023, https://doi.org/10.5194/essd-15-1801-2023, 2023
Short summary
Short summary
In early 2020, the EUREC4A-OA/ATOMIC experiment took place in the northwestern Tropical Atlantic Ocean, a dynamical region where different water masses interact. Four oceanographic vessels and a fleet of autonomous devices were deployed to study the processes at play and sample the upper ocean, each with its own observing capability. The article first describes the data calibration and validation and second their cross-validation, using a hierarchy of instruments and estimating the uncertainty.
Kristian Spilling, Jonna Piiparinen, Eric P. Achterberg, Javier Arístegui, Lennart T. Bach, Maria T. Camarena-Gómez, Elisabeth von der Esch, Martin A. Fischer, Markel Gómez-Letona, Nauzet Hernández-Hernández, Judith Meyer, Ruth A. Schmitz, and Ulf Riebesell
Biogeosciences, 20, 1605–1619, https://doi.org/10.5194/bg-20-1605-2023, https://doi.org/10.5194/bg-20-1605-2023, 2023
Short summary
Short summary
We carried out an enclosure experiment using surface water off Peru with different additions of oxygen minimum zone water. In this paper, we report on enzyme activity and provide data on the decomposition of organic matter. We found very high activity with respect to an enzyme breaking down protein, suggesting that this is important for nutrient recycling both at present and in the future ocean.
Mareike Körner, Peter Brandt, and Marcus Dengler
Ocean Sci., 19, 121–139, https://doi.org/10.5194/os-19-121-2023, https://doi.org/10.5194/os-19-121-2023, 2023
Short summary
Short summary
The coastal waters off Angola host a productive ecosystem. Surface waters at the coast are colder than further offshore. We find that surface heat fluxes warm the coastal region more strongly than the offshore region and cannot explain the differences. The influence of horizontal heat advection is minor on the surface temperature change. In contrast, ocean turbulence data suggest that cooling associated with vertical mixing is an important mechanism to explain the near-coastal cooling.
Shao-Min Chen, Ulf Riebesell, Kai G. Schulz, Elisabeth von der Esch, Eric P. Achterberg, and Lennart T. Bach
Biogeosciences, 19, 295–312, https://doi.org/10.5194/bg-19-295-2022, https://doi.org/10.5194/bg-19-295-2022, 2022
Short summary
Short summary
Oxygen minimum zones in the ocean are characterized by enhanced carbon dioxide (CO2) levels and are being further acidified by increasing anthropogenic atmospheric CO2. Here we report CO2 system measurements in a mesocosm study offshore Peru during a rare coastal El Niño event to investigate how CO2 dynamics may respond to ongoing ocean deoxygenation. Our observations show that nitrogen limitation, productivity, and plankton community shift play an important role in driving the CO2 dynamics.
Kai G. Schulz, Eric P. Achterberg, Javier Arístegui, Lennart T. Bach, Isabel Baños, Tim Boxhammer, Dirk Erler, Maricarmen Igarza, Verena Kalter, Andrea Ludwig, Carolin Löscher, Jana Meyer, Judith Meyer, Fabrizio Minutolo, Elisabeth von der Esch, Bess B. Ward, and Ulf Riebesell
Biogeosciences, 18, 4305–4320, https://doi.org/10.5194/bg-18-4305-2021, https://doi.org/10.5194/bg-18-4305-2021, 2021
Short summary
Short summary
Upwelling of nutrient-rich deep waters to the surface make eastern boundary upwelling systems hot spots of marine productivity. This leads to subsurface oxygen depletion and the transformation of bioavailable nitrogen into inert N2. Here we quantify nitrogen loss processes following a simulated deep water upwelling. Denitrification was the dominant process, and budget calculations suggest that a significant portion of nitrogen that could be exported to depth is already lost in the surface ocean.
Neil J. Wyatt, Angela Milne, Eric P. Achterberg, Thomas J. Browning, Heather A. Bouman, E. Malcolm S. Woodward, and Maeve C. Lohan
Biogeosciences, 18, 4265–4280, https://doi.org/10.5194/bg-18-4265-2021, https://doi.org/10.5194/bg-18-4265-2021, 2021
Short summary
Short summary
Using data collected during two expeditions to the South Atlantic Ocean, we investigated how the interaction between external sources and biological activity influenced the availability of the trace metals zinc and cobalt. This is important as both metals play essential roles in the metabolism and growth of phytoplankton and thus influence primary productivity of the oceans. We found seasonal changes in both processes that helped explain upper-ocean trace metal cycling.
Jaard Hauschildt, Soeren Thomsen, Vincent Echevin, Andreas Oschlies, Yonss Saranga José, Gerd Krahmann, Laura A. Bristow, and Gaute Lavik
Biogeosciences, 18, 3605–3629, https://doi.org/10.5194/bg-18-3605-2021, https://doi.org/10.5194/bg-18-3605-2021, 2021
Short summary
Short summary
In this paper we quantify the subduction of upwelled nitrate due to physical processes on the order of several kilometers in the coastal upwelling off Peru and its effect on primary production. We also compare the prepresentation of these processes in a high-resolution simulation (~2.5 km) with a more coarsely resolved simulation (~12 km). To do this, we combine high-resolution shipboard observations of physical and biogeochemical parameters with a complex biogeochemical model configuration.
Maximiliano J. Vergara-Jara, Mark J. Hopwood, Thomas J. Browning, Insa Rapp, Rodrigo Torres, Brian Reid, Eric P. Achterberg, and José Luis Iriarte
Ocean Sci., 17, 561–578, https://doi.org/10.5194/os-17-561-2021, https://doi.org/10.5194/os-17-561-2021, 2021
Short summary
Short summary
Ash from the Calbuco 2015 eruption spread across northern Patagonia, the SE Pacific and the SW Atlantic. In the Pacific, a phytoplankton bloom corresponded closely to the volcanic ash plume, suggesting that ash fertilized this region of the ocean. No such fertilization was found in the Atlantic where nutrients plausibly supplied by ash were likely already in excess of phytoplankton demand. In Patagonia, the May bloom was more intense than usual, but the mechanistic link to ash was less clear.
Gerd Krahmann, Damian L. Arévalo-Martínez, Andrew W. Dale, Marcus Dengler, Anja Engel, Nicolaas Glock, Patricia Grasse, Johannes Hahn, Helena Hauss, Mark Hopwood, Rainer Kiko, Alexandra Loginova, Carolin R. Löscher, Marie Maßmig, Alexandra-Sophie Roy, Renato Salvatteci, Stefan Sommer, Toste Tanhua, and Hela Mehrtens
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-308, https://doi.org/10.5194/essd-2020-308, 2021
Preprint withdrawn
Short summary
Short summary
The project "Climate-Biogeochemistry Interactions in the Tropical Ocean" (SFB 754) was a multidisciplinary research project active from 2008 to 2019 aimed at a better understanding of the coupling between the tropical climate and ocean circulation and the ocean's oxygen and nutrient balance. On 34 research cruises, mainly in the Southeast Tropical Pacific and the Northeast Tropical Atlantic, 1071 physical, chemical and biological data sets were collected.
Yu-Te Hsieh, Walter Geibert, E. Malcolm S. Woodward, Neil J. Wyatt, Maeve C. Lohan, Eric P. Achterberg, and Gideon M. Henderson
Biogeosciences, 18, 1645–1671, https://doi.org/10.5194/bg-18-1645-2021, https://doi.org/10.5194/bg-18-1645-2021, 2021
Short summary
Short summary
The South Atlantic near 40° S is one of the high-productivity and most dynamic nutrient regions in the oceans, but the sources and fluxes of trace elements (TEs) to this region remain unclear. This study investigates seawater Ra-228 and provides important constraints on ocean mixing and dissolved TE fluxes to this region. Vertical mixing is a more important source than aeolian or shelf inputs in this region, but particulate or winter deep-mixing inputs may be required to balance the TE budgets.
Henrike Schmidt, Rena Czeschel, and Martin Visbeck
Ocean Sci., 16, 1459–1474, https://doi.org/10.5194/os-16-1459-2020, https://doi.org/10.5194/os-16-1459-2020, 2020
Short summary
Short summary
Our investigations give detailed insight on the seasonally changing current system at intermediate depth in the Arabian Sea that is influenced by the monsoon. The changing currents influence the oxygen transport in the interior ocean and thus allow us to draw conclusions on the maintenance and seasonal variability of the upper part of the oxygen minimum zone in the Arabian Sea.
Ruifang C. Xie, Frédéric A. C. Le Moigne, Insa Rapp, Jan Lüdke, Beat Gasser, Marcus Dengler, Volker Liebetrau, and Eric P. Achterberg
Biogeosciences, 17, 4919–4936, https://doi.org/10.5194/bg-17-4919-2020, https://doi.org/10.5194/bg-17-4919-2020, 2020
Short summary
Short summary
Thorium-234 (234Th) is widely used to study carbon fluxes from the surface ocean to depth. But few studies stress the relevance of oceanic advection and diffusion on the downward 234Th fluxes in nearshore environments. Our study in offshore Peru showed strong temporal variations in both the importance of physical processes on 234Th flux estimates and the oceanic residence time of 234Th, whereas salinity-derived seawater 238U activities accounted for up to 40 % errors in 234Th flux estimates.
Lennart Thomas Bach, Allanah Joy Paul, Tim Boxhammer, Elisabeth von der Esch, Michelle Graco, Kai Georg Schulz, Eric Achterberg, Paulina Aguayo, Javier Arístegui, Patrizia Ayón, Isabel Baños, Avy Bernales, Anne Sophie Boegeholz, Francisco Chavez, Gabriela Chavez, Shao-Min Chen, Kristin Doering, Alba Filella, Martin Fischer, Patricia Grasse, Mathias Haunost, Jan Hennke, Nauzet Hernández-Hernández, Mark Hopwood, Maricarmen Igarza, Verena Kalter, Leila Kittu, Peter Kohnert, Jesus Ledesma, Christian Lieberum, Silke Lischka, Carolin Löscher, Andrea Ludwig, Ursula Mendoza, Jana Meyer, Judith Meyer, Fabrizio Minutolo, Joaquin Ortiz Cortes, Jonna Piiparinen, Claudia Sforna, Kristian Spilling, Sonia Sanchez, Carsten Spisla, Michael Sswat, Mabel Zavala Moreira, and Ulf Riebesell
Biogeosciences, 17, 4831–4852, https://doi.org/10.5194/bg-17-4831-2020, https://doi.org/10.5194/bg-17-4831-2020, 2020
Short summary
Short summary
The eastern boundary upwelling system off Peru is among Earth's most productive ocean ecosystems, but the factors that control its functioning are poorly constrained. Here we used mesocosms, moored ~ 6 km offshore Peru, to investigate how processes in plankton communities drive key biogeochemical processes. We show that nutrient and light co-limitation keep productivity and export at a remarkably constant level while stoichiometry changes strongly with shifts in plankton community structure.
Alexandra N. Loginova, Andrew W. Dale, Frédéric A. C. Le Moigne, Sören Thomsen, Stefan Sommer, David Clemens, Klaus Wallmann, and Anja Engel
Biogeosciences, 17, 4663–4679, https://doi.org/10.5194/bg-17-4663-2020, https://doi.org/10.5194/bg-17-4663-2020, 2020
Short summary
Short summary
We measured dissolved organic carbon (DOC), nitrogen (DON) and matter (DOM) optical properties in pore waters and near-bottom waters of the eastern tropical South Pacific off Peru. The difference between diffusion-driven and net fluxes of DOC and DON and qualitative changes in DOM optical properties suggested active microbial utilisation of the released DOM at the sediment–water interface. Our results suggest that the sediment release of DOM contributes to microbial processes in the area.
Cited articles
Albert, A., Echevin, V., Lévy, M., and Aumont, O.: Impact of nearshore
wind stress curl on coastal circulation and primary productivity in the Peru
upwelling system, J. Geophys. Res.-Oceans, 115, C12033, https://doi.org/10.1029/2010JC006569, 2010.
Bachèlery, M.-L., Illig, S., and Dadou, I.: Forcings of nutrient,
oxygen, and primary production interannual variability in the southeast
Atlantic Ocean, Geophys. Res. Lett., 43, 8617–8625,
https://doi.org/10.1002/2016gl070288, 2016.
Bakun, A. and Nelson, C. S.: The Seasonal Cycle of Wind-Stress Curl in
Subtropical Eastern Boundary Current Regions, J. Phys. Oceanogr., 21,
1815–1834, https://doi.org/10.1175/1520-0485(1991)021<1815:TSCOWS>2.0.CO;2, 1991.
Becker, J. J., Sandwell, D. T., Smith, W. H. F., Braud, J., Binder, B.,
Depner, J., Fabre, D., Factor, J., Ingalls, S., Kim, S.-H., Ladner, R.,
Marks, K., Nelson, S., Pharaoh, A., Trimmer, R., Rosenberg, J. V., Wallace,
G., and Weatherall, P.: Global Bathymetry and Elevation Data at 30 Arc
Seconds Resolution: SRTM30_PLUS, Mar. Geod., 32,
355–371, https://doi.org/10.1080/01490410903297766, 2009.
Belmadani, A., Echevin, V., Dewitte, B., and Colas, F.: Equatorially forced
intraseasonal propagations along the Peru-Chile coast and their relation
with the nearshore eddy activity in 1992–2000: A modeling study, J.
Geophys. Res.-Oceans, 117, C04025, https://doi.org/10.1029/2011JC007848, 2012.
Bentamy, A. and Fillon, D. C.: Gridded surface wind fields from Metop/ASCAT
measurements, Int. J. Remote Sens., 33, 1729–1754,
https://doi.org/10.1080/01431161.2011.600348, 2012.
Brandt, P., Bange, H. W., Banyte, D., Dengler, M., Didwischus, S.-H., Fischer, T., Greatbatch, R. J., Hahn, J., Kanzow, T., Karstensen, J., Körtzinger, A., Krahmann, G., Schmidtko, S., Stramma, L., Tanhua, T., and Visbeck, M.: On the role of circulation and mixing in the ventilation of oxygen minimum zones with a focus on the eastern tropical North Atlantic, Biogeosciences, 12, 489–512, https://doi.org/10.5194/bg-12-489-2015, 2015.
Brink, K. H.: A Comparison of Long Coastal Trapped Wave Theory with
Observations off Peru, J. Phys. Oceanogr., 12, 897–913,
https://doi.org/10.1175/1520-0485(1982)012<0897:ACOLCT>2.0.CO;2,
1982.
Brink, K. H.: Energy Conservation in Coastal-Trapped Wave Calculations, J.
Phys. Oceanogr., 19, 1011–1016, https://doi.org/10.1175/1520-0485(1989)019<1011:ECICTW>2.0.CO;2, 1989.
Brink, K. H.: Stable coastal-trapped waves with stratification, topography
and mean flow, MBLWHOI Library, Woods Hole, https://doi.org/10.1575/1912/10527, 2018.
Brink, K. H. and Chapman, D. C.: Programs for computing properties of
coastal-trapped waves and wind-driven motions over the continental shelf and
slope, WHOI Technical Reports, Woods Hole Oceanographic Institution in Woods Hole, https://doi.org/10.1575/1912/5368, 1987.
Brink, K. H., Halpern, D., and Smith, R. L.: Circulation in the Peruvian
upwelling system near 15∘ S, J. Geophys. Res., 85, 4036–4048,
https://doi.org/10.1029/jc085ic07p04036, 1980.
Brink, K. H., Halpern, D., Huyer, A., and Smith, R. L.: The physical
environment of the Peruvian upwelling system, Prog. Oceanogr., 12, 285–305,
https://doi.org/10.1016/0079-6611(83)90011-3, 1983.
Brunner, K., Rivas, D., and Lwiza, K. M. M.: Application of Classical Coastal
Trapped Wave Theory to High-Scattering Regions, J. Phys. Oceanogr., 49,
2201–2216, https://doi.org/10.1175/JPO-D-18-0112.1, 2019.
Callbeck, C. M., Lavik, G., Ferdelman, T. G., Fuchs, B., Gruber-Vodicka, H.
R., Hach, P. F., Littmann, S., Schoffelen, N. J., Kalvelage, T., Thomsen,
S., Schunck, H., Löscher, C. R., Schmitz, R. A., and Kuypers, M. M. M.:
Oxygen minimum zone cryptic sulfur cycling sustained by offshore transport
of key sulfur oxidizing bacteria, Nat. Commun., 9, 1729,
https://doi.org/10.1038/s41467-018-04041-x, 2018.
Carr, M.-E.: Estimation of potential productivity in Eastern Boundary
Currents using remote sensing, Deep Sea Res. Part II, 49, 59–80,
https://doi.org/10.1016/S0967-0645(01)00094-7, 2002.
Chaigneau, A., Dominguez, N., Eldin, G., Vasquez, L., Flores, R., Grados,
C., and Echevin, V.: Near-coastal circulation in the Northern Humboldt
Current System from shipboard ADCP data, J. Geophys. Res.-Oceans, 118,
5251–5266, https://doi.org/10.1002/jgrc.20328, 2013.
Chang, B. X., Devol, A. H., and Emerson, S. R.: Denitrification and the
nitrogen gas excess in the eastern tropical South Pacific oxygen deficient
zone, Deep Sea Res. Part I, 57, 1092–1101, https://doi.org/10.1016/j.dsr.2010.05.009,
2010.
Chavez, F. P., Bertrand, A., Guevara-Carrasco, R., Soler, P., and Csirke,
J.: The northern Humboldt Current System: Brief history, present status and
a view towards the future, Prog. Oceanogr., 79, 95–105,
https://doi.org/10.1016/j.pocean.2008.10.012, 2008.
Dale, A. W., Sommer, S., Lomnitz, U., Montes, I., Treude, T., Liebetrau, V., Gier, J., Hensen, C., Dengler, M., Stolpovsky, K., Bryant, L. D., and Wallmann, K.: Organic carbon production, mineralisation and preservation on the Peruvian margin, Biogeosciences, 12, 1537–1559, https://doi.org/10.5194/bg-12-1537-2015, 2015.
Dale, A. W., Sommer, S., Lomnitz, U., Bourbonnais, A., and Wallmann, K.:
Biological nitrate transport in sediments on the Peruvian margin mitigates
benthic sulfide emissions and drives pelagic N loss during stagnation
events, Deep Sea Res. Part I, 112, 123–136, https://doi.org/10.1016/j.dsr.2016.02.013,
2016.
Dengler, M. and Sommer, S.: Coupled benthic and pelagic oxygen, nutrient and
trace metal cycling, ventilation and carbon degradation in the oxygen
minimum zone of the Peruvian continental margin (SFB 754): Cruise No. M 136
11 April–3 May 2017 Callao (Peru) – Callao Solute-Flux Peru I,
METEOR-Berichte, https://doi.org/10.3289/CR_M136, 2019.
Dewitte, B., Illig, S., Renault, L., Goubanova, K., Takahashi, K.,
Gushchina, D., Mosquera, K., and Purca, S.: Modes of covariability between
sea surface temperature and wind stress intraseasonal anomalies along the
coast of Peru from satellite observations (2000–2008), J. Geophys. Res.-Oceans, 116, C04028, https://doi.org/10.1029/2010JC006495, 2011.
Echevin, V., Albert, A., Lévy, M., Graco, M., Aumont, O., Piétri,
A., and Garric, G.: Intraseasonal variability of nearshore productivity in
the Northern Humboldt Current System: The role of coastal trapped waves,
Cont. Shelf Res., 73, 14–30, https://doi.org/10.1016/j.csr.2013.11.015, 2014.
Echevin, V., Colas, F., Espinoza-Morriberon, D., Vasquez, L., Anculle, T.,
and Gutierrez, D.: Forcings and Evolution of the 2017 Coastal El Niño
Off Northern Peru and Ecuador, Front. Mar. Sci., 5, 367,
https://doi.org/10.3389/fmars.2018.00367, 2018.
Enfield, D. B., Cornejo-Rodriguez, M. D., Smith, R. L., and Newberger, P.
A.: The equatorial source of propagating variability along the Peru coast
during the 1982–1983 El Niño, J. Geophys. Res.-Oceans, 92, 14335–14346,
https://doi.org/10.1029/JC092iC13p14335, 1987.
Espinoza-Morriberón, D., Echevin, V., Colas, F., Tam, J., Ledesma, J., Vásquez, L., and Graco, M.: Impacts of El Niño events on the Peruvian upwelling system productivity, J. Geophys. Res.-Oceans, 122, 5423–5444, https://doi.org/10.1002/2016JC012439, 2017.
Espinoza-Morriberón, D., Echevin, V., Colas, F., Tam, J., Gutierrez, D.,
Graco, M., Ledesma, J., and Quispe-Ccalluari, C.: Oxygen Variability During
ENSO in the Tropical South Eastern Pacific, Front. Mar. Sci., 5, 526,
https://doi.org/10.3389/fmars.2018.00526, 2019.
Fennel, W., Junker, T., Schmidt, M., and Mohrholz, V.: Response of the
Benguela upwelling systems to spatial variations in the wind stress, Cont.
Shelf Res., 45, 65–77, https://doi.org/10.1016/j.csr.2012.06.004, 2012.
Fischer, J., Brandt, P., Dengler, M., Müller, M., and Symonds, D.:
Surveying the Upper Ocean with the Ocean Surveyor: A New Phased Array
Doppler Current Profiler, J. Atmos. Ocean. Tech., 20, 742–751,
https://doi.org/10.1175/1520-0426(2003)20<742:STUOWT>2.0.CO;2,
2003.
Garreaud, R. D.: A plausible atmospheric trigger for the 2017 coastal El
Niño, Int. J. Climatol., 38, e1296–e1302, https://doi.org/10.1002/joc.5426, 2018.
Graco, M. I., Purca, S., Dewitte, B., Castro, C. G., Morón, O., Ledesma, J., Flores, G., and Gutiérrez, D.: The OMZ and nutrient features as a signature of interannual and low-frequency variability in the Peruvian upwelling system, Biogeosciences, 14, 4601–4617, https://doi.org/10.5194/bg-14-4601-2017, 2017.
Grados, C., Chaigneau, A., Echevin, V., and Dominguez, N.: Upper ocean
hydrology of the Northern Humboldt Current System at seasonal, interannual
and interdecadal scales, Prog. Oceanogr., 165, 123–144,
https://doi.org/10.1016/j.pocean.2018.05.005, 2018.
Grasshoff, K., Ehrhardt, M., and Kremling, K.: Methods of seawater analysis, 63–72, Verlag Chemie, Weinheim, ISBN 3-527-25998-8, 1983.
Gruber, N.: The marine nitrogen cycle: overview and challenges, in: Nitrogen
in the marine environment, vol. 2, edited by: Capone, D. G., Bronk, D. A., Mulholland, M., and Carpenter, E. J., pp. 1–50, Elsevier Amsterdam., ISBN 978-0-12-372522-6, 2008.
Gruber, N. and Sarmiento, J. L.: Global patterns of marine nitrogen fixation
and denitrification, Global Biogeochem. Cy., 11, 235–266,
https://doi.org/10.1029/97GB00077, 1997.
Gruber, N. and Sarmiento, J. L.: Large-scale biogeochemical-physical
interactions in elemental cycles, in: THE SEA: Biological–Physical
Interactions in the Oceans, vol. 12, edited by: Robinson, A. R.,
McCarthy, J. J., and Rothschild, B. J., 337–399, Wiley, New York, ISBN 9780674017429, 2002.
Gunther, E. R.: A report on oceanographical investigations in the Peru
Coastal Current, Discovery Rep., 13, 107–276, 1936.
Gutiérrez, D., Enríquez, E., Purca, S., Quipúzcoa, L.,
Marquina, R., Flores, G., and Graco, M.: Oxygenation episodes on the
continental shelf of central Peru: Remote forcing and benthic ecosystem
response, Prog. Oceanogr., 79, 177–189,
https://doi.org/10.1016/j.pocean.2008.10.025, 2008.
Hauschildt, J., Thomsen, S., Echevin, V., Oschlies, A., José, Y. S., Krahmann, G., Bristow, L. A., and Lavik, G.: The fate of upwelled nitrate off Peru shaped by submesoscale filaments and fronts, Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-112, in review, 2020.
Helly, J. J. and Levin, L. A.: Global distribution of naturally occurring
marine hypoxia on continental margins, Deep Sea Res. Part I, 51, 1159–1168,
https://doi.org/10.1016/j.dsr.2004.03.009, 2004.
Hill, A. E., Hickey, B. M., Shillington, F. A., Strub, P. T., Brink, K. H.,
Barton, E. D., and Thomas, A. C.: Eastern Ocean Boundaries, in: The Seas: The
Global Coastal Ocean, vol. 11, edited by: Robinson, A. R. and Brink, K. H., pp. 29–68, John Wiley, New York, ISBN 0-471-11545-2, 1998.
Holmes, R. M., Aminot, A., Kérouel, R., Hooker, B. A., and Peterson, B.
J.: A simple and precise method for measuring ammonium in marine and
freshwater ecosystems, Can. J. Fish. Aquat. Sci., 56, 1801–1808,
https://doi.org/10.1139/f99-128, 1999.
Hood, E. M., Sabine, C. L., and Sloyan, B. M.: The GO-SHIP Repeat Hydrography
Manual: a collection of expert reports and guidelines, Version 1, IOCCP
Report 14, ICPO Publication Series 134, 2010.
Hormazabal, S., Shaffer, G., and Pizarro, O.: Tropical Pacific control of
intraseasonal oscillations off Chile by way of oceanic and atmospheric
pathways, Geophys. Res. Lett., 29, 51–54, https://doi.org/10.1029/2001GL013481, 2002.
Huang, B., Thorne, P. W., Banzon, V. F., Boyer, T., Chepurin, G., Lawrimore,
J. H., Menne, M. J., Smith, T. M., Vose, R. S., and Zhang, H.-M.: NOAA
Extended Reconstructed Sea Surface Temperature (ERSST), Version 5,
https://doi.org/10.7289/V5T72FNM, 2017a.
Huang, B., Thorne, P. W., Banzon, V. F., Boyer, T., Chepurin, G., Lawrimore,
J. H., Menne, M. J., Smith, T. M., Vose, R. S., and Zhang, H.-M.: Extended
Reconstructed Sea Surface Temperature, Version 5 (ERSSTv5): Upgrades,
Validations, and Intercomparisons, J. Climate, 30, 8179–8205,
https://doi.org/10.1175/JCLI-D-16-0836.1, 2017b.
Illig, S., Dewitte, B., Goubanova, K., Cambon, G., Boucharel, J., Monetti,
F., Romero, C., Purca, S., and Flores, R.: Forcing mechanisms of
intraseasonal SST variability off central Peru in 2000–2008, J. Geophys. Res.-Oceans, 119, 3548–3573, https://doi.org/10.1002/2013JC009779, 2014.
Illig, S., Cadier, E., Bachèlery, M.-L., and Kersalé, M.:
Subseasonal Coastal-Trapped Wave Propagations in the Southeastern Pacific
and Atlantic Oceans: 1. A New Approach to Estimate Wave Amplitude, J. Geophys. Res.-Oceans, 123, 3915–3941, https://doi.org/10.1029/2017JC013539, 2018a.
Illig, S., Bachèlery, M.-L., and Cadier, E.: Subseasonal Coastal-Trapped
Wave Propagations in the Southeastern Pacific and Atlantic Oceans: 2. Wave
Characteristics and Connection With the Equatorial Variability, J. Geophys. Res.-Oceans, 123, 3942–3961, https://doi.org/10.1029/2017JC013540, 2018b.
Junker, T., Schmidt, M., and Mohrholz, V.: The relation of wind stress curl
and meridional transport in the Benguela upwelling system, J. Mar. Syst.,
143, 1–6, https://doi.org/10.1016/j.jmarsys.2014.10.006, 2015.
Kalvelage, T., Lavik, G., Lam, P., Contreras, S., Arteaga, L., Löscher,
C. R., Oschlies, A., Paulmier, A., Stramma, L., and Kuypers, M. M.: Nitrogen
cycling driven by organic matter export in the South Pacific oxygen minimum
zone, Nat. Geosci., 6, 228–234, https://doi.org/10.1038/ngeo1739, 2013.
Kämpf, J.: On the Dynamics of Canyon-Flow Interactions, Journal of Marine Science and Engineering,
6, 129, https://doi.org/10.3390/jmse6040129, 2018.
Kämpf, J. and Chapman, P.: Upwelling Systems of the World: A Scientific
Journey to the Most Productive Marine Ecosystems, Springer, Cham, ISBN 978-3-319-42522-1, 2016.
Karstensen, J., Schütte, F., Pietri, A., Krahmann, G., Fiedler, B., Grundle, D., Hauss, H., Körtzinger, A.,
Löscher, C. R., Testor, P., Vieira, N., and Visbeck, M.: Upwelling and isolation in oxygen-depleted anticyclonic
modewater eddies and implications for nitrate cycling, Biogeosciences, 14, 2167–2181, https://doi.org/10.5194/bg-14-2167-2017, 2017.
Klenz, T., Dengler, M., and Brandt, P.: Seasonal Variability of the
Mauritania Current and Hydrography at 18∘ N, J. Geophys. Res.-Oceans, 123, 8122–8137, https://doi.org/10.1029/2018jc014264, 2018.
Kuypers, M. M. M., Lavik, G., Woebken, D., Schmid, M., Fuchs, B. M., Amann,
R., Jørgensen, B. B., and Jetten, M. S. M.: Massive nitrogen loss from the
Benguela upwelling system through anaerobic ammonium oxidation, P. Natl. Acad. Sci., 102, 6478–6483,
https://doi.org/10.1073/pnas.0502088102, 2005.
Lam, P., Lavik, G., Jensen, M. M., van de Vossenberg, J., Schmid, M.,
Woebken, D., Gutiérrez, D., Amann, R., Jetten, M. S. M., and Kuypers, M.
M. M.: Revising the nitrogen cycle in the Peruvian oxygen minimum zone,
P. Natl. Acad. Sci., 106, 4752–4757,
https://doi.org/10.1073/pnas.0812444106, 2009.
Leth, O. and Middleton, J. F.: A numerical study of the upwelling
circulation off central Chile: Effects of remote oceanic forcing, J. Geophys. Res.-Oceans, 111, C12003, https://doi.org/10.1029/2005JC003070, 2006.
Levin, L., Gutiérrez, D., Rathburn, A., Neira, C., Sellanes, J.,
Muñoz, P., Gallardo, V., and Salamanca, M.: Benthic processes on the Peru
margin: a transect across the oxygen minimum zone during the 1997–1998 El
Niño, Prog. Oceanogr., 53, 1–27, https://doi.org/10.1016/S0079-6611(02)00022-8,
2002.
Lomnitz, U., Sommer, S., Dale, A. W., Löscher, C. R., Noffke, A., Wallmann, K., and Hensen, C.: Benthic phosphorus cycling in the Peruvian oxygen minimum zone, Biogeosciences, 13, 1367–1386, https://doi.org/10.5194/bg-13-1367-2016, 2016.
Lüdke, J., Dengler, M., Sommer, S., Clemens, D., Thomsen, S., Krahmann, G., Dale, A. W., Achterberg, E. P., and Visbeck, M.: Influence of intraseasonal eastern boundary circulation variability on hydrography and biogeochemistry off Peru, PANGAEA, https://doi.org/10.1594/PANGAEA.903828, 2019.
Marchesiello, P., McWilliams, J. C., and Shchepetkin, A.: Equilibrium
Structure and Dynamics of the California Current System, J. Phys. Oceanogr.,
33, 753–783, https://doi.org/10.1175/1520-0485(2003)33<753:ESADOT>2.0.CO;2, 2003.
McCreary, J. P. and Chao, S.-Y.: Three-dimensional shelf circulation along
an eastern ocean boundary, J. Mar. Res., 43, 13–36,
https://doi.org/10.1357/002224085788437316, 1985.
McDougall, T. J. and Barker, P. M.: Getting started with TEOS-10 and the
Gibbs Seawater (GSW) oceanographic toolbox, SCOR/IAPSO WG 127, ISBN 978-0-646-55621-5, 2011.
Montes, I., Colas, F., Capet, X., and Schneider, W.: On the pathways of the
equatorial subsurface currents in the eastern equatorial Pacific and their
contributions to the Peru-Chile Undercurrent, J. Geophys. Res.-Oceans, 115, C09003, https://doi.org/10.1029/2009JC005710, 2010.
Moore, D. W. and Philander, S. G. H.: Modelling of the tropical ocean
circulation, in The Sea, vol. 6, pp. 316–361, John Wiley, ISBN 0-471-31091-3, 1977.
Noffke, A., Hensen, C., Sommer, S., Scholz, F., Bohlen, L., Mosch, T.,
Graco, M., and Wallmann, K.: Benthic iron and phosphorus fluxes across the
Peruvian oxygen minimum zone, Limnol. Oceanogr., 57, 851–867,
https://doi.org/10.4319/lo.2012.57.3.0851, 2012.
Peng, Q., Xie, S.-P., Wang, D., Zheng, X.-T., and Zhang, H.: Coupled ocean-atmosphere dynamics of the 2017 extreme coastal El Niño, Nat. Commun., 10, 298, https://doi.org/10.1038/s41467-018-08258-8, 2019.
Pennington, J. T., Mahoney, K. L., Kuwahara, V. S., Kolber, D. D., Calienes,
R., and Chavez, F. P.: Primary production in the eastern tropical Pacific: A
review, Prog. Oceanogr., 69, 285–317, https://doi.org/10.1016/j.pocean.2006.03.012,
2006.
Penven, P., Echevin, V., Pasapera, J., Colas, F., and Tam, J.: Average
circulation, seasonal cycle, and mesoscale dynamics of the Peru Current
System: A modeling approach, J. Geophys. Res.-Oceans, 110, C10021,
https://doi.org/10.1029/2005JC002945, 2005.
Philander, S. G. H. and Yoon, J.-H.: Eastern Boundary Currents and Coastal
Upwelling, J. Phys. Oceanogr., 12, 862–879,
https://doi.org/10.1175/1520-0485(1982)012<0862:EBCACU>2.0.CO;2,
1982.
Pizarro, O., Shaffer, G., Dewitte, B., and Ramos, M.: Dynamics of seasonal
and interannual variability of the Peru-Chile Undercurrent, Geophys. Res.
Lett., 29, 22-1–22-4, https://doi.org/10.1029/2002GL014790, 2002.
Revsbech, N. P., Larsen, L. H., Gundersen, J., Dalsgaard, T., Ulloa, O., and
Thamdrup, B.: Determination of ultra-low oxygen concentrations in oxygen
minimum zones by the STOX sensor, Limnol. Oceanogr.-Meth., 7, 371–381,
https://doi.org/10.4319/lom.2009.7.371, 2009.
Romea, R. D. and Smith, R. L.: Further Evidence for Coastal Trapped Waves
along the Peru Coast, J. Phys. Oceanogr., 13, 1341–1356,
https://doi.org/10.1175/1520-0485(1983)013<1341:FEFCTW>2.0.CO;2,
1983.
Sakamoto, C. M., Johnson, K. S., and Coletti, L. J.: Improved algorithm for
the computation of nitrate concentrations in seawater using an in situ
ultraviolet spectrophotometer, Limnol. Oceanogr.-Meth., 7, 132–143,
https://doi.org/10.4319/lom.2009.7.132, 2009.
Schunck, H., Lavik, G., Desai, D. K., Großkopf, T., Kalvelage, T.,
Löscher, C. R., Paulmier, A., Contreras, S., Siegel, H., Holtappels, M.,
Rosenstiel, P., Schilhabel, M. B., Graco, M., Schmitz, R. A., Kuypers, M. M.
M., and LaRoche, J.: Giant Hydrogen Sulfide Plume in the Oxygen Minimum Zone
off Peru Supports Chemolithoautotrophy, PLoS One, 8, 1–18,
https://doi.org/10.1371/journal.pone.0068661, 2013.
Shaffer, G., Pizarro, O., Djurfeldt, L., Salinas, S., and Rutllant, J.: Circulation and Low-Frequency Variability near the Chilean Coast:
Remotely Forced Fluctuations during the 1991–1992 El Niño, J.
Phys. Oceanogr., 27, 217–235, https://doi.org/10.1175/1520-0485(1997)027<0217:CALFVN>2.0.CO;2, 1997.
Silva, N., Rojas, N., and Fedele, A.: Water masses in the Humboldt Current
System: Properties, distribution, and the nitrate deficit as a chemical
water mass tracer for Equatorial Subsurface Water off Chile, Deep Sea Res.
Part II, 56, 1004–1020, https://doi.org/10.1016/j.dsr2.2008.12.013, 2009.
Sommer, S., Gier, J., Treude, T., Lomnitz, U., Dengler, M., Cardich, J., and
Dale, A. W.: Depletion of oxygen, nitrate and nitrite in the Peruvian oxygen
minimum zone cause an imbalance of benthic nitrogen fluxes, Deep Sea Res.
Part I, 112, 113–122, https://doi.org/10.1016/j.dsr.2016.03.001, 2016.
Sommer, S., Dengler, M., and Shipboard Scientific Party: Benthic element
cycling, fluxes and transport of nutrients and trace metals across the
benthic boundary layer in the Peruvian oxygen minimum zone (SFB 754), Cruise
No. 137, 6 May–29 May 2017, Callao (Peru) – Callao, METEOR-Berichte,
https://doi.org/10.2312/cr_m137, 2019.
Strub, P. T., Mesias, J. M., Montecino, V., Rutllant, J., and Salinas, S.:
Coastal ocean circulation off western South America, in: The Seas: The Global
Coastal Ocean, vol. 11, edited by: Robinson, A. R. and Brink, K. H., pp.
273–313, John Wiley, New York, ISBN 0-471-11545-2, 1998.
Thomsen, S., Kanzow, T., Krahmann, G., Greatbatch, R. J., Dengler, M., and
Lavik, G.: The formation of a subsurface anticyclonic eddy in the Peru-Chile
Undercurrent and its impact on the near-coastal salinity, oxygen, and
nutrient distributions, J. Geophys. Res.-Oceans, 121, 476–501,
https://doi.org/10.1002/2015JC010878, 2016.
Thomsen, S., Karstensen, J., Kiko, R., Krahmann, G., Dengler, M., and Engel, A.: Remote and local drivers of oxygen and nitrate variability in the shallow oxygen minimum zone off Mauritania in June 2014, Biogeosciences, 16, 979–998, https://doi.org/10.5194/bg-16-979-2019, 2019.
Thyng, K. M., Greene, C. A., Hetland, R. D., Zimmerle, H. M., and DiMarco, S.
F.: True Colors of Oceanography: Guidelines for Effective and Accurate
Colormap Selection, Oceanography, 29, 9–13, https://doi.org/10.5670/oceanog.2016.66, 2016.
Ulloa, O., Canfield, D. E., DeLong, E. F., Letelier, R. M., and Stewart, F.
J.: Microbial oceanography of anoxic oxygen minimum zones, P. Natl. Acad. Sci., 109, 15996–16003,
https://doi.org/10.1073/pnas.1205009109, 2012.
Wang, D.-P.: Diffraction of Continental Shelf Waves by Irregular Alongshore
Geometry, J. Phys. Oceanogr., 10, 1187–1199,
https://doi.org/10.1175/1520-0485(1980)010<1187:DOCSWB>2.0.CO;2,
1980.
Wilkin, J. L. and Chapman, D. C.: Scattering of Coastal-Trapped Waves
by Irregularities in Coastline and Topography, J. Phys. Oceanogr., 20,
396–421, https://doi.org/10.1175/1520-0485(1990)020<0396:SOCTWB>2.0.CO;2, 1990.
Winkler, L. W.: Die Bestimmung des im Wasser gelösten Sauerstoffes, Ber.
Dtsch. Chem. Ges., 21, 2843–2854, https://doi.org/10.1002/cber.188802102122, 1888.
Yoon, J.-H. and Philander, S. G. H.: The generation of coastal
undercurrents, J. Oceanogr. Soc. Jpn., 38, 215–224,
https://doi.org/10.1007/bf02111104, 1982.
Yu, X. and McPhaden, M. J.: Seasonal Variability in the Equatorial Pacific,
J. Phys. Oceanogr., 29, 925–947 https://doi.org/10.1175/1520-0485(1999)029<0925:SVITEP>2.0.CO;2, 1999.
Zamora, L. M., Oschlies, A., Bange, H. W., Huebert, K. B., Craig, J. D., Kock, A., and Löscher, C. R.: Nitrous oxide dynamics in low oxygen regions of the Pacific: insights from the MEMENTO database, Biogeosciences, 9, 5007–5022, https://doi.org/10.5194/bg-9-5007-2012, 2012.
Short summary
We analyse the intraseasonal variability of the alongshore circulation off Peru in early 2017, this circulation is very important for the supply of nutrients to the upwelling regime. The causes of this variability and its impact on the biogeochemistry are investigated. The poleward flow is strengthened during the observed time period, likely by a downwelling coastal trapped wave. The stronger current causes an increase in nitrate and reduces the deficit of fixed nitrogen relative to phosphorus.
We analyse the intraseasonal variability of the alongshore circulation off Peru in early 2017,...