Articles | Volume 16, issue 5
https://doi.org/10.5194/os-16-1297-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-16-1297-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Assimilation of chlorophyll data into a stochastic ensemble simulation for the North Atlantic Ocean
Yeray Santana-Falcón
CORRESPONDING AUTHOR
Université Grenoble Alpes, CNRS, IRD, Grenoble INP, IGE, Grenoble, France
CNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, France
Pierre Brasseur
Université Grenoble Alpes, CNRS, IRD, Grenoble INP, IGE, Grenoble, France
Jean Michel Brankart
Université Grenoble Alpes, CNRS, IRD, Grenoble INP, IGE, Grenoble, France
Florent Garnier
LEGOS, University of Toulouse, CNRS, IRD, CNES, UPS, Toulouse, France
Related authors
Precious Mongwe, Matthew Long, Takamitsu Ito, Curtis Deutsch, and Yeray Santana-Falcón
Biogeosciences, 21, 3477–3490, https://doi.org/10.5194/bg-21-3477-2024, https://doi.org/10.5194/bg-21-3477-2024, 2024
Short summary
Short summary
We use a collection of measurements that capture the physiological sensitivity of organisms to temperature and oxygen and a CESM1 large ensemble to investigate how natural climate variations and climate warming will impact the ability of marine heterotrophic marine organisms to support habitats in the future. We find that warming and dissolved oxygen loss over the next several decades will reduce the volume of ocean habitats and will increase organisms' vulnerability to extremes.
Ali Asaadi, Jörg Schwinger, Hanna Lee, Jerry Tjiputra, Vivek Arora, Roland Séférian, Spencer Liddicoat, Tomohiro Hajima, Yeray Santana-Falcón, and Chris D. Jones
Biogeosciences, 21, 411–435, https://doi.org/10.5194/bg-21-411-2024, https://doi.org/10.5194/bg-21-411-2024, 2024
Short summary
Short summary
Carbon cycle feedback metrics are employed to assess phases of positive and negative CO2 emissions. When emissions become negative, we find that the model disagreement in feedback metrics increases more strongly than expected from the assumption that the uncertainties accumulate linearly with time. The geographical patterns of such metrics over land highlight that differences in response between tropical/subtropical and temperate/boreal ecosystems are a major source of model disagreement.
Christoph Heinze, Thorsten Blenckner, Peter Brown, Friederike Fröb, Anne Morée, Adrian L. New, Cara Nissen, Stefanie Rynders, Isabel Seguro, Yevgeny Aksenov, Yuri Artioli, Timothée Bourgeois, Friedrich Burger, Jonathan Buzan, B. B. Cael, Veli Çağlar Yumruktepe, Melissa Chierici, Christopher Danek, Ulf Dieckmann, Agneta Fransson, Thomas Frölicher, Giovanni Galli, Marion Gehlen, Aridane G. González, Melchor Gonzalez-Davila, Nicolas Gruber, Örjan Gustafsson, Judith Hauck, Mikko Heino, Stephanie Henson, Jenny Hieronymus, I. Emma Huertas, Fatma Jebri, Aurich Jeltsch-Thömmes, Fortunat Joos, Jaideep Joshi, Stephen Kelly, Nandini Menon, Precious Mongwe, Laurent Oziel, Sólveig Ólafsdottir, Julien Palmieri, Fiz F. Pérez, Rajamohanan Pillai Ranith, Juliano Ramanantsoa, Tilla Roy, Dagmara Rusiecka, J. Magdalena Santana Casiano, Yeray Santana-Falcón, Jörg Schwinger, Roland Séférian, Miriam Seifert, Anna Shchiptsova, Bablu Sinha, Christopher Somes, Reiner Steinfeldt, Dandan Tao, Jerry Tjiputra, Adam Ulfsbo, Christoph Völker, Tsuyoshi Wakamatsu, and Ying Ye
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-182, https://doi.org/10.5194/bg-2023-182, 2023
Preprint under review for BG
Short summary
Short summary
For assessing the consequences of human-induced climate change for the marine realm, it is necessary to not only look at gradual changes but also at abrupt changes of environmental conditions. We summarise abrupt changes in ocean warming, acidification, and oxygen concentration as the key environmental factors for ecosystems. Taking these abrupt changes into account requires greenhouse gas emissions to be reduced to a larger extent than previously thought to limit respective damage.
Lester Kwiatkowski, Olivier Torres, Laurent Bopp, Olivier Aumont, Matthew Chamberlain, James R. Christian, John P. Dunne, Marion Gehlen, Tatiana Ilyina, Jasmin G. John, Andrew Lenton, Hongmei Li, Nicole S. Lovenduski, James C. Orr, Julien Palmieri, Yeray Santana-Falcón, Jörg Schwinger, Roland Séférian, Charles A. Stock, Alessandro Tagliabue, Yohei Takano, Jerry Tjiputra, Katsuya Toyama, Hiroyuki Tsujino, Michio Watanabe, Akitomo Yamamoto, Andrew Yool, and Tilo Ziehn
Biogeosciences, 17, 3439–3470, https://doi.org/10.5194/bg-17-3439-2020, https://doi.org/10.5194/bg-17-3439-2020, 2020
Short summary
Short summary
We assess 21st century projections of marine biogeochemistry in the CMIP6 Earth system models. These models represent the most up-to-date understanding of climate change. The models generally project greater surface ocean warming, acidification, subsurface deoxygenation, and euphotic nitrate reductions but lesser primary production declines than the previous generation of models. This has major implications for the impact of anthropogenic climate change on marine ecosystems.
Florent Garnier, Pierre Brasseur, Jean-Michel Brankart, Yeray Santana-Falcon, and Emmanuel Cosme
Ocean Sci. Discuss., https://doi.org/10.5194/os-2018-153, https://doi.org/10.5194/os-2018-153, 2019
Publication in OS not foreseen
Loïc Macé, Luc Vandenbulcke, Jean-Michel Brankart, Pierre Brasseur, and Marilaure Grégoire
EGUsphere, https://doi.org/10.5194/egusphere-2024-3682, https://doi.org/10.5194/egusphere-2024-3682, 2024
Short summary
Short summary
The amount of light found in seawater influences water temperature and primary production and must be finely modelled in systems that aim at representing marine biogeochemical environments. We analyse results from a radiative transfer model accounting for absorption and scattering of light in the ocean and compare them with in situ and remote-sensed data, along with the associated uncertainties. We also highlight the benefits of using advanced representations of light in modelling frameworks.
Precious Mongwe, Matthew Long, Takamitsu Ito, Curtis Deutsch, and Yeray Santana-Falcón
Biogeosciences, 21, 3477–3490, https://doi.org/10.5194/bg-21-3477-2024, https://doi.org/10.5194/bg-21-3477-2024, 2024
Short summary
Short summary
We use a collection of measurements that capture the physiological sensitivity of organisms to temperature and oxygen and a CESM1 large ensemble to investigate how natural climate variations and climate warming will impact the ability of marine heterotrophic marine organisms to support habitats in the future. We find that warming and dissolved oxygen loss over the next several decades will reduce the volume of ocean habitats and will increase organisms' vulnerability to extremes.
Mikhail Popov, Jean-Michel Brankart, Arthur Capet, Emmanuel Cosme, and Pierre Brasseur
Ocean Sci., 20, 155–180, https://doi.org/10.5194/os-20-155-2024, https://doi.org/10.5194/os-20-155-2024, 2024
Short summary
Short summary
This study contributes to the development of methods to estimate targeted ocean ecosystem indicators, including their uncertainty, in the framework of the Copernicus Marine Service. A simplified approach is introduced to perform a 4D ensemble analysis and forecast, directly targeting selected biogeochemical variables and indicators (phenology, trophic efficiency, downward flux of organic matter). Care is taken to present the methods and discuss the reliability of the solution proposed.
Ali Asaadi, Jörg Schwinger, Hanna Lee, Jerry Tjiputra, Vivek Arora, Roland Séférian, Spencer Liddicoat, Tomohiro Hajima, Yeray Santana-Falcón, and Chris D. Jones
Biogeosciences, 21, 411–435, https://doi.org/10.5194/bg-21-411-2024, https://doi.org/10.5194/bg-21-411-2024, 2024
Short summary
Short summary
Carbon cycle feedback metrics are employed to assess phases of positive and negative CO2 emissions. When emissions become negative, we find that the model disagreement in feedback metrics increases more strongly than expected from the assumption that the uncertainties accumulate linearly with time. The geographical patterns of such metrics over land highlight that differences in response between tropical/subtropical and temperate/boreal ecosystems are a major source of model disagreement.
Christoph Heinze, Thorsten Blenckner, Peter Brown, Friederike Fröb, Anne Morée, Adrian L. New, Cara Nissen, Stefanie Rynders, Isabel Seguro, Yevgeny Aksenov, Yuri Artioli, Timothée Bourgeois, Friedrich Burger, Jonathan Buzan, B. B. Cael, Veli Çağlar Yumruktepe, Melissa Chierici, Christopher Danek, Ulf Dieckmann, Agneta Fransson, Thomas Frölicher, Giovanni Galli, Marion Gehlen, Aridane G. González, Melchor Gonzalez-Davila, Nicolas Gruber, Örjan Gustafsson, Judith Hauck, Mikko Heino, Stephanie Henson, Jenny Hieronymus, I. Emma Huertas, Fatma Jebri, Aurich Jeltsch-Thömmes, Fortunat Joos, Jaideep Joshi, Stephen Kelly, Nandini Menon, Precious Mongwe, Laurent Oziel, Sólveig Ólafsdottir, Julien Palmieri, Fiz F. Pérez, Rajamohanan Pillai Ranith, Juliano Ramanantsoa, Tilla Roy, Dagmara Rusiecka, J. Magdalena Santana Casiano, Yeray Santana-Falcón, Jörg Schwinger, Roland Séférian, Miriam Seifert, Anna Shchiptsova, Bablu Sinha, Christopher Somes, Reiner Steinfeldt, Dandan Tao, Jerry Tjiputra, Adam Ulfsbo, Christoph Völker, Tsuyoshi Wakamatsu, and Ying Ye
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-182, https://doi.org/10.5194/bg-2023-182, 2023
Preprint under review for BG
Short summary
Short summary
For assessing the consequences of human-induced climate change for the marine realm, it is necessary to not only look at gradual changes but also at abrupt changes of environmental conditions. We summarise abrupt changes in ocean warming, acidification, and oxygen concentration as the key environmental factors for ecosystems. Taking these abrupt changes into account requires greenhouse gas emissions to be reduced to a larger extent than previously thought to limit respective damage.
Marion Bocquet, Sara Fleury, Fanny Piras, Eero Rinne, Heidi Sallila, Florent Garnier, and Frédérique Rémy
The Cryosphere, 17, 3013–3039, https://doi.org/10.5194/tc-17-3013-2023, https://doi.org/10.5194/tc-17-3013-2023, 2023
Short summary
Short summary
Sea ice has a large interannual variability, and studying its evolution requires long time series of observations. In this paper, we propose the first method to extend Arctic sea ice thickness time series to the ERS-2 altimeter. The developed method is based on a neural network to calibrate past missions on the current one by taking advantage of their differences during the mission-overlap periods. Data are available as monthly maps for each year during the winter period between 1995 and 2021.
Stephanie Leroux, Jean-Michel Brankart, Aurélie Albert, Laurent Brodeau, Jean-Marc Molines, Quentin Jamet, Julien Le Sommer, Thierry Penduff, and Pierre Brasseur
Ocean Sci., 18, 1619–1644, https://doi.org/10.5194/os-18-1619-2022, https://doi.org/10.5194/os-18-1619-2022, 2022
Short summary
Short summary
The goal of the study is to evaluate the predictability of the ocean circulation
at a kilometric scale, in order to anticipate the requirements of the future operational forecasting systems. For that purpose, ensemble experiments have been performed with a regional model for the Western Mediterranean (at 1/60° horizontal resolution). From these ensemble experiments, we show that it is possible to compute targeted predictability scores, which depend on initial and model uncertainties.
Florent Garnier, Sara Fleury, Gilles Garric, Jérôme Bouffard, Michel Tsamados, Antoine Laforge, Marion Bocquet, Renée Mie Fredensborg Hansen, and Frédérique Remy
The Cryosphere, 15, 5483–5512, https://doi.org/10.5194/tc-15-5483-2021, https://doi.org/10.5194/tc-15-5483-2021, 2021
Short summary
Short summary
Snow depth data are essential to monitor the impacts of climate change on sea ice volume variations and their impacts on the climate system. For that purpose, we present and assess the altimetric snow depth product, computed in both hemispheres from CryoSat-2 and SARAL satellite data. The use of these data instead of the common climatology reduces the sea ice thickness by about 30 cm over the 2013–2019 period. These data are also crucial to argue for the launch of the CRISTAL satellite mission.
Lester Kwiatkowski, Olivier Torres, Laurent Bopp, Olivier Aumont, Matthew Chamberlain, James R. Christian, John P. Dunne, Marion Gehlen, Tatiana Ilyina, Jasmin G. John, Andrew Lenton, Hongmei Li, Nicole S. Lovenduski, James C. Orr, Julien Palmieri, Yeray Santana-Falcón, Jörg Schwinger, Roland Séférian, Charles A. Stock, Alessandro Tagliabue, Yohei Takano, Jerry Tjiputra, Katsuya Toyama, Hiroyuki Tsujino, Michio Watanabe, Akitomo Yamamoto, Andrew Yool, and Tilo Ziehn
Biogeosciences, 17, 3439–3470, https://doi.org/10.5194/bg-17-3439-2020, https://doi.org/10.5194/bg-17-3439-2020, 2020
Short summary
Short summary
We assess 21st century projections of marine biogeochemistry in the CMIP6 Earth system models. These models represent the most up-to-date understanding of climate change. The models generally project greater surface ocean warming, acidification, subsurface deoxygenation, and euphotic nitrate reductions but lesser primary production declines than the previous generation of models. This has major implications for the impact of anthropogenic climate change on marine ecosystems.
Marco Meloni, Jerome Bouffard, Tommaso Parrinello, Geoffrey Dawson, Florent Garnier, Veit Helm, Alessandro Di Bella, Stefan Hendricks, Robert Ricker, Erica Webb, Ben Wright, Karina Nielsen, Sanggyun Lee, Marcello Passaro, Michele Scagliola, Sebastian Bjerregaard Simonsen, Louise Sandberg Sørensen, David Brockley, Steven Baker, Sara Fleury, Jonathan Bamber, Luca Maestri, Henriette Skourup, René Forsberg, and Loretta Mizzi
The Cryosphere, 14, 1889–1907, https://doi.org/10.5194/tc-14-1889-2020, https://doi.org/10.5194/tc-14-1889-2020, 2020
Short summary
Short summary
This manuscript aims to describe the evolutions which have been implemented in the new CryoSat Ice processing chain Baseline-D and the validation activities carried out in different domains such as sea ice, land ice and hydrology.
This new CryoSat processing Baseline-D will maximise the uptake and use of CryoSat data by scientific users since it offers improved capability for monitoring the complex and multiscale changes over the cryosphere.
Ann-Sophie Tissier, Jean-Michel Brankart, Charles-Emmanuel Testut, Giovanni Ruggiero, Emmanuel Cosme, and Pierre Brasseur
Ocean Sci., 15, 443–457, https://doi.org/10.5194/os-15-443-2019, https://doi.org/10.5194/os-15-443-2019, 2019
Short summary
Short summary
To better exploit the observational information available for all scales in data assimilation systems, we investigate a new method to introduce scale separation in the algorithm. It consists in carrying out the analysis with spectral localisation for the large scales and spatial localisation for the residual scales. The performance is then checked explicitly and separately for all scales. Results show that accuracy can be improved for the large scales while preserving reliability at all scales.
Florent Garnier, Pierre Brasseur, Jean-Michel Brankart, Yeray Santana-Falcon, and Emmanuel Cosme
Ocean Sci. Discuss., https://doi.org/10.5194/os-2018-153, https://doi.org/10.5194/os-2018-153, 2019
Publication in OS not foreseen
Related subject area
Approach: Data Assimilation | Depth range: All Depths | Geographical range: Deep Seas: North Atlantic | Phenomena: Biological Processes
Toward a multivariate reanalysis of the North Atlantic Ocean biogeochemistry during 1998–2006 based on the assimilation of SeaWiFS chlorophyll data
C. Fontana, P. Brasseur, and J.-M. Brankart
Ocean Sci., 9, 37–56, https://doi.org/10.5194/os-9-37-2013, https://doi.org/10.5194/os-9-37-2013, 2013
Cited articles
Anderson, J. L.: A method for producing and evaluating probabilistic forecasts
from ensemble model integrations, J. Climate, 9, 1518–1530,
https://doi.org/10.1175/1520-0442(1996)009<1518:AMFPAE>2.0.CO;2, 1996. a
Auger, P. A., Machu, E., Gorgues, T., Grima, N., and Waeles, M.: Comparative
study of potential transfer of natural and anthropogenic cadmium to plankton
communities in the North-West African upwelling, Sci. Total
Environ., 505, 870–888, https://doi.org/10.1016/j.scitotenv.2014.10.045, 2015. a
Aumont, O., Ethé, C., Tagliabue, A., Bopp, L., and Gehlen, M.: PISCES-v2: an ocean biogeochemical model for carbon and ecosystem studies, Geosci. Model Dev., 8, 2465–2513, https://doi.org/10.5194/gmd-8-2465-2015, 2015. a, b
Barnier, B., Madec, G., Penduff, T., Molines, J. M., Treguier, A. M.,
Le Sommer, J., Beckmann, A., Biastoch, A., Böning, C., Dengg, J., Derval,
C., Durand, E., Gulev, S., Remy, E., Talandier, C., Theetten, S., Maltrud,
M., McClean, J., and De Cuevas, B.: Impact of partial steps and momentum
advection schemes in a global ocean circulation model at eddy-permitting
resolution, Ocean Dynam., 56, 543–567, https://doi.org/10.1007/s10236-006-0082-1,
2006. a, b
Béal, D., Brasseur, P., Brankart, J.-M., Ourmières, Y., and Verron, J.: Characterization of mixing errors in a coupled physical biogeochemical model of the North Atlantic: implications for nonlinear estimation using Gaussian anamorphosis, Ocean Sci., 6, 247–262, https://doi.org/10.5194/os-6-247-2010, 2010. a
Berner, J., Achatz, U., Batté, L., Bengtsson, L., Cámara, A., Christensen,
H. M., Colangeli, M., Coleman, D. R. B., Crommelin, D., Dolaptchiev, S. I.,
Franzke, C. L. E., Friederichs, P., Imkeller, P., Järvinen, H., Juricke, S.,
Kitsios, V., Lott, F., Lucarini, V., Mahajan, S., Palmer, T. N., Penland, C.,
Sakradzija, M., von Storch, J. S., Weisheimer, A., Weniger, M., Williams,
P. D., and Yano, J. I.: Stochastic parameterization: Toward a new view of
weather and climate models, B. Am. Meteorol. Soc.,
98, 565–588, https://doi.org/10.1175/BAMS-D-15-00268.1, 2017. a
Bertino, L., Evensen, G., and Wackernagel, H.: Sequential data assimilation
techniques in oceanography, Int. Stat. Rev., 71, 223–241,
https://doi.org/10.1111/j.1751-5823.2003.tb00194.x, 2003. a
Bessières, L., Leroux, S., Brankart, J.-M., Molines, J.-M., Moine, M.-P., Bouttier, P.-A., Penduff, T., Terray, L., Barnier, B., and Sérazin, G.: Development of a probabilistic ocean modelling system based on NEMO 3.5: application at eddying resolution, Geosci. Model Dev., 10, 1091–1106, https://doi.org/10.5194/gmd-10-1091-2017, 2017. a
Bopp, L., Lévy, M., Resplandy, L., and Sallée, J. B.: Pathways of
anthropogenic carbon subduction in the global ocean, Geophys. Res.
Lett., 42, 6416–6423, https://doi.org/10.1002/2015GL065073, 2015. a
Boyer, T. P., Antonov, J. I., Baranova, O. K., Coleman, C., Garcia, H. E.,
Grodsky, A., Johnson, D. R., Locarnini, R. A., Mishonov, A. V., O'Brien,
T. D., Paver, C. R., Reagan, J. R., Seidov, D., Smolyar, I. V., and Zweng,
M. M.: World Ocean Database 2013, edited by: Levitus, S. and Mishonov, A. T., NOAA Atlas NESDIS 72, 209 pp., https://doi.org/10.7289/V5NZ85MT, 2013. a
Brankart, J.-M., Testut, C.-E., Béal, D., Doron, M., Fontana, C., Meinvielle, M., Brasseur, P., and Verron, J.: Towards an improved description of ocean uncertainties: effect of local anamorphic transformations on spatial correlations, Ocean Sci., 8, 121–142, https://doi.org/10.5194/os-8-121-2012, 2012. a, b
Brankart, J.-M., Candille, G., Garnier, F., Calone, C., Melet, A., Bouttier, P.-A., Brasseur, P., and Verron, J.: A generic approach to explicit simulation of uncertainty in the NEMO ocean model, Geosci. Model Dev., 8, 1285–1297, https://doi.org/10.5194/gmd-8-1285-2015, 2015. a, b
Brasseur, P. and Verron, J.: The SEEK filter method for data assimilation in
oceanography: a synthesis, Ocean Dynam., 56, 650–661,
https://doi.org/10.1007/s10236-006-0080-3, 2006. a, b
Brasseur, P., Gruber, N., Barciela, R., Brander, K., Doron, M., Elmoussaoui,
A., Hobday, A. J., Huret, M., Kremeur, A. S., Lehodey, P., Matear, R., Moulin, C., Murtugudde,
R., Senina, I., and Svendsen, E.:
Integrating biogeochemistry and ecology into ocean data assimilation systems,
Oceanography, 22, 206–215, https://doi.org/10.2307/24861004, 2009. a, b
Buizza, R., Milleer, M., and Palmer, T. N.: Stochastic representation of model
uncertainties in the ECMWF ensemble prediction system, Q. J.
Roy. Meteor. Soc., 125, 2887–2908,
https://doi.org/10.1002/qj.49712556006, 1999. a
Campbell, J. W.: The lognormal distribution as a model for bio-optical
variability in the sea, J. Geophys. Res.-Oceans, 100,
13237–13254, https://doi.org/10.1029/95JC00458, 1995. a
Candille, G., Brankart, J.-M., and Brasseur, P.: Assessment of an ensemble system that assimilates Jason-1/Envisat altimeter data in a probabilistic model of the North Atlantic ocean circulation, Ocean Sci., 11, 425–438, https://doi.org/10.5194/os-11-425-2015, 2015. a, b
Ciavatta, S., Brewin, R. J. W., Skakala, J., Polimene, L., de Mora, L.,
Artioli, Y., and Allen, J. I.: Assimilation of ocean-color plankton
functional types to improve marine ecosystem simulations, J.
Geophys. Res.-Oceans, 123, 834–854, https://doi.org/10.1002/2017JC013490,
2018. a, b
Claustre, H.: Bio-optical profiling floats as new observational tools for
biogeochemical and ecosystem studies: Potential synergies with ocean color
remote sensing, Proceedings of OceanObs'09: Sustained Ocean Observations
and Information for Society, Vol. 2, https://doi.org/10.5270/OceanObs09.cwp.17, 2009. a
Cossarini, G., Mariotti, L., Feudale, L., Mignot, A., Salon, S., Taillandier,
V., Teruzzi, A., and D'Ortenzio, F.: Towards operational 3D-Var assimilation
of chlorophyll Biogeochemical-Argo float data into a biogeochemical model of
the Mediterranean Sea, Ocean Model., 133, 112–128,
https://doi.org/10.1016/j.ocemod.2018.11.005, 2019. a
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi,
S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van
de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J.,
Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler,
M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J. -J., Park, B. -K.,
Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J. -N., and Vitart, F.: The
ERA-Interim reanalysis: configuration and performance of the data
assimilation system, Q. J. Roy. Meteor. Soc., 137,
553–597, https://doi.org/10.1002/qj.828, 2011. a
DeYoung, B., Heath, M., Werner, F., Chai, F., Megrey, B., and Monfray, P.:
Challenges of modeling ocean basin ecosystems, Science, 304, 1463–1466,
https://doi.org/10.1126/science.1094858, 2004. a
Doron, M., Brasseur, P., and Brankart, J. M.: Stochastic estimation of
biogeochemical parameters of a 3D ocean coupled physical–biogeochemical
model: Twin experiments, J. Marine Syst., 87, 194–207,
https://doi.org/10.1016/j.jmarsys.2011.04.001, 2011. a
Doron, M., Brasseur, P., Brankart, J. M., Losa, S. N., and Melet, A.:
Stochastic estimation of biogeochemical parameters from Globcolour ocean
colour satellite data in a North Atlantic 3D ocean coupled
physical–biogeochemical model, J. Marine Syst., 117, 81–95,
https://doi.org/10.1016/j.jmarsys.2013.02.007, 2013. a
Dutkiewicz, S., Follows, M., Marshall, J., and Gregg, W. W.: Interannual
variability of phytoplankton abundances in the North Atlantic, Deep-Sea
Res. Pt. II, 48, 2323–2344,
https://doi.org/10.1016/S0967-0645(00)00178-8, 2001. a
Elmoussaoui, A., Perruche, C., Greiner, E., Ethé, C., and Gehlen, M.:
Integration of biogeochemistry into Mercator Ocean systems, Mercator Ocean
newsletter, 40, 3–14, 2011. a
Fennel, K., Gehlen, M., Brasseur, P., Brown, C. W., Ciavatta, S., Cossarini,
G., Crise, A., Edwards, C. A., Ford, D., Friedrichs, M. A. M., Gregoire, M.,
Jones, E., Kim, H. C., Lamouroux, J., Murtugudde, R., and Perruche, C.:
Advancing Marine Biogeochemical and Ecosystem Reanalyses and Forecasts as
tools for monitoring and managing Ecosystem Health, Frontiers in Marine
Science, 6, 1–9, https://doi.org/10.3389/fmars.2019.00089, 2019. a
Follows, M. and Dutkiewicz, S.: Meteorological modulation of the North
Atlantic spring bloom, Deep-Sea Res. Pt. I, 49, 321–344, https://doi.org/10.1016/S0967-0645(01)00105-9, 2001. a
Fontana, C., Brasseur, P., and Brankart, J.-M.: Toward a multivariate reanalysis of the North Atlantic Ocean biogeochemistry during 1998–2006 based on the assimilation of SeaWiFS chlorophyll data, Ocean Sci., 9, 37–56, https://doi.org/10.5194/os-9-37-2013, 2013. a, b
Ford, D. A. and Barciela, R.: Global marine biogeochemical reanalyses
assimilating two different sets of merged ocean colour products, Remote
Sens. Environ., 203, 40–54, https://doi.org/10.1016/j.rse.2017.03.040, 2017. a
Ford, D. A., Edwards, K. P., Lea, D., Barciela, R. M., Martin, M. J., and Demaria, J.: Assimilating GlobColour ocean colour data into a pre-operational physical-biogeochemical model, Ocean Sci., 8, 751–771, https://doi.org/10.5194/os-8-751-2012, 2012. a
Garcia, H. E., Weathers, K. W., Paver, C. R., Smolyar, I., Boyer, T. P.,
Locarnini, R. A., Zweng, M. M., Mishonov, A. V., Baranova, O. K., Seidov, D.,
and Reagan, J. R.: NOAA Atlas NESDIS 84 WORLD OCEAN ATLAS 2018 Volume 4:
Dissolved Inorganic Nutrients (phosphate, nitrate and nitrate+nitrite,
silicate), World Ocean Atlas, 2019. a
Garnier, F., Brankart, J. M., Brasseur, P., and Cosme, E.: Stochastic
parameterizations of biogeochemical uncertainties in a 1/4∘
NEMO/PISCES model for probabilistic comparisons with ocean color data,
J. Marine Syst., 155, 59–72, https://doi.org/10.1016/j.jmarsys.2015.10.012,
2016. a, b, c, d, e, f, g, h, i, j, k
Geider, R. J., MacIntyre, H. L., and Kana, T. M.: Dynamic model of
phytoplankton growth and acclimation: responses of the balanced growth rate
and the chlorophyll a: carbon ratio to light, nutrient-limitation and
temperature, Mar. Ecol. Prog. Ser., 148, 187–200,
https://doi.org/10.3354/meps148187, 1997. a
Germineaud, C., Brankart, J. M., and Brasseur, P.: An ensemble-based
probabilistic score approach to compare observation scenarios: an application
to biogeochemical-Argo deployments, J. Atmos. Ocean.
Tech., 36, 2307–2326, https://doi.org/10.1175/JTECH-D-19-0002.1, 2019. a
Gregg, W.: Assimilation of SeaWiFS ocean chlorophyll data into a
three-dimensional global ocean model, J. Marine Syst., 69,
205–225, https://doi.org/10.1016/j.jmarsys.2006.02.015, 2008. a, b
Gregg, W. W. and Casey, N. W.: Global and regional evaluation of the SeaWiFS
chlorophyll data set, Remote Sens. Environ., 93, 463–479,
https://doi.org/10.1016/j.rse.2003.12.012, 2004. a, b
Gregg, W. W., Friedrichs, M. A. M., Robinson, A. R., Rose, K. A., Schlitzer,
R., Thompson, K. R., and Doney, S. C.: Skill assessment in ocean biological
data assimilation, J. Marine Syst., 76, 16–33,
https://doi.org/10.1016/j.jmarsys.2008.05.006, 2009. a, b, c
Hersbach, H.: Decomposition of the continuous ranked probability score for
ensemble prediction systems, Weather Forecast., 15, 559–570,
https://doi.org/10.1175/1520-0434(2000)015<0559:DOTCRP>2.0.CO;2, 2000. a
Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J.,
Dai, X., Maskell, K., and Johnson, C. A.: Climate change 2001: the scientific
basis, The Press Syndicate of the University of Cambridge, 2001. a
Jose, Y. S., Aumont, O., Machu, E., Penven, P., Moloney, C. L., and Maury, O.:
Influence of mesoscale eddies on biological production in the Mozambique
Channel: Several contrasted examples from a coupled ocean-biogeochemistry
model, Deep-Sea Res. Pt. II, 100,
79–93, https://doi.org/10.1016/j.dsr2.2013.10.018, 2014. a
Juricke, S., Palmer, T. N., and Zanna, L.: Stochastic subgrid-scale ocean
mixing: impacts on low-frequency variability, J. Climate, 30,
4997–5019, https://doi.org/10.1175/JCLI-D-16-0539.1, 2017. a
Lahoz, W., Khattatov, B., and Ménard, R.: Data assimilation: making sense
of observations, Part I: Theory, in: Data Assimilation, Springer, 2010. a
Le Fouest, V., Zakardjian, B., Saucier, F. J., and Cizmeli, S. A.: Application
of SeaWIFS- and AVHRR-derived data for mesoscale and regional validation of a
3-D high-resolution physical–biological model of the Gulf of St. Lawrence
(Canada), J. Marine Syst., 60, 30–50,
https://doi.org/10.1016/j.jmarsys.2005.11.008, 2006. a
Lefort, S., Aumont, O., Bopp, L., Arsouze, T., Gehlen, M., and Maury, O.:
Spatial and body-size dependent response of marine pelagic communities to
projected global climate change, Glob. Change Biol., 21, 154–164,
https://doi.org/10.1111/gcb.12679, 2015. a
Leutbecher, M., Lock, S. J., Ollinaho, P., Lang, S. T. K., Balsamo, G.,
Bechtold, P., Bonavita, M., Christensen, H. M., Diamantakis, M., Dutra, E.,
English, S., Fisher, M., Forbes, R. M., Goddard, J., Haiden, T., Hogan,
R. J., Juricke, S., Lawrence, H., MacLeod, D., Magnusson, L., Malardel, S.,
Massart, S., Sandu, I., Smolarkiewicz, P. K., Subramanian, A., Vitart, F.,
Wedi, N., and Weisheimer, A.: Stochastic representations of model
uncertainties at ECMWF: State of the art and future vision, Q.
J. Roy. Meteor. Soc., 143, 2315–2339,
https://doi.org/10.1002/qj.3094, 2017. a
Levitus, S., Boyer, T. P., Conkright, M. E., O’brien, T., Antonov, J.,
Stephens, C., Stathoplos, L., Johnson, D., and Gelfeld, R.: NOAA Atlas
NESDIS 18, World Ocean Database 1998: vol. 1: Introduction, US Government
Printing Office, Washington DC, 346, 1998. a
Lévy, M., Iovino, D., Resplandy, L., Klein, P., Madec, G., Tréguier,
A. M., Masson, S., and Takahashi, K.: Large-scale impacts of submesoscale
dynamics on phytoplankton: Local and remote effects, Ocean Model., 43,
77–93, https://doi.org/10.1016/j.ocemod.2011.12.003, 2012. a
Longhurst, A., Sathyendranath, S., Platt, T., and Caverhill, C.: An estimate of
global primary production in the ocean from satellite radiometer data,
J. Plankton Res., 17, 1245–1271, https://doi.org/10.1093/plankt/17.6.1245,
1995. a, b
Madec, G., Bourdallé-Badie, R., Bouttier, P. A., Bricaud, C., Bruciarferri, D., Calvert,
D., Chanut, J., Clementi, E., Coward, A., Delrosso, D., Ethé, C., Flavoni, S., Graham, T.,
Harle, J., Iovino, D., Lea, D., Lévy, C., Lovato, T., Martin, N., Masson, S., Mocavero, S.,
Paul, J., Rousset, C., Storkey, D., Storto, A., and Vancoppenolle, M.: NEMO ocean engine, Zenodo, https://doi.org/10.5281/zenodo.3248739, 2015. a
Mattern, J. P., Song, H., Edwards, C. A., Moore, A. M., and Fiechter, J.: Data
assimilation of physical and chlorophyll a observations in the California
Current System using two biogeochemical models, Ocean Model., 109,
55–71, https://doi.org/10.1016/j.ocemod.2016.12.002, 2017. a
Mélin, F., Sclep, G., Jackson, T., and Sathyendranath, S.: Uncertainty
estimates of remote sensing reflectance derived from comparison of ocean
color satellite data sets, Remote Sens. Environ., 177, 107–124,
https://doi.org/10.1016/j.rse.2016.02.014, 2016. a
NEMO Consortium: https://www.nemo-ocean.eu/, last access: 27 October
2020.
Oschlies, A. and Garçon, V.: Eddy-induced enhancement of primary production in
a model of the North Atlantic Ocean, Nature, 394, 266–269,
https://doi.org/10.1038/28373, 1998. a
Ourmières, Y., Brasseur, P., Lévy, M., Brankart, J. M., and Verron, J.:
On the key role of nutrient data to constrain a coupled
physical–biogeochemical assimilative model of the North Atlantic Ocean,
J. Marine Syst., 75, 100–115, https://doi.org/10.1016/j.jmarsys.2008.08.003,
2009. a, b, c, d
Palmer, T. N.: Towards the probabilistic Earth-system simulator: a vision for
the future of climate and weather prediction, Q. J. Roy.
Meteor. Soc., 138, 841–861, https://doi.org/10.1002/qj.1923, 2012. a
Pérez, V., Fernández, E., Marañón, E., Morán, X.
A. G., and Zubkov, M. V.: Vertical distribution of phytoplankton biomass,
production and growth in the Atlantic subtropical gyres, Deep-Sea Res.
Pt. I, 53, 1616–1634,
https://doi.org/10.1016/j.dsr.2006.07.008, 2006. a
Pham, D. T., Verron, J., and Roubaud, M. C.: A singular evolutive extended
Kalman filter for data assimilation in oceanography, J. Marine
Syst., 16, 323–340, https://doi.org/10.1016/S0924-7963(97)00109-7, 1998. a, b
Rousseaux, C. S. and Gregg, W. W.: Climate variability and phytoplankton
composition in the Pacific Ocean, J. Geophys. Res.-Oceans,
117, C10006, https://doi.org/10.1029/2012JC008083, 2012. a
SESAM: http://pp.ige-grenoble.fr/pageperso/brankarj/SESAM/, last access: 27 October 2020.
Simmons, A.: ERA-Interim: New ECMWF reanalysis products from 1989 onwards,
ECMWF Newsletter, 110, 25–36, 2006. a
Teruzzi, A., Bolzon, G., Salon, S., Lazzari, P., Solidoro, C., and Cossarini,
G.: Assimilation of coastal and open sea biogeochemical data to improve
phytoplankton simulation in the Mediterranean Sea, Ocean Model., 132,
46–60, https://doi.org/10.1016/j.ocemod.2018.09.007, 2018. a
Terzić, E., Lazzari, P., Organelli, E., Solidoro, C., Salon, S., D'Ortenzio, F., and Conan, P.: Merging bio-optical data from Biogeochemical-Argo floats and models in marine biogeochemistry, Biogeosciences, 16, 2527–2542, https://doi.org/10.5194/bg-16-2527-2019, 2019. a
Toth, Z., Talagrand, O., Candille, G., and Zhu, Y.: Probability and ensemble
forecasts, Forecast Verification: A Practitioner's Guide in Atmospheric
Science, 137–163, 2003. a
von Schuckmann, K., Le Traon, P. Y., Smith, N., Pascual, A., Djavidnia, S. L.,
Gattuso, J. P., Grégoire, M., Nolan, G., Aaboe, S., Aguiar, E., Álvarez
Fanjul, E., Alvera-Azcárate, A., Aouf, L., Barciela, R., Behrens, A., Belmonte Rivas, M.,
Ben Ismail, S., Bentamy, A., Borgini, M., Brando, V. E., Bensoussan, N., Blauw, A., Bryère,
P., Buongiorno Nardelli, B., Caballero, A., Çaglar Yumruktepe, V., Cebrian, E., Chiggiato,
J., Clementi, E., Corgnati, L., de Alfonso, M., de Pascual Collar, A., Deshayes, J., Di
Lorenzo, E., Dominici, J. M., Dupouy, C., Drévillon, M., Echevin, V., Eleveld, M., Enserink,
L., García Sotillo, M., Garnesson, P., Garrabou, J., Garric, G., Gasparin, F., Gayer, G.,
Gohin, F., Grandi, A., Griffa, A., Gourrion, J., Hendricks, S., Heuzé, C., Holland, E., Iovino,
D., Juza, M., Kersting, D. K., Kipson, S., Kizilkaya, Z., Korres, G., Kõuts, M., Lagemaa, P.,
Lavergene, T., Lavigne, H., Ledoux, J. B., Legeais, J. F., Lehodey, Pl., Linares, C., Liu, Y.,
Mader, J., Maljutenko, I., Mangin, A., Manso-Narvarte, I., Mantovani, C., Markager, S.,
Mason, E., Mignot, A., Menna, M., Monier, M., Mourre, B., Müller, M., Nielsen, J. W.,
Notarstefano, G., Ocaña, O., Pascual, A., Patti, B., Payne, M. R., Periache, M., Pardo, S.,
Pérez Gómez, B., Pisano, A., Perruche, C., Peterson, K. A., Pujol, M. I., Raudsepp, U.,
Ravdas, M., Raj, R. P., Renshaw, R., Reyes, E., Ricker, R., Rubio, A., Sammartino, M.,
Santoleri, R., Sathyendranath, S., Schroeder, K., She, J., Sparnocchia, S., Staneva, J.,
Stoffelen, A., Szekely, T., Tilstone, G. H., Tinker, J., Tintoré, J., Tranchant, B., Uiboupin, R.,
Van der Zande, D., von Schuckman, K., Wood, R., Woge Nielsen, J., Zabala, M.,
Zacharioudaki, A., Zuberer, F., and Zuo, H.:
Copernicus Marine Service Ocean State Report, Issue 3, J. Oper.
Oceanogr., 12, S1–S123, https://doi.org/10.1080/1755876X.2019.1633075, 2019.
a
Xiao, Y. and Friedrichs, M. A. M.: The assimilation of satellite-derived data
into a one-dimensional lower trophic level marine ecosystem model, J.
Geophys. Res.-Oceans, 119, 2691–2712, https://doi.org/10.1002/2013JC009433,
2014. a
Xing, X. G., Zhao, D. Z., and Claustre, H.: A new autonomous observation
platform of marine biogeochemistry: Bio-Argo floats, Mar. Environ.
Sci., 5, 733–739, 2012. a
Yu, L., Fennel, K., Bertino, L., El Gharamti, M., and Thompson, K. R.: Insights
on multivariate updates of physical and biogeochemical ocean variables using
an Ensemble Kalman Filter and an idealized model of upwelling, Ocean
Model., 126, 13–28, https://doi.org/10.1016/j.ocemod.2018.04.005, 2018. a, b
Zhang, Y., Xu, H., Qiao, F., and Dong, C.: Seasonal variation of the global
mixed layer depth: comparison between Argo data and FIO-ESM, Front.
Earth Sci., 12, 24–36, https://doi.org/10.1007/s11707-017-0631-6, 2018. a
Short summary
Data assimilation is the most comprehensive strategy to estimate the biogeochemical state of the ocean. Here, surface Chl a data are daily assimilated into a 24-member NEMO–PISCES ensemble configuration to implement a complete 4D assimilation system. Results show the assimilation increases the skills of the ensemble, though a regional diagnosis suggests that the description of model and observation uncertainties needs to be refined according to the biogeochemical characteristics of each region.
Data assimilation is the most comprehensive strategy to estimate the biogeochemical state of the...