Articles | Volume 16, issue 5
Ocean Sci., 16, 1297–1315, 2020
https://doi.org/10.5194/os-16-1297-2020
Ocean Sci., 16, 1297–1315, 2020
https://doi.org/10.5194/os-16-1297-2020

Research article 29 Oct 2020

Research article | 29 Oct 2020

Assimilation of chlorophyll data into a stochastic ensemble simulation for the North Atlantic Ocean

Yeray Santana-Falcón et al.

Related authors

Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections
Lester Kwiatkowski, Olivier Torres, Laurent Bopp, Olivier Aumont, Matthew Chamberlain, James R. Christian, John P. Dunne, Marion Gehlen, Tatiana Ilyina, Jasmin G. John, Andrew Lenton, Hongmei Li, Nicole S. Lovenduski, James C. Orr, Julien Palmieri, Yeray Santana-Falcón, Jörg Schwinger, Roland Séférian, Charles A. Stock, Alessandro Tagliabue, Yohei Takano, Jerry Tjiputra, Katsuya Toyama, Hiroyuki Tsujino, Michio Watanabe, Akitomo Yamamoto, Andrew Yool, and Tilo Ziehn
Biogeosciences, 17, 3439–3470, https://doi.org/10.5194/bg-17-3439-2020,https://doi.org/10.5194/bg-17-3439-2020, 2020
Short summary
An ensemble probabilisitic approach to reconstruct the biogeochemical state of the North Atlantic Ocean using ocean colour images
Florent Garnier, Pierre Brasseur, Jean-Michel Brankart, Yeray Santana-Falcon, and Emmanuel Cosme
Ocean Sci. Discuss., https://doi.org/10.5194/os-2018-153,https://doi.org/10.5194/os-2018-153, 2019
Publication in OS not foreseen

Related subject area

Depth range: All Depths | Approach: Data Assimilation | Geographical range: Deep Seas: North Atlantic | Phenomena: Biological Processes
Toward a multivariate reanalysis of the North Atlantic Ocean biogeochemistry during 1998–2006 based on the assimilation of SeaWiFS chlorophyll data
C. Fontana, P. Brasseur, and J.-M. Brankart
Ocean Sci., 9, 37–56, https://doi.org/10.5194/os-9-37-2013,https://doi.org/10.5194/os-9-37-2013, 2013

Cited articles

Anderson, J. L.: A method for producing and evaluating probabilistic forecasts from ensemble model integrations, J. Climate, 9, 1518–1530, https://doi.org/10.1175/1520-0442(1996)009<1518:AMFPAE>2.0.CO;2, 1996. a
Auger, P. A., Machu, E., Gorgues, T., Grima, N., and Waeles, M.: Comparative study of potential transfer of natural and anthropogenic cadmium to plankton communities in the North-West African upwelling, Sci. Total Environ., 505, 870–888, https://doi.org/10.1016/j.scitotenv.2014.10.045, 2015. a
Aumont, O., Ethé, C., Tagliabue, A., Bopp, L., and Gehlen, M.: PISCES-v2: an ocean biogeochemical model for carbon and ecosystem studies, Geosci. Model Dev., 8, 2465–2513, https://doi.org/10.5194/gmd-8-2465-2015, 2015. a, b
Barnier, B., Madec, G., Penduff, T., Molines, J. M., Treguier, A. M., Le Sommer, J., Beckmann, A., Biastoch, A., Böning, C., Dengg, J., Derval, C., Durand, E., Gulev, S., Remy, E., Talandier, C., Theetten, S., Maltrud, M., McClean, J., and De Cuevas, B.: Impact of partial steps and momentum advection schemes in a global ocean circulation model at eddy-permitting resolution, Ocean Dynam., 56, 543–567, https://doi.org/10.1007/s10236-006-0082-1, 2006. a, b
Béal, D., Brasseur, P., Brankart, J.-M., Ourmières, Y., and Verron, J.: Characterization of mixing errors in a coupled physical biogeochemical model of the North Atlantic: implications for nonlinear estimation using Gaussian anamorphosis, Ocean Sci., 6, 247–262, https://doi.org/10.5194/os-6-247-2010, 2010. a
Download
Short summary
Data assimilation is the most comprehensive strategy to estimate the biogeochemical state of the ocean. Here, surface Chl a data are daily assimilated into a 24-member NEMO–PISCES ensemble configuration to implement a complete 4D assimilation system. Results show the assimilation increases the skills of the ensemble, though a regional diagnosis suggests that the description of model and observation uncertainties needs to be refined according to the biogeochemical characteristics of each region.