Articles | Volume 16, issue 5
https://doi.org/10.5194/os-16-1067-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-16-1067-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Can the boundary profiles at 26° N be used to extract buoyancy-forced Atlantic Meridional Overturning Circulation signals?
Irene Polo
CORRESPONDING AUTHOR
Department of Meteorology, University of Reading, Reading, RG6 6BB, United Kingdom
Departamento de Física de la Tierra y Astrofísica,
Universidad Complutense de Madrid, Madrid, 28040, Spain
Keith Haines
Department of Meteorology, University of Reading, Reading, RG6 6BB, United Kingdom
Department of Meteorology, University of Reading, Reading, RG6 6BB, United Kingdom
Christopher Thomas
Department of Meteorology, University of Reading, Reading, RG6 6BB, United Kingdom
Related authors
Víctor Galván Fraile, Belén Rodríguez-Fonseca, Irene Polo, Marta Martín-Rey, and María N. Moreno-García
EGUsphere, https://doi.org/10.5194/egusphere-2024-2897, https://doi.org/10.5194/egusphere-2024-2897, 2024
Short summary
Short summary
Dynamical models often struggle with complex interactions in remote regions, leading to reduced accuracy. To address this, statistical models that identify relationships between predictors and predictands are valuable. NN4CAST, our deep learning model, enhances seasonal predictions by capturing these dynamics effectively, especially in challenging regions like the North Atlantic. This advancement could benefit critical sectors including marine ecosystems, public health, and energy management.
Davi Mignac, Jennifer Waters, Daniel J. Lea, Matthew J. Martin, James While, Anthony T. Weaver, Arthur Vidard, Catherine Guiavarc’h, Dave Storkey, David Ford, Edward W. Blockley, Jonathan Baker, Keith Haines, Martin R. Price, Michael J. Bell, and Richard Renshaw
EGUsphere, https://doi.org/10.5194/egusphere-2024-3143, https://doi.org/10.5194/egusphere-2024-3143, 2024
Short summary
Short summary
We describe major improvements of the Met Office's global ocean-sea ice forecasting system. The models and the way observations are used to improve the forecasts were changed, which led to a significant error reduction of 1-day forecasts. The new system performance in past conditions, where sub-surface observations are scarce, was improved with more consistent ocean heat content estimates. The new system will be of better use for climate studies and will provide improved forecasts for end users.
Víctor Galván Fraile, Belén Rodríguez-Fonseca, Irene Polo, Marta Martín-Rey, and María N. Moreno-García
EGUsphere, https://doi.org/10.5194/egusphere-2024-2897, https://doi.org/10.5194/egusphere-2024-2897, 2024
Short summary
Short summary
Dynamical models often struggle with complex interactions in remote regions, leading to reduced accuracy. To address this, statistical models that identify relationships between predictors and predictands are valuable. NN4CAST, our deep learning model, enhances seasonal predictions by capturing these dynamics effectively, especially in challenging regions like the North Atlantic. This advancement could benefit critical sectors including marine ecosystems, public health, and energy management.
Jozef Skakala, David Ford, Keith Haines, Amos Lawless, Matthew Martin, Philip Browne, Marcin Chrust, Stefano Ciavatta, Alison Fowler, Daniel Lea, Matthew Palmer, Andrea Rochner, Jennifer Waters, Hao Zuo, Mike Bell, Davi Carneiro, Yumeng Chen, Susan Kay, Dale Partridge, Martin Price, Richard Renshaw, Georgy Shapiro, and James While
EGUsphere, https://doi.org/10.5194/egusphere-2024-1737, https://doi.org/10.5194/egusphere-2024-1737, 2024
Short summary
Short summary
In this paper we review marine data assimilation (MDA) in the UK, its stakeholders, needs, past and present developments in different areas of UK MDA, and offer a vision for their longer future. The specific areas covered are ocean physics and sea ice, marine biogeochemistry, coupled MDA, MDA informing observing network design and MDA theory. We also discuss future vision for MDA resources: observations, software, hardware and people skills.
Teresa Carmo-Costa, Roberto Bilbao, Jon Robson, Ana Teles-Machado, and Pablo Ortega
EGUsphere, https://doi.org/10.5194/egusphere-2024-1569, https://doi.org/10.5194/egusphere-2024-1569, 2024
Short summary
Short summary
Climate models can be used to skilfully predict decadal changes in North Atlantic ocean heat content. However, significant regional differences among these models reveal large uncertainties in the influence of external forcings. This study examines eight climate models to understand the differences in their predictive capacity for the North Atlantic, investigating the importance of external forcings and key model characteristics such as ocean stratification and the local atmospheric forcing.
Bo Dong, Ross Bannister, Yumeng Chen, Alison Fowler, and Keith Haines
Geosci. Model Dev., 16, 4233–4247, https://doi.org/10.5194/gmd-16-4233-2023, https://doi.org/10.5194/gmd-16-4233-2023, 2023
Short summary
Short summary
Traditional Kalman smoothers are expensive to apply in large global ocean operational forecast and reanalysis systems. We develop a cost-efficient method to overcome the technical constraints and to improve the performance of existing reanalysis products.
Samantha Petch, Bo Dong, Tristan Quaife, Robert P. King, and Keith Haines
Hydrol. Earth Syst. Sci., 27, 1723–1744, https://doi.org/10.5194/hess-27-1723-2023, https://doi.org/10.5194/hess-27-1723-2023, 2023
Short summary
Short summary
Gravitational measurements of water storage from GRACE (Gravity Recovery and Climate Experiment) can improve understanding of the water budget. We produce flux estimates over large river catchments based on observations that close the monthly water budget and ensure consistency with GRACE on short and long timescales. We use energy data to provide additional constraints and balance the long-term energy budget. These flux estimates are important for evaluating climate models.
Oscar Dimdore-Miles, Lesley Gray, Scott Osprey, Jon Robson, Rowan Sutton, and Bablu Sinha
Atmos. Chem. Phys., 22, 4867–4893, https://doi.org/10.5194/acp-22-4867-2022, https://doi.org/10.5194/acp-22-4867-2022, 2022
Short summary
Short summary
This study examines interactions between variations in the strength of polar stratospheric winds and circulation in the North Atlantic in a climate model simulation. It finds that the Atlantic Meridional Overturning Circulation (AMOC) responds with oscillations to sets of consecutive Northern Hemisphere winters, which show all strong or all weak polar vortex conditions. The study also shows that a set of strong vortex winters in the 1990s contributed to the recent slowdown in the observed AMOC.
Pablo Ortega, Jon I. Robson, Matthew Menary, Rowan T. Sutton, Adam Blaker, Agathe Germe, Jöel J.-M. Hirschi, Bablu Sinha, Leon Hermanson, and Stephen Yeager
Earth Syst. Dynam., 12, 419–438, https://doi.org/10.5194/esd-12-419-2021, https://doi.org/10.5194/esd-12-419-2021, 2021
Short summary
Short summary
Deep Labrador Sea densities are receiving increasing attention because of their link to many of the processes that govern decadal climate oscillations in the North Atlantic and their potential use as a precursor of those changes. This article explores those links and how they are represented in global climate models, documenting the main differences across models. Models are finally compared with observational products to identify the ones that reproduce the links more realistically.
Prima Anugerahanti, Shovonlal Roy, and Keith Haines
Biogeosciences, 15, 6685–6711, https://doi.org/10.5194/bg-15-6685-2018, https://doi.org/10.5194/bg-15-6685-2018, 2018
Short summary
Short summary
Minor changes in the biogeochemical model equations lead to major dynamical changes. We assessed this structural sensitivity for the MEDUSA biogeochemical model on chlorophyll and nitrogen concentrations at five oceanographic stations over 10 years, using 1-D ensembles generated by combining different process equations. The ensemble performed better than the default model in most of the stations, suggesting that our approach is useful for generating a probabilistic biogeochemical ensemble model.
Davi Mignac, David Ferreira, and Keith Haines
Ocean Sci., 14, 53–68, https://doi.org/10.5194/os-14-53-2018, https://doi.org/10.5194/os-14-53-2018, 2018
Short summary
Short summary
Four ocean reanalyses and two free-running models are compared to study the meridional transports in the South Atlantic. We analyse the underlying causes of the product differences in an attempt to understand the potential impact (and limitations) of the data assimilation (DA) in improving the simulated ocean states. The DA schemes can consistently constrain the basin interior transports, but not the overturning circulation dominated by the narrow South Atlantic western boundary currents.
N. Melia, K. Haines, and E. Hawkins
The Cryosphere, 9, 2237–2251, https://doi.org/10.5194/tc-9-2237-2015, https://doi.org/10.5194/tc-9-2237-2015, 2015
Short summary
Short summary
Projections of Arctic sea ice thickness (SIT) have the potential to inform stakeholders about accessibility to the region, but are currently rather uncertain. We present a new method to constrain global climate model simulations of SIT to narrow projection uncertainty via a statistical bias-correction technique.
V. N. Stepanov and K. Haines
Ocean Sci., 10, 645–656, https://doi.org/10.5194/os-10-645-2014, https://doi.org/10.5194/os-10-645-2014, 2014
Related subject area
Approach: Numerical Models | Depth range: All Depths | Geographical range: Deep Seas: North Atlantic | Phenomena: Temperature, Salinity and Density Fields
A new method to assess mesoscale contributions to meridional heat transport in the North Atlantic Ocean
Andrew Delman and Tong Lee
Ocean Sci., 16, 979–995, https://doi.org/10.5194/os-16-979-2020, https://doi.org/10.5194/os-16-979-2020, 2020
Short summary
Short summary
The oceans play an important role in moving heat between the equatorial and polar regions, with both large current systems and smaller eddies contributing to this heat transport. This analysis separates the contribution of the larger-scale and eddy-scale flows in the North Atlantic, finding that eddy-scale flows account for 25–35 % of the heat transport in middle latitudes near 40° N. The study also shows how the year-to-year variability of eddies contributes to heat transport changes at 40° N.
Cited articles
Balan Sarojini, B., Gregory, J. M., Tailleux, R., Bigg, G. R., Blaker, A. T., Cameron, D. R., Edwards, N. R., Megann, A. P., Shaffrey, L. C., and Sinha, B.: High frequency variability of the Atlantic meridional overturning circulation, Ocean Sci., 7, 471–486, https://doi.org/10.5194/os-7-471-2011, 2011.
Balmaseda, M. A., Mogensen, K., and Weaver, A. T.: Evaluation of the ECMWF
ocean reanalysis system ORAS4, Q. J. Roy. Meteor. Soc., 139, 1132–1161, 2013.
Biastoch, A., Boning, C. W., Getzlaff, J., Molines, J. M., and Madec, G.:
Causes of interannual–decadal variability in the meridional overturning
circulation of the midlatitude North Atlantic Ocean, J. Climate, 21,
6599–6615, https://doi.org/10.1175/2008JCLI2404.1, 2008.
Bitz, C. M. and Lipscomb, W. H.: An energy-conserving thermodynamic model of sea ice, J. Geophys. Res.-Oceans, 104, 15669–15677, https://doi.org/10.1029/1999JC900100, 1999.
Blake, A. T., Hirschi, J. M., McCarthy, G., Sinha, B., Taws, S., Marsh, R.,
Coward, A., and de Cuevas, B.: Historical analogues of the recent extreme
minima observed in the Atlantic meridional overturning circulation at
26∘ N, Clim. Dynam., 22, 457–473, https://doi.org/10.1007/s00382-014-2274-6,
2015.
Bower, A. S., Lozier, M. S., Gary, S. F. and Boning, C. W.: Interior pathways
of the North Atlantic meridional overturning circulation, Nature, 459,
243–247, https://doi.org/10.1038/nature07979, 2009.
Bretherton, S. B., Smith, C., and Wallace, J. H.: An inter comparison of
methods for finding coupled patterns in climate data, J. Climate, 5,
541–560, https://doi.org/10.1175/1520-0442(1992)005<0541:AIOMFF>2.0.CO;2, 1992.
Cabanes, C., Lee, T., and Fu, L.-L.: Mechanisms of inter-annual variations
of the meridional overturning circulation of the North Atlantic Ocean, J.
Phys. Oceanogr., 38, 467–480, https://doi.org/10.1175/2007JPO3726.1, 2008.
Cunningham, S. A., Kanzow, T., Rayner, D., Baringer M. O., Johns, W. E., Marotzke, J., Longworth, H. R., Grant, E. M., Hirschi, J. J. M., Beal, L. M., Meinen, C. S., and Bryden, H. L.: Temporal variability of the Atlantic
meridional overturning circulation at 26.58N, Science, 317, 935–938,
https://doi.org/10.1126/science.1141304, 2007.
Davey, M. K., Hsieh, W. W., and Wajsowicz, R. C.: The Free Kelvin Wave with
Lateral and Vertical Viscosity, J. Phys. Oceanogr., 13, 2182–2191,
https://doi.org/10.1175/1520-0485(1983)013<2182:TFKWWL>2.0.CO;2, 1983.
Deans, S. R.: The Radon Transform and Some of Its Applications, John Wiley
and Sons, New York, 289 pp., 1983.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kallberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis: Configuration and
performance of the data assimilation system, Q. J. Roy. Meteor. Soc.,
137, 553–597, https://doi.org/10.1002/qj.828, 2011.
Duchez, A., Frajka-Williams, E.,
Castro, N., Hirschi, J. M., and Coward, A.:
Seasonal to interannual variability in
density around the Canary Islands and
their influence on the Atlantic
meridional overturning circulation at
26∘ N, J. Geophys. Res.-Oceans, 119,
1843–1860, https://doi.org/10.1002/2013JC009416, 2014.
Getzlaff, J., Böning, C. W., Eden, C., and Biastoch, A.: Signal
propagation related to the North Atlantic overturning, Geophys. Res. Lett.,
32, L09602, https://doi.org/10.1029/2004GL021002, 2005.
Hermanson, L., Eade R., Robinson, N. H., Dunstone, N., Andrews, M. B.,
Knight, J. R., Scaife, A. A., and Smith, D. M.: Forecast cooling of the
Atlantic subpolar gyre and associated impacts, Geophys. Res. Lett., 41,
5167–5174, 2014.
Hirschi, J. H., Killworth, P. D., and Blundell, J. R.: Subannual, seasonal,
and interannual variability of the North Atlantic meridional overturning
circulation, J. Phys. Oceanogr., 37, 1246–1265, https://doi.org/10.1175/JPO3049.1,
2007.
Hodson, D. L. R. and Sutton, R. T.: The impact of resolution on the
adjustment and decadal variability of the Atlantic meridional overturning
circulation in a coupled climate model, Clim. Dynam., 39, 3057–3073,
https://doi.org/10.1007/s00382-012-1309-0, 2012.
Hsieh, W. W., Davey, M. K., and Wajsowicz, R. C.: The Free Kelvin Wave in Finite-Difference Numerical Models, J. Phys. Oceanogr., 13, 1383–1397,
https://doi.org/10.1175/1520-0485(1983)013<1383:TFKWIF>2.0.CO;2, 1983.
Huang, R. X., Cane, M. A., Naik, N., and Goodman, R.: Global adjustment of
the thermocline in response to deepwater formation, Geophys. Res. Lett., 27,
759–762, 2000.
Illig, S., Dewitte, B., Ayoub, N., du Penhoat, Y., Reverdin, G., De Mey, P.,
Bonjean, F., and Lagerloef, S. G.: Interannual long equatorial waves in the
tropical Atlantic from a high-resolution ocean general circulation model
experiment in 1981–2000. J. Geophys. Res., 109, C02022,
https://doi.org/10.1029/2003JC001771, 2004.
Jackson, L. C., Peterson, K. A., Roberts, C. D., and Wood, R. A.: Recent
slowing of Atlantic overturning circulation as a recovery from earlier
strengthening, Nat. Geosi., 9, 518–522, https://doi.org/10.1038/NGEO2715, 2016.
Johnson, H. L. and Marshall, D. P.: A theory for the surface Atlantic
response to thermohaline variability, J. Phys. Oceanogr., 32, 1121–1132,
2002.
Kawase, M.: Establishment of deep ocean circulation driven by deep-water
production, J. Phys. Oceanogr., 17, 2294–2317, 1987.
Kanzow, T., Cunningham, S. A., Johns, W. E., Hirschi, J. M., Marotzke, J.,
Baringer, M. O., Meinen, C. S., Chidichimo, M. P., Atkinson, C., Beal, L.
M., Bryden, H. L., and Collins, J.: Seasonal variability of the Atlantic
meridional overturning circulation at 26.58N, J. Climate, 23, 5678–5698,
https://doi.org/10.1175/2010JCLI3389.1, 2010.
Karspeck, A. R., Stammer, D., Köhl, A., Danabasoglu, G., Balmaseda, M., Smith, D. M., Fujii, Y., Zhang, S., Giese, B., Tsujino, H., and Rosati, A.: Comparison of the Atlantic meridional overturning circulation between 1960 and 2007 in six ocean reanalysis products, Clim. Dynam., 49, 957–982, https://doi.org/10.1007/s00382-015-2787-7, 2017.
Knight, J. R., Allan, R. J., Folland, C. K., Vellinga, M., and Mann, M. E.:
A signature of persistent natural thermohaline circulation cycles in
observed climate, Geophys. Res. Lett., 32, L20708, https://doi.org/10.1029/2005GL024233,
2005
Lanczos, C.: Applied Analysis, 539 pp., Englewood Cliffs, N.J., Prentice-Hall, 1956.
Madec, G., Delecluse, P., Imbard, M., and Levy, C.: OPA 8.1 ocean general circulation model reference manual, IPSL Notes du Pole de Modelisation 11, 91 pp., 1998.
Marshall, D. and Johnson, H.: Propagation of meridional circulation
anomalies along western and eastern boundaries, J. Phys. Oceanogr., 43,
2699–2717, https://doi.org/10.1175/JPO-D-13-0134.1, 2013.
McCarthy, G. D., Smeed, D. A., Johns, W. E., Frajka-Williams, E., Moat, B. I.,
Rayner, D., Baringer, M. O., Meinen, C. S., Collins, J., and Bryden, H. L.:
Measuring the Atlantic Meridional Overturning Circulation at 26N, Prog.
Oceanogr., 130, 91–111, 2015.
Megann, A., Storkey, D., Aksenov, Y., Alderson, S., Calvert, D., Graham, T., Hyder, P., Siddorn, J., and Sinha, B.: GO5.0: the joint NERC–Met Office NEMO global ocean model for use in coupled and forced applications, Geosci. Model Dev., 7, 1069–1092, https://doi.org/10.5194/gmd-7-1069-2014, 2014.
Menary, M. B., Hodson, D. L. R., Robson, J., Sutton, R. T., Wood, R. A., and
Hunt, J. A.: Exploring the impact of CMIP5 model biases on the simulation of
North Atlantic decadal variability, Geophys. Res. Lett., 42, 5926–5934,
https://doi.org/10.1002/2015GL064360, 2015.
Metz, W.: Optimal relationship of large-scale flow patterns and the
barotropic feedback due to high-frequency eddies, J. Atmos. Sci., 48,
1141–1159, 1991.
Moat, B. I., Frajka-Williams, E., Smeed, D. A., Rayner, D., Sanchez-Franks, A., Johns, W. E., Baringer, M. O., Volkov, D., and Collins, J.: Atlantic meridional overturning circulation observed by the RAPID-MOCHA-WBTS. (RAPID-Meridional Overturning Circulation and HeatfluxArray-Western Boundary Time Series) array at 26N from 2004 to 2018 (v2018.2), British Oceanographic Data Centre-Natural Environment Research Council, UK, https://doi.org/10.5285/aa57e879-4cca-28b6-e053-6c86abc02de5, 2020.
Ortega, P., Robson, J., Sutton, R. T., and Andrews, M. B.: Mechanisms of
decadal variability in the Labrador Sea and the wider North Atlantic in a
high-resolution climate model, Clim. Dynam., 49, 2625–2647, https://doi.org/10.1007/s00382-016-3467-y,
2017.
Pillar, H. R., Heimbach, P., Johnson, H. L., and Marshall, D. P.: Attributing
variability in Atlantic meridional overturning to wind and buoyancy forcing,
J. Climate, 29, 3339–3352, https://doi.org/10.1175/JCLI-D-15-0727.1, 2016.
Polo, I., Robson, J., Sutton, R. T., and Balmaseda, M.: The importance of
wind and buoyancy forcing for the boundary density variations and the
geostrophic component of the AMOC at 26N, J. Phys. Oceanogr., 44, 2387–2408,
https://doi.org/10.1175/JPO-D-13-0264.1, 2014.
Polo, I., Lazar, A., Rodriguez-Fonseca, B., and Arnault, S.: Oceanic Kelvin
waves and tropical Atlantic intraseasonal Variability: 1. Kelvin wave
characterization, J. Geophys. Res., 113, C07009, https://doi.org/10.1029/2007JC004495,
2008.
Roberts, C. D., Waters, J., Peterson, K. A.,
Palmer, M. D., McCarthy, G. D., Frajka‐Williams, E., Haines, K., Lea, D. J., Martin, M. J., Storkey, D., Blockley, E. W., and Zuo, H.: Atmosphere drives recent interannual variability of the Atlantic meridional overturning circulation at 26.58∘ N, Geophys. Res. Lett., 40, 5164–5170, 2013.
Robson J., Polo, I., Hodson, D. L. R., Stevens, D. P., and Shaffrey, L. C.:
Decadal prediction of the North Atlantic subpolar gyre in the HiGEM
high-resolution climate model, Clim. Dynam., 50, 921–937, https://doi.org/10.1007/s00382-017-3649-2,
2017.
Robson J., Ortega, P., and Sutton, R. T.: A reversal of climatic trends in
the North Atlantic since 2005, Nat. Geosci., 9, 513–517, https://doi.org/10.1038/NGEO2727,
2016.
Robson, J., Hodson, D. L. R., Hawkins, E., and Sutton, R. T.: Atlantic
overturning in decline?, Nat. Geosci., 7, 2–3, 2014.
Robson, J., Sutton, R. T., and Smith, D. M.: Initialized predictions of the
rapid warming of the North Atlantic Ocean in the mid 1990s, Geophys. Res.
Lett., 25, L19713, https://doi.org/10.1029/2012GL053370, 2012.
Roussenov, V. M., Williams, R. G., Hughes, C. W., and Bingham, R. J.:
Boundary wave communication of bottom pressure and overturning changes for
the North Atlantic, J. Geophys. Res., 113, C08042, https://doi.org/10.1029/2007JC004501, 2008.
Schwab, D. J. and Beletsky, D.: Propagation of Kelvin waves along irregular
coastlines in finite-difference models, Adv. Water Resour., 22,
239–245, https://doi.org/10.1016/S0309-1708(98)00015-3, 1998.
Smeed, D. A., McCarthy, G. D., Cunningham, S. A., Frajka-Williams, E., Rayner, D., Johns, W. E., Meinen, C. S., Baringer, M. O., Moat, B. I., Duchez, A., and Bryden, H. L.: Observed decline of the Atlantic meridional overturning circulation 2004–2012, Ocean Sci., 10, 29–38, https://doi.org/10.5194/os-10-29-2014, 2014.
Smeed, D. A., McCarthy, G., Rayner, D., Moat, B. I., Johns, W. E., Baringer,
M. O., and Meinen, C. S.: Atlantic meridional overturning circulation
observed by the RAPID-MOCHA-WBTS (RAPID-Meridional Overturning Circulation
and Heatflux Array-Western Boundary Time Series) array at 26N from 2004 to
27th October 2017, 2–5, British Oceanographic Data Centre –
Natural Environment Research Council, UK, https://doi.org/10.5285/5acfd143-1104-7b58-e053-6c86abc0d94b, 2017.
Smeed, D. A., Josey, S. A., Beaulieu, C., Johns, W. E., Moat, B. I., Frajka-Williams, E., Rayner, D., Meinen, C. S., Baringer, M. O., Bryden, H. L., and McCarthy, G. D.: The North Atlantic Ocean is in a state
of reduced overturning, Geophys. Res. Lett., 45, 1527–1533,
https://doi.org/10.1002/2017GL076350, 2018.
Sutton, R. T. and Dong, B.: Atlantic Ocean influence on a shift in European
climate in the 1990s, Nat. Geosci., 5, 788–792, https://doi.org/10.1038/ngeo1595, 2012.
Thomas, C. M. and Haines, K.: Using lagged covariances in data
assimilation, Tellus A, 69, 1377589,
https://doi.org/10.1080/16000870.2017.1377589, 2017.
Thomson, D. J.: Spectrum estimation and harmonic analysis, Proc. IEEE, 70,
1055–1096, https://doi.org/10.1109/PROC.1982.12433, 1982.
Uppala, S. M., Kållberg, P. W., Simmons, A. J., Andrae, U., Da Costa Bechtold, V.,
Fiorino, M., Gibson, J. K., Haseler, J., Hernandez, A., Kelly, G. A., Li, X., Onogi, K., Saarinen, S., Sokka, N., Allan, R. P., Andersson, E., Arpe, K., Balmaseda, M. A., Beljaars, A. C. M., Van De Berg, L.,
Bidlot, J., Bormann, N., Caires, S., Chevallier, F., Dethof, A., Dragosavac, M.,
Fisher, M., Fuentes, M., Hagemann, S.,
Hólm, E., Hoskins, B. J., Isaksen, L.,
Janssen, P. A. E. M., Jenne, R., Mcnally, A. P., Mahfouf, J.-F., Morcrette, J.-J.,
Rayner, N. A., Saunders, R. W., Simon, P.,
Sterl, A., Trenberth, K. E., Untch, A.,
Vasiljevic, D., Viterbo, P., and Woollen, J.: The ERA-40 Re-Analysis, Q. J. Roy. Meteor.
Soc., 131, 2961–3012, https://doi.org/10.1256/qj.04.176, 2005.
von Storch, H. and Zwiers, F. W.: Statistical Analysis in Climate Research,
Cambridge University Press, Cambridge, https://doi.org/10.1017/CBO9780511612336, 1999.
Walters, D. N., Best, M. J., Bushell, A. C., Copsey, D., Edwards, J. M., Falloon, P. D., Harris, C. M., Lock, A. P., Manners, J. C., Morcrette, C. J., Roberts, M. J., Stratton, R. A., Webster, S., Wilkinson, J. M., Willett, M. R., Boutle, I. A., Earnshaw, P. D., Hill, P. G., MacLachlan, C., Martin, G. M., Moufouma-Okia, W., Palmer, M. D., Petch, J. C., Rooney, G. G., Scaife, A. A., and Williams, K. D.: The Met Office Unified Model Global Atmosphere 3.0/3.1 and JULES Global Land 3.0/3.1 configurations, Geosci. Model Dev., 4, 919–941, https://doi.org/10.5194/gmd-4-919-2011, 2011.
Wang, C., Dong, S., and Munoz, E.: Seawater density variations in the North
Atlantic and the Atlantic meridional overturning circulation, Clim. Dynam.,
34, 953–968, https://doi.org/10.1007/s00382-009-0560-5, 2010.
Williams, K. D., Harris, C. M., Bodas-Salcedo, A., Camp, J., Comer, R. E., Copsey, D., Fereday, D., Graham, T., Hill, R., Hinton, T., Hyder, P., Ineson, S., Masato, G., Milton, S. F., Roberts, M. J., Rowell, D. P., Sanchez, C., Shelly, A., Sinha, B., Walters, D. N., West, A., Woollings, T., and Xavier, P. K.: The Met Office Global Coupled model 2.0 (GC2) configuration, Geosci. Model Dev., 8, 1509–1524, https://doi.org/10.5194/gmd-8-1509-2015, 2015.
Zhang, R.: Latitudinal dependence of Atlantic Meridional Overturning
Circulation (AMOC) variations, Geophys. Res. Lett., 37, L16703, https://doi.org/10.1029/2010GL044474, 2010.
Zhang, R., Rosati, A., Anderson, W. G., Dixon, K. W., Lee, H. C., and Zeng,
F.: Sensitivity of the North Atlantic Ocean Circulation to an abrupt change
in the Nordic Sea overflow in a high resolution global coupled climate
model, J. Geophys. Res.-Oceans, 116, C12024, https://doi.org/10.1029/2011JC007240, 2011.
Short summary
AMOC variability controls climate and is driven by wind and buoyancy forcing in the Atlantic. Density changes there are expected to connect to tropical regions. We develop methods to identify boundary density profiles at 26° N which relate to the AMOC. We found that density anomalies propagate equatorward along the western boundary, eastward along the Equator and then poleward up the eastern boundary with 2 years lag between boundaries. Record lengths of more than 26 years are required.
AMOC variability controls climate and is driven by wind and buoyancy forcing in the Atlantic....