Articles | Volume 16, issue 5
https://doi.org/10.5194/os-16-1067-2020
https://doi.org/10.5194/os-16-1067-2020
Research article
 | 
18 Sep 2020
Research article |  | 18 Sep 2020

Can the boundary profiles at 26° N be used to extract buoyancy-forced Atlantic Meridional Overturning Circulation signals?

Irene Polo, Keith Haines, Jon Robson, and Christopher Thomas

Data sets

Atlantic meridional overturning circulation observed by the RAPID-MOCHA-WBTS. (RAPID-Meridional Overturning Circulation and HeatfluxArray-Western Boundary Time Series) array at 26N from 2004 to 2018 (v2018.2) B. I. Moat, E. Frajka-Williams, D. A. Smeed, D. Rayner, A. Sanchez-Franks, W. E. Johns, M. O. Baringer, D. Volkov, and J. Collins https://doi.org/10.5285/aa57e879-4cca-28b6-e053-6c86abc02de5

Download
Short summary
AMOC variability controls climate and is driven by wind and buoyancy forcing in the Atlantic. Density changes there are expected to connect to tropical regions. We develop methods to identify boundary density profiles at 26° N which relate to the AMOC. We found that density anomalies propagate equatorward along the western boundary, eastward along the Equator and then poleward up the eastern boundary with 2 years lag between boundaries. Record lengths of more than 26 years are required.