Articles | Volume 15, issue 1
https://doi.org/10.5194/os-15-61-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-15-61-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Measuring rates of present-day relative sea-level rise in low-elevation coastal zones: a critical evaluation
Molly E. Keogh
CORRESPONDING AUTHOR
Department of Earth and Environmental Sciences, Tulane University, 6823 St.
Charles Avenue, New Orleans, Louisiana 70118-5698, USA
Torbjörn E. Törnqvist
Department of Earth and Environmental Sciences, Tulane University, 6823 St.
Charles Avenue, New Orleans, Louisiana 70118-5698, USA
Related authors
No articles found.
Claudia Zoccarato, Torbjörn E. Törnqvist, Pietro Teatini, and Jonathan G. Bridgeman
Proc. IAHS, 382, 565–570, https://doi.org/10.5194/piahs-382-565-2020, https://doi.org/10.5194/piahs-382-565-2020, 2020
for subsidence in coastal Louisiana
Jaap H. Nienhuis, Torbjörn E. Törnqvist, and Gilles Erkens
Proc. IAHS, 382, 333–337, https://doi.org/10.5194/piahs-382-333-2020, https://doi.org/10.5194/piahs-382-333-2020, 2020
Short summary
Short summary
Decreased distance from the marsh to the marsh edge can lower groundwater tables and increase soil stresses that lead to subsidence. We explore the possibility that the canals that have been dug in the wetlands in coastal Louisiana have decreased marsh edge distances and therefore have contributed to subsidence.
Marc P. Hijma, Zhixiong Shen, Torbjörn E. Törnqvist, and Barbara Mauz
Earth Surf. Dynam., 5, 689–710, https://doi.org/10.5194/esurf-5-689-2017, https://doi.org/10.5194/esurf-5-689-2017, 2017
Short summary
Short summary
We show that in the last 3 kyr the evolution of the Chenier Plain, >200 km west of the Mississippi Delta, was influenced by changes in the position of the main river mouth, local sediment sources and sea-level rise. This information can be used to constrain future generations of numerical models to obtain more robust predictions of the effects of improved sediment management and accelerated rates of relative sea-level rise on the evolution of mud-dominated coastal environments worldwide.
Christopher R. Esposito, Zhixiong Shen, Torbjörn E. Törnqvist, Jonathan Marshak, and Christopher White
Earth Surf. Dynam., 5, 387–397, https://doi.org/10.5194/esurf-5-387-2017, https://doi.org/10.5194/esurf-5-387-2017, 2017
Short summary
Short summary
Our work presents a novel method of measuring the capacity of deltaic landforms to trap and retain river-borne sediments, and we demonstrate that sediment retention is closely connected to sedimentary composition. Our results, supported by a unique high-resolution coring dataset in a major crevasse splay, show that finer sediments are a much larger component of the Mississippi Delta than is often acknowledged and that their abundance indicates exceptionally high rates of sediment retention.
André Düsterhus, Alessio Rovere, Anders E. Carlson, Benjamin P. Horton, Volker Klemann, Lev Tarasov, Natasha L. M. Barlow, Tom Bradwell, Jorie Clark, Andrea Dutton, W. Roland Gehrels, Fiona D. Hibbert, Marc P. Hijma, Nicole Khan, Robert E. Kopp, Dorit Sivan, and Torbjörn E. Törnqvist
Clim. Past, 12, 911–921, https://doi.org/10.5194/cp-12-911-2016, https://doi.org/10.5194/cp-12-911-2016, 2016
Short summary
Short summary
This review/position paper addresses problems in creating new interdisciplinary databases for palaeo-climatological sea-level and ice-sheet data and gives an overview on new advances to tackle them. The focus therein is to define and explain strategies and highlight their importance to allow further progress in these fields. It also offers important insights into the general problem of designing competitive databases which are also applicable to other communities within the palaeo-environment.
Related subject area
Approach: Analytic Theory | Depth range: Surface | Geographical range: All Geographic Regions | Phenomena: Tides
A monthly tidal envelope classification for semidiurnal regimes in terms of the relative proportions of the S2, N2, and M2 constituents
Do-Seong Byun and Deirdre E. Hart
Ocean Sci., 16, 965–977, https://doi.org/10.5194/os-16-965-2020, https://doi.org/10.5194/os-16-965-2020, 2020
Short summary
Short summary
Common ways of describing the rise and fall of the tides are essential for safe, productive coastal habitation. We have long had a useful formula to describe the rise and fall of tides at daily timescales but no purposive method for characterising tidal height variations at longer timescales. This paper uses observations from New Zealand, plus model data, to explain the different tidal envelope types evident at monthly timescales, complementing the existing way of describing daily tidal forms.
Cited articles
Alam, M.: Subsidence of the Ganges-Brahmaputra Delta of Bangladesh and
associated drainage, sedimentation and salinity problems, in: Sea-Level Rise
and Coastal Subsidence, edited by: Milliman, J. D. and Haq, B. U., Springer,
Dordrecht, the Netherlands, 169–192,
https://doi.org/10.1007/978-94-015-8719-8_9, 1996.
Allison, M., Yuill, B., Törnqvist, T., Amelung, F., Dixon, T. H., Erkens,
G., Stuurman, R., Jones, C., Milne, G., Steckler, M., Syvitski, J., and
Teatini, P.: Global risks and research priorities for coastal subsidence,
Eos, 97, 19, 22–27, https://doi.org/10.1029/2016EO055013, 2016.
Amorosi, A., Bruno, L., Cleveland, D. M., Morelli, A., and Hong, W.:
Paleosols and associated channel-belt sand bodies from a continuously
subsiding late Quaternary system (Po Basin, Italy): New insights into
continental sequence stratigraphy, Geol. Soc. Am. Bull.,
129, 449–463, https://doi.org/10.1130/B31575.1, 2017.
Cahoon, D. R.: Estimating relative sea-level rise and submergence potential
at a coastal wetland, Estuar. Coast., 38, 1077–1084,
https://doi.org/10.1007/s12237-014-9872-8, 2015.
Cahoon, D. R., Reed, D. J., and Day Jr., J. W.: Estimating shallow subsidence
in microtidal salt marshes of the southeastern United States: Kaye and
Barghoorn revisited, Mar. Geol., 128, 1–9,
https://doi.org/10.1016/0025-3227(95)00087-F, 1995.
Church, J. A. and White, N. J.: Sea-level rise from the late 19th to the
early 21st century, Surv. Geophys., 32, 585–602,
https://doi.org/10.1007/s10712-011-9119-1, 2011.
Church, J. A., Clark, P. U., Cazenave, A., Gregory, J. M., Jevrejeva, S.,
Levermann, A., Merrifield, M. A., Milne, G. A., Nerem, R. S., Nunn, P. D.,
Payne, A. J., Pfeffer, W. T., Stammer, D., and Unnikrishnan, A. S.: Sea Level
Change, in: Climate Change 2013: The Physical Science Basis, Contribution of
Working Group I to the Fifth Assessment Report of the Intergovernmental Panel
on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K.,
Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and
Midgley, P. M., Cambridge University Press, New York, NY, USA, 1137–1216,
2013.
Cipollini, P., Calafat, F. M., Jevrejeva, S., Melet, A., and Prandi, P.:
Monitoring sea level in the coastal zone with satellite altimetry and tide
gauges, Surv. Geophys., 38, 33–57,
https://doi.org/10.1007/978-3-319-56490-6_3, 2017.
Clift, P. D., Giosan, L., Carter, A., Garzanti, E., Galy, V., Tabrez, A. R.,
Pringle, M., Campbell, I. H., France-Lanord, C., Blusztajn, J., Allen, C.,
Alizai, A., Lückge, A., Danish, M., and Rabbani, M. M.: Monsoon control
over erosion patterns in the Western Himalaya: possible feed-back into the
tectonic evolution, Geol. Soc. Spec. Publ., 342, 185–218,
https://doi.org/10.1144/SP342.12, 2010.
Da Lio, C., Teatini, P., Strozzi, T., and Tosi, L.: Understanding land
subsidence in salt marshes of the Venice Lagoon from SAR interferometry and
ground-based investigations, Remote Sens. Environ., 205, 56–70,
https://doi.org/10.1016/j.rse.2017.11.016, 2018.
Day, J., Ibáñez, C., Scarton, F., Pont, D., Hensel, P., Day, J., and
Lane, R.: Sustainability of Mediterranean deltaic and lagoon wetlands with
sea-level rise: The importance of river input, Estuar. Coast., 34,
483–493, https://doi.org/10.1007/s12237-011-9390-x, 2011.
Dixon, T. H., Amelung, F., Ferretti, A., Novali, F., Rocca, F., Dokka, R.,
Sella, G., Kim, S.-W., Wdowinski, S., and Whitman, D.: Subsidence and
flooding in New Orleans, Nature, 441, 587–588,
https://doi.org/10.1038/441587a, 2006.
Dokka, R. K., Sella, G. F., and Dixon, T. H.: Tectonic control of subsidence
and southward displacement of southeast Louisiana with respect to stable
North America, Geophys. Res. Lett., 33, L23308,
https://doi.org/10.1029/2006GL027250, 2006.
Douglas, B. C.: Global sea level rise, J. Geophys. Res., 96,
6981–6992, https://doi.org/10.1029/91JC00064, 1991.
Erban, L. E., Gorelick, S. M., and Zebker, H. A.: Groundwater extraction,
land subsidence, and sea-level rise in the Mekong Delta, Vietnam,
Environ. Res. Lett., 9, 084010,
https://doi.org/10.1088/1748-9326/9/8/084010, 2014.
Ericson, J. P., Vörösmarty, C. J., Dingman, S. L., Ward, L. G., and
Meybeck, M.: Effective sea-level rise and deltas: Causes of change and human
dimension implications, Global Planet. Change, 50, 63–82,
https://doi.org/10.1016/j.gloplacha.2005.07.004, 2006.
Funabiki, A., Haruyama, S., Van Quy, N., Van Hai, P., and Thai, D. H.:
Holocene delta plain development in the Song Hong (Red River) delta, Vietnam,
J. Asian Earth Sci., 30, 518–529,
https://doi.org/10.1016/j.jseaes.2006.11.013, 2007.
Gebremichael, E., Sultan, M., Becker, R., El Bastawesy, M., Cherif, O., and
Emil, M.: Assessing land deformation and sea encroachment in the Nile Delta:
A radar interferometric and inundation modeling approach, J. Geophys. Res.-Sol. Ea., 123, 3208–3224,
https://doi.org/10.1002/2017JB015084, 2018.
Goodbred, S. L. and Kuehl, S. A.: The significance of large sediment supply,
active tectonism, and eustasy on margin sequence development: Late Quaternary
stratigraphy and evolution of the Ganges–Brahmaputra delta, Sediment. Geol., 133, 227–248, https://doi.org/10.1016/S0037-0738(00)00041-5, 2000.
Gornitz, V., Lebedeff, S., and Hansen, J.: Global sea level trend in the past
century, Science, 215, 1611–1614,
https://doi.org/10.1126/science.215.4540.1611, 1982.
Harris, P. T., Baker, E. K., Cole, A. R., and Short, S. A.: A preliminary
study of sedimentation in the tidally dominated Fly River Delta, Gulf of
Papua, Cont. Shelf Res., 13, 441–472,
https://doi.org/10.1016/0278-4343(93)90060-B, 1993.
Hay, C. C., Morrow, E., Kopp, R. E., and Mitrovica, J. X.: Probabilistic
reanalysis of twentieth-century sea-level rise, Nature, 517, 481–484,
https://doi.org/10.1038/nature14093, 2015.
Heinrich, P., Paulsell, R., Milner, R., Snead, J., and Peele, H.:
Investigation and GIS development of the buried Holocene-Pleistocene surface
in the Louisiana coastal plain, Louisiana Geological Survey and Louisiana
State University for the Coastal Protection and Restoration Authority of
Louisiana, Baton Rouge, LA, USA, 140 pp., 2015.
Higgins, S. A.: Advances in delta-subsidence research using satellite
methods, Hydrogeol. J., 24, 587–600,
https://doi.org/10.1007/s10040-015-1330-6, 2016.
Hijma, M. P., Cohen, K. M., Hoffmann, G., Van der Spek, A. J. F., and
Stouthamer, E.: From river valley to estuary: The evolution of the Rhine
mouth in the early to middle Holocene (western Netherlands, Rhine-Meuse
delta), Neth. J. Geosci., 88, 13–53,
https://doi.org/10.1017/S0016774600000986, 2009.
Holgate, S. J., Matthews, A., Woodworth, P. L., Rickards, L. J., Tamisiea, M.
E., Bradshaw, E., Foden, P. R., Gordon, K. M., Jevrejeva, S., and Pugh, J.:
New data systems and products at the Permanent Service for Mean Sea Level,
J. Coastal Res., 29, 493–504,
https://doi.org/10.2112/JCOASTRES-D-12-00175.1, 2013.
Hori, K., Usami, S., and Ueda, H.: Sediment facies and Holocene deposition
rate of near-coastal fluvial systems: An example from the Nobi Plain, Japan,
J. Asian Earth Sci., 41, 195–203,
https://doi.org/10.1016/j.jseaes.2011.01.016, 2011.
Jankowski, K. L., Törnqvist, T. E., and Fernandes, A. M.: Vulnerability
of Louisiana's coastal wetlands to present-day rates of relative sea-level
rise, Nat. Commun., 8, 14792, https://doi.org/10.1038/ncomms14792,
2017.
Jones, C. E., An, K., Blom, R. G., Kent, J. D., Ivins, E. R., and Bekaert,
D.: Anthropogenic and geologic influences on subsidence in the vicinity of
New Orleans, Louisiana, J. Geophys. Res.-Sol. Ea., 121,
3867–3887, https://doi.org/10.1002/2015JB012636, 2016.
Karegar, M. A., Dixon, T. H., and Malservisi, R.: A three-dimensional surface
velocity field for the Mississippi Delta: Implications for coastal
restoration and flood potential, Geology, 43, 519–522,
https://doi.org/10.1130/G36598.1, 2015.
Kolker, A. S., Allison, M. A., and Hameed, S.: An evaluation of subsidence
rates and sea-level variability in the northern Gulf of Mexico, Geophys. Res. Lett., 38,
L21404, https://doi.org/10.1029/2011GL049458, 2011.
Kopp, R. E., Horton, R. M., Little, C. M., Mitrovica, J. X., Oppenheimer, M.,
Rasmussen, D. J., Strauss, B. H., and Tebaldi, C.: Probabilistic 21st and
22nd century sea-level projections at a global network of tide-gauge sites,
Earth's Future, 2, 383–406, https://doi.org/10.1002/2014EF000239, 2014.
Koster, K., Cohen, K. M., Stafleu, J., and Stouthamer, E.: Using
14C-dated peat beds for reconstructing subsidence by compression in the
Holland coastal plain of the Netherlands, J. Coastal Res., 34,
1035–1045, https://doi.org/10.2112/JCOASTRES-D-17-00093.1, 2018.
Larsen, C. E.: The Mesopotamian Delta region: A reconsideration of Lees and
Falcon, J. Am. Oriental Soc., 95, 43–57,
https://doi.org/10.2307/599157, 1975.
Li, C., Chen, Q., Zhang, J., Yang, S., and Fan, D.: Stratigraphy and
paleoenvironmental changes in the Yangtze Delta during the Late Quaternary,
J. Asian Earth Sci., 18, 453–469,
https://doi.org/10.1016/S1367-9120(99)00078-4, 2000.
Lovelock, C. E., Cahoon, D. R., Friess, D. A., Guntenspergen, G. R., Krauss,
K. W., Reef, R., Rogers, K., Saunders, M. L., Sidik, F., Swales, A.,
Saintilan, N., Thuyen, L. X., and Triet, T.: The vulnerability of
Indo-Pacific mangrove forests to sea-level rise, Nature, 526, 559–563,
https://doi.org/10.1038/nature15538, 2015.
Mathers, S. and Zalasiewicz, J.: Holocene sedimentary architecture of the Red
River Delta, J. Coastal Res., 15, 314–325, 1999.
Maul, G. A. and Martin, D. M.: Sea level rise at Key West, Florida,
1846–1992: America's longest instrument record?, Geophys. Res. Lett., 20, 1955–1958, https://doi.org/10.1029/93GL02371, 1993.
Mazzotti, S., Lambert, A., Van der Kooij, M., and Mainville, A.: Impact of
anthropogenic subsidence on relative sea-level rise in the Fraser River
delta, Geology, 37, 771–774, https://doi.org/10.1130/G25640A.1, 2009.
Minderhoud, P. S. J., Erkens, G., Pham, V. H., Bui, V. T., Erban, L., Kooi,
H., and Stouthamer, E.: Impacts of 25 years of groundwater extraction on
subsidence in the Mekong delta, Vietnam, Environ. Res. Lett., 12,
064006, https://doi.org/10.1088/1748-9326/aa7146, 2017.
Mojski, J. E.: Geology and evolution of the Vistula Delta and Vistula Bar,
J. Coastal Res., 11, 141–149, 1995.
Nicholls, R. J. and Cazenave, A.: Sea-level rise and its impact on coastal
zones, Science, 328, 1517–1520, https://doi.org/10.1126/science.1185782,
2010.
Nienhuis, J. H., Törnqvist, T. E., Jankowski, K. L., Fernandes, A. M.,
and Keogh, M. E.: A new subsidence map for coastal Louisiana, GSA Today, 27, 9, 58–59, https://doi.org/10.1130/GSATG337GW.1, 2017.
NOAA (National Oceanic and Atmospheric Administration): CO-OPS specifications
and deliverables for installation, operation, and removal of water level
stations, Center for Operational Oceanographic Products and Services,
Engineering Division, National Ocean Service, Silver Spring, MD, USA, 30 pp.,
2013.
Nummedal, D.: Future sea level changes along the Louisiana coast, Shore and Beach, 51, 2, 10–15, 1983.
Osland, M. J., Griffith, K. T., Larriviere, J. C., Feher, L. C., Cahoon, D.
R., Enwright, N. M., Oster, D. A., Tirpak, J. M., Woodrey, M. S., Collini, R.
C., Baustian, J. J., Breithaupt, J. L., Cherry, J. A., Conrad, J. R.,
Cormier, N., Coronado-Molina, C. A., Donoghue, J. F., Graham, S. A., Harper,
J. W., Hester, M. W., Howard, R. J., Krauss, K. W., Kroes, D. E., Lane, R.
R., McKee1, K. L., Mendelssohn, I. A., Middleton, B. A., Moon, J. A., Piazza,
S. C., Rankin, N. M., Sklar, F. H., Steyer, G. D., Swanson, K. M.,
Swarzenski, C. M., Vervaeke, W. C., Willis, J. M., and Van Wilson, K.:
Assessing coastal wetland vulnerability to sea-level rise along the northern
Gulf of Mexico coast: Gaps and opportunities for developing a coordinated
regional sampling network, PLoS ONE, 12, e0183431,
https://doi.org/10.1371/journal.pone.0183431, 2017.
Penland, S. and Ramsey, K. E.: Relative sea-level rise in Louisiana and the
Gulf of Mexico: 1908–1988, J. Coastal Res., 6, 323–342, 1990.
Pfeffer, J. and Allemand, P.: The key role of vertical land motions in
coastal sea level variations: A global synthesis of multisatellite altimetry,
tide gauge data and GPS measurements, Earth Planet. Sc. Lett.,
439, 39–47, https://doi.org/10.1016/j.epsl.2016.01.027, 2016.
Pugh, D. T.: Tides, Surges, and Mean Sea-Level, John Wiley and Sons, New
York, NY, USA, 472 pp., 1987.
Shennan, I. and Woodworth, P. L.: A comparison of late Holocene and
twentieth-century sea-level trends from the UK and North Sea region,
Geophys. J. Int., 109, 96–105,
https://doi.org/10.1111/j.1365-246X.1992.tb00081.x, 1992.
Shi, X., Wu, J., Ye, S., Zhang, Y., Xue, Y., Wei, Z., Li, Q., and Yu, J.:
Regional land subsidence simulation in Su-Xi-Chang area and Shanghai City,
China, Eng. Geol., 100, 27–42,
https://doi.org/10.1016/j.enggeo.2008.02.011, 2008.
Stanley, D. J. and Warne, A. G.: Nile Delta: Recent geological evolution and
human impact, Science, 260, 628–634,
https://doi.org/10.1126/science.260.5108.628, 1993.
Swanson, R. L. and Thurlow, C. I.: Recent subsidence rates along the Texas
and Louisiana coasts as determined from tide measurements, J. Geophys. Res., 78, 2665–2671, https://doi.org/10.1029/JC078i015p02665,
1973.
Syvitski, J. P. M., Kettner, A. J., Overeem, I., Hutton, E. W. H., Hannon, M.
T., Brakenridge, G. R., Day, J., Vörösmarty, C., Saito, Y., Giosan,
L., and Nicholls, R. J.: Sinking deltas due to human activities, Nat. Geosci., 2, 681–686, https://doi.org/10.1038/ngeo629, 2009.
Ta, T. K. O., Nguyen, V. L., Tateishi, M., Kobayashi, I., Tanabe, S., and
Saito, Y.: Holocene delta evolution and sediment discharge of the Mekong
River, southern Vietnam, Quaternary Sci. Rev., 21, 1807–1819,
https://doi.org/10.1016/S0277-3791(02)00007-0, 2002.
Talke, S. A., Kemp, A. C., and Woodruff, J.: Relative sea level, tides, and
extreme water levels in Boston Harbor from 1825 to 2018, J. Geophys. Res.-Oceans, 123, 3895–3914,
https://doi.org/10.1029/2017JC013645, 2018.
Tanabe, S., Saito, Y., Sato, Y., Suzuki, Y., Sinsakul, S., Tiyapairach, S.,
and Chaimanee, N.: Stratigraphy and Holocene evolution of the mud-dominated
Chao Phraya delta, Thailand, Quaternary Sci. Rev., 22, 789–807,
https://doi.org/10.1016/S0277-3791(02)00242-1, 2003a.
Tanabe, S., Ta, T. K. O., Nguyen, V. L., Tateishi, M., Kobayashi, I., and
Saito, Y.: Delta evolution model inferred from the Holocene Mekong delta,
southern Vietnam, SEPM (Society for Sediment. Geol.) Special Publication,
76, 175–188, 2003b.
Tanabe, S., Nakanishi, T., Ishihara, Y., and Nakashima, R.: Millennial-scale
stratigraphy of a tide-dominated incised valley during the last 14 kyr:
Spatial and quantitative reconstruction in the Tokyo Lowland, central Japan,
Sedimentology, 62, 1837–1872, https://doi.org/10.1111/sed.12204, 2015.
Teatini, P., Tosi, L., Strozzi, T., Carbognin, L., Wegmüller, U., and
Rizzetto, F.: Mapping regional land displacements in the Venice coastland by
an integrated monitoring system, Remote Sens. Environ., 98, 403–413,
https://doi.org/10.1016/j.rse.2005.08.002, 2005.
Tessler, Z. D., Vörösmarty, C. J., Grossberg, M., Gladkova, I.,
Aizenman, H., Syvitski, J. P. M., and Foufoula-Georgiou, E.: Profiling risk
and sustainability in coastal deltas of the world, Science, 349, 638–643,
https://doi.org/10.1126/science.aab3574, 2015.
Törnqvist, T. E., Wallace, D. J., Storms, J. E. A., Wallinga, J., Van
Dam, R. L., Blaauw, M., Derksen, M. S., Klerks, C. J. W., Meijneken, C., and
Snijders, E. M. A.: Mississippi Delta subsidence primarily caused by
compaction of Holocene strata, Nat. Geosci., 1, 173–176,
https://doi.org/10.1038/ngeo129, 2008.
Veatch, W.: 2015 updated atlas of U.S. Army Corps of Engineers historic daily
tide data in coastal Louisiana, U.S. Army Corps of Engineers, New Orleans
District, New Orleans, LA, USA, Mississippi River Geomorphology and
Potamology Program Report, 14, 40 pp. 2017.
Vignudelli, S., Kostianoy, A. G., Cipollini, P., and Benveniste, J. (Eds.):
Coastal Altimetry, Springer, Berlin, Germany, 578 pp.,
https://doi.org/10.1007/978-3-642-12796-0, 2011.
Vos, P. C., Bazelmans, J., Weerts, H. J. T., and Van der Meulen, M. J.
(Eds.): Atlas van Nederland in het Holoceen, Bert Bakker, Amsterdam, the Netherlands, 94 pp., 2011.
Webb, E. L., Friess, D. A., Krauss, K. W., Cahoon, D. R., Guntenspergen, G.
R., and Phelps, J.: A global standard for monitoring coastal wetland
vulnerability to accelerated sea-level rise, Nat. Clim. Change, 3,
458–465, https://doi.org/10.1038/nclimate1756, 2013.
Woodroffe, C. D., Curtis, R. J., and McLean, R. F.: Development of a chenier
plain, Firth of Thames, New Zealand, Mar. Geol., 53, 1–22,
https://doi.org/10.1016/0025-3227(83)90031-2, 1983.
Woodworth, P. L., Menéndez, M., and Gehrels, W. R.: Evidence for
century-timescale acceleration in mean sea levels and for recent changes in
extreme sea levels, Surv. Geophys., 32, 603–618,
https://doi.org/10.1007/s10712-011-9112-8, 2011.
Wöppelmann, G., Letetrel, C., Santamaria, A., Bouin, M.-N., Collilieux,
X., Altamimi, Z., Williams, S. D. P., and Martín Míguez, B.: Rates
of sea-level change over the past century in a geocentric reference frame,
Geophys. Res. Lett., 36, L12607,
https://doi.org/10.1029/2009GL038720, 2009.
Wöppelmann, G. and Marcos, M.: Vertical land motion as a key to
understanding sea level change and variability, Rev. Geophys., 54,
64–92, https://doi.org/10.1002/2015RG000502, 2016.
Xue, C.: Historical changes in the Yellow River delta, China, Mar. Geol.,
113, 321–329, https://doi.org/10.1016/0025-3227(93)90025-Q, 1993.
Yi, S., Saito, Y., Oshima, H., Zhou, Y., and Wei, H.: Holocene environmental
history inferred from pollen assemblages in the Huanghe (Yellow River) delta,
China: climatic change and human impact, Quaternary Sci. Rev., 22,
609–628, https://doi.org/10.1016/S0277-3791(02)00086-0, 2003.
Zecchin, M., Brancolini, G., Tosi, L., Rizzetto, F., Caffau, M., and
Baradello, L.: Anatomy of the Holocene succession of the southern Venice
lagoon revealed by very high-resolution seismic data, Cont. Shelf Res., 29,
1343–1359, https://doi.org/10.1016/j.csr.2009.03.006, 2009.
Short summary
Relative sea-level rise is traditionally measured with tide gauges, but we question the reliability of tide-gauge data in low-elevation coastal zones. Benchmark data show that tide gauges typically do not record subsidence in the shallow subsurface and thus underestimate rates of relative sea-level rise. We present an alternative method of measuring relative sea-level rise and conclude that low-elevation coastal zones may be at higher risk of flooding than previously assumed.
Relative sea-level rise is traditionally measured with tide gauges, but we question the...