Articles | Volume 15, issue 3
https://doi.org/10.5194/os-15-565-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-15-565-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Regional circulation patterns of Mediterranean Outflow Water near the Iberian and African continental slopes
Álvaro de Pascual-Collar
Puertos del Estado, Avenida del Partenón 10, 28042 Madrid, Spain
Nologin, Avda. De Ranillas 1D, 50018 Zaragoza, Spain
Marcos G. Sotillo
Puertos del Estado, Avenida del Partenón 10, 28042 Madrid, Spain
Bruno Levier
Mercator Ocean, 8–10 Rue Hermès, 31520 Ramonville Saint-Agne, France
Roland Aznar
Puertos del Estado, Avenida del Partenón 10, 28042 Madrid, Spain
Nologin, Avda. De Ranillas 1D, 50018 Zaragoza, Spain
Pablo Lorente
Puertos del Estado, Avenida del Partenón 10, 28042 Madrid, Spain
Nologin, Avda. De Ranillas 1D, 50018 Zaragoza, Spain
Arancha Amo-Baladrón
Puertos del Estado, Avenida del Partenón 10, 28042 Madrid, Spain
Nologin, Avda. De Ranillas 1D, 50018 Zaragoza, Spain
Enrique Álvarez-Fanjul
Puertos del Estado, Avenida del Partenón 10, 28042 Madrid, Spain
Related authors
Álvaro de Pascual Collar, Roland Aznar, Bruno Levier, and Marcos García Sotillo
State Planet, 4-osr8, 5, https://doi.org/10.5194/sp-4-osr8-5-2024, https://doi.org/10.5194/sp-4-osr8-5-2024, 2024
Short summary
Short summary
The Iberia–Biscay–Ireland region in the North Atlantic has diverse ocean currents impacting upper and deeper layers. These currents are vital for heat transport, species dispersion, and sediment and pollutant movement. Monitoring them is crucial for informed decision-making in ocean-related activities, including the blue economy sector. This study introduces an indicator to track these currents, covering main ones like the Azores, Canary, Portugal, and poleward slope currents.
Mauro Cirano, Enrique Alvarez-Fanjul, Arthur Capet, Stefania Ciliberti, Emanuela Clementi, Boris Dewitte, Matias Dinápoli, Ghada El Serafy, Patrick Hogan, Sudheer Joseph, Yasumasa Miyazawa, Ivonne Montes, Diego Narvaez, Heather Regan, Claudia G. Simionato, Clemente A. S. Tanajura, Pramod Thupaki, Claudia Urbano-Latorre, and Jennifer Veitch
State Planet Discuss., https://doi.org/10.5194/sp-2024-26, https://doi.org/10.5194/sp-2024-26, 2024
Preprint under review for SP
Short summary
Short summary
Predicting the ocean state in support of human activities, environmental monitoring and policymaking across different regions worldwide is fundamental. The status of operational ocean forecasting systems (OOFS) in 8 key regions worldwide is provided. A discussion follows on the numerical strategy and available OOFS, pointing out the straightness and the ways forward to improve the essential ocean variables predictability from regional to coastal scales, products reliability and accuracy.
Enrique Alvarez Fanjul and Pierre Bahurel
State Planet Discuss., https://doi.org/10.5194/sp-2024-34, https://doi.org/10.5194/sp-2024-34, 2024
Preprint under review for SP
Short summary
Short summary
This paper is a description of the OceanPrediction DCC and an introduction to this special issue. The objective of this compilation is to describe the actual status of ocean forecasting, detailing its degree of development in the different regions of the world and the most recent advances in all the relevant specific aspects associated with the technique, such as artificial intelligence, cloud computing, and many others.
Álvaro de Pascual Collar, Roland Aznar, Bruno Levier, and Marcos García Sotillo
State Planet, 4-osr8, 5, https://doi.org/10.5194/sp-4-osr8-5-2024, https://doi.org/10.5194/sp-4-osr8-5-2024, 2024
Short summary
Short summary
The Iberia–Biscay–Ireland region in the North Atlantic has diverse ocean currents impacting upper and deeper layers. These currents are vital for heat transport, species dispersion, and sediment and pollutant movement. Monitoring them is crucial for informed decision-making in ocean-related activities, including the blue economy sector. This study introduces an indicator to track these currents, covering main ones like the Azores, Canary, Portugal, and poleward slope currents.
Álvaro de Pascual-Collar, Roland Aznar, Bruno Levier, and Marcos García-Sotillo
State Planet, 1-osr7, 9, https://doi.org/10.5194/sp-1-osr7-9-2023, https://doi.org/10.5194/sp-1-osr7-9-2023, 2023
Short summary
Short summary
The article comprises the analysis of the ocean heat content in the northeastern Atlantic Iberian–Biscay–Ireland (IBI) region. The variability of ocean heat content is studied, and results are linked with the variability of the main water masses found in the region. Results show how the coupled interannual variability of water masses accounts for an important part of the total ocean heat content variability in the region.
Pablo Lorente, Anna Rubio, Emma Reyes, Lohitzune Solabarrieta, Silvia Piedracoba, Joaquín Tintoré, and Julien Mader
State Planet, 1-osr7, 8, https://doi.org/10.5194/sp-1-osr7-8-2023, https://doi.org/10.5194/sp-1-osr7-8-2023, 2023
Short summary
Short summary
Upwelling is an important process that impacts water quality and aquaculture production in coastal areas. In this work we present a new methodology to monitor this phenomenon in two different regions by using surface current estimations provided by remote sensing technology called high-frequency radar.
Stefania A. Ciliberti, Enrique Alvarez Fanjul, Jay Pearlman, Kirsten Wilmer-Becker, Pierre Bahurel, Fabrice Ardhuin, Alain Arnaud, Mike Bell, Segolene Berthou, Laurent Bertino, Arthur Capet, Eric Chassignet, Stefano Ciavatta, Mauro Cirano, Emanuela Clementi, Gianpiero Cossarini, Gianpaolo Coro, Stuart Corney, Fraser Davidson, Marie Drevillon, Yann Drillet, Renaud Dussurget, Ghada El Serafy, Katja Fennel, Marcos Garcia Sotillo, Patrick Heimbach, Fabrice Hernandez, Patrick Hogan, Ibrahim Hoteit, Sudheer Joseph, Simon Josey, Pierre-Yves Le Traon, Simone Libralato, Marco Mancini, Pascal Matte, Angelique Melet, Yasumasa Miyazawa, Andrew M. Moore, Antonio Novellino, Andrew Porter, Heather Regan, Laia Romero, Andreas Schiller, John Siddorn, Joanna Staneva, Cecile Thomas-Courcoux, Marina Tonani, Jose Maria Garcia-Valdecasas, Jennifer Veitch, Karina von Schuckmann, Liying Wan, John Wilkin, and Romane Zufic
State Planet, 1-osr7, 2, https://doi.org/10.5194/sp-1-osr7-2-2023, https://doi.org/10.5194/sp-1-osr7-2-2023, 2023
Begoña Pérez Gómez, Ivica Vilibić, Jadranka Šepić, Iva Međugorac, Matjaž Ličer, Laurent Testut, Claire Fraboul, Marta Marcos, Hassen Abdellaoui, Enrique Álvarez Fanjul, Darko Barbalić, Benjamín Casas, Antonio Castaño-Tierno, Srđan Čupić, Aldo Drago, María Angeles Fraile, Daniele A. Galliano, Adam Gauci, Branislav Gloginja, Víctor Martín Guijarro, Maja Jeromel, Marcos Larrad Revuelto, Ayah Lazar, Ibrahim Haktan Keskin, Igor Medvedev, Abdelkader Menassri, Mohamed Aïssa Meslem, Hrvoje Mihanović, Sara Morucci, Dragos Niculescu, José Manuel Quijano de Benito, Josep Pascual, Atanas Palazov, Marco Picone, Fabio Raicich, Mohamed Said, Jordi Salat, Erdinc Sezen, Mehmet Simav, Georgios Sylaios, Elena Tel, Joaquín Tintoré, Klodian Zaimi, and George Zodiatis
Ocean Sci., 18, 997–1053, https://doi.org/10.5194/os-18-997-2022, https://doi.org/10.5194/os-18-997-2022, 2022
Short summary
Short summary
This description and mapping of coastal sea level monitoring networks in the Mediterranean and Black seas reveals the existence of 240 presently operational tide gauges. Information is provided about the type of sensor, time sampling, data availability, and ancillary measurements. An assessment of the fit-for-purpose status of the network is also included, along with recommendations to mitigate existing bottlenecks and improve the network, in a context of sea level rise and increasing extremes.
Georg Umgiesser, Marco Bajo, Christian Ferrarin, Andrea Cucco, Piero Lionello, Davide Zanchettin, Alvise Papa, Alessandro Tosoni, Maurizio Ferla, Elisa Coraci, Sara Morucci, Franco Crosato, Andrea Bonometto, Andrea Valentini, Mirko Orlić, Ivan D. Haigh, Jacob Woge Nielsen, Xavier Bertin, André Bustorff Fortunato, Begoña Pérez Gómez, Enrique Alvarez Fanjul, Denis Paradis, Didier Jourdan, Audrey Pasquet, Baptiste Mourre, Joaquín Tintoré, and Robert J. Nicholls
Nat. Hazards Earth Syst. Sci., 21, 2679–2704, https://doi.org/10.5194/nhess-21-2679-2021, https://doi.org/10.5194/nhess-21-2679-2021, 2021
Short summary
Short summary
The city of Venice relies crucially on a good storm surge forecast to protect its population and cultural heritage. In this paper, we provide a state-of-the-art review of storm surge forecasting, starting from examples in Europe and focusing on the Adriatic Sea and the Lagoon of Venice. We discuss the physics of storm surge, as well as the particular aspects of Venice and new techniques in storm surge modeling. We also give recommendations on what a future forecasting system should look like.
Elodie Gutknecht, Guillaume Reffray, Alexandre Mignot, Tomasz Dabrowski, and Marcos G. Sotillo
Ocean Sci., 15, 1489–1516, https://doi.org/10.5194/os-15-1489-2019, https://doi.org/10.5194/os-15-1489-2019, 2019
Short summary
Short summary
As part of the Copernicus Marine Environment Monitoring Service, an operational ocean forecasting system monitors the ocean dynamics and marine ecosystems of the European waters. This paper assesses the performance of the key biogeochemical variables (oxygen, nutrients, Chl a, primary production) using a 7-year pre-operational qualification simulation (2010–2016). The simulation can be used to better understand the current state, the changes and the health of European marine ecosystems.
Evan Mason, Simón Ruiz, Romain Bourdalle-Badie, Guillaume Reffray, Marcos García-Sotillo, and Ananda Pascual
Ocean Sci., 15, 1111–1131, https://doi.org/10.5194/os-15-1111-2019, https://doi.org/10.5194/os-15-1111-2019, 2019
Short summary
Short summary
The Copernicus Marine Service (CMEMS) provides oceanographic products and services. Using a mesoscale eddy tracker, we evaluate the performance of three CMEMS model products in the western Mediterranean. Performance testing provides valuable feedback to the model developers. The eddy tracker allows us to construct 3-D eddy composites for each model in the Alboran Sea gyres. Comparison of the composites with data from Argo floats highlights the importance of data assimilation for these models.
Pablo Lorente, Marcos García-Sotillo, Arancha Amo-Baladrón, Roland Aznar, Bruno Levier, José C. Sánchez-Garrido, Simone Sammartino, Álvaro de Pascual-Collar, Guillaume Reffray, Cristina Toledano, and Enrique Álvarez-Fanjul
Ocean Sci., 15, 967–996, https://doi.org/10.5194/os-15-967-2019, https://doi.org/10.5194/os-15-967-2019, 2019
Romain Rainaud, Lotfi Aouf, Alice Dalphinet, Marcos Garcia Sotillo, Enrique Alvarez-Fanjul, Guillaume Reffray, Bruno Levier, Stéphane LawChune, Pablo Lorente, and Cristina Toledano
Ocean Sci. Discuss., https://doi.org/10.5194/os-2018-165, https://doi.org/10.5194/os-2018-165, 2019
Publication in OS not foreseen
Short summary
Short summary
This paper highlight the adjustment of the wave physics in order to improve the surface stress and thus the ocean/wave coupling dedicated to Iberian Biscay and Ireland domain. The validation with altimeters wave data during the year 2014 has shown a slight improvement of the significant wave height. Statistical analysis of the results of the new and old versions of the wave model MFWAM is examined for the three main ocean regions of the IBI domain.
Romain Rainaud, Lotfi Aouf, Alice Dalphinet, Marcos Garcia Sotillo, Enrique Alvarez-Fanjul, Guillaume Reffray, Bruno Levier, Stéphane Law-Chune, Pablo Lorente, and Cristina Toledano
Ocean Sci. Discuss., https://doi.org/10.5194/os-2018-167, https://doi.org/10.5194/os-2018-167, 2019
Publication in OS not foreseen
Short summary
Short summary
This work highlights the relevance of coupling wave model with ocean model in order to improve key surface ocean parameters and in general to better describe the ocean circulation at small and large scale.
The results focus on the Iberian Biscay and Ireland ocean region with fine grid resolution of 2.5 km for the ocean model. The main conclusion is the improvement of wave physics induces a better ocean mixing at the upper layer and a positive impact for sea surface height in storm events.
Marcos García Sotillo, Emilio Garcia-Ladona, Alejandro Orfila, Pablo Rodríguez-Rubio, José Cristobal Maraver, Daniel Conti, Elena Padorno, José Antonio Jiménez, Este Capó, Fernando Pérez, Juan Manuel Sayol, Francisco Javier de los Santos, Arancha Amo, Ana Rietz, Charles Troupin, Joaquín Tintore, and Enrique Álvarez-Fanjul
Earth Syst. Sci. Data, 8, 141–149, https://doi.org/10.5194/essd-8-141-2016, https://doi.org/10.5194/essd-8-141-2016, 2016
Short summary
Short summary
An intensive drifter deployment was carried out in the Strait of Gibraltar: 35 satellite tracked drifters were released, coordinating to this aim 4 boats, covering an area of about 680 NM2 in 6 hours. This MEDESS-GIB Experiment is the most important exercise in the Mediterranean in terms of number of drifters released. The MEDESS-GIB dataset provides a complete Lagrangian view of the surface inflow of Atlantic waters through the Strait of Gibraltar and its later evolution along the Alboran Sea.
C. Maraldi, J. Chanut, B. Levier, N. Ayoub, P. De Mey, G. Reffray, F. Lyard, S. Cailleau, M. Drévillon, E. A. Fanjul, M. G. Sotillo, P. Marsaleix, and the Mercator Research and Development Team
Ocean Sci., 9, 745–771, https://doi.org/10.5194/os-9-745-2013, https://doi.org/10.5194/os-9-745-2013, 2013
Related subject area
Approach: Numerical Models | Depth range: Deep Ocean | Geographical range: Deep Seas: North Atlantic | Phenomena: Current Field
High frequency variability of the Atlantic meridional overturning circulation
B. Balan Sarojini, J. M. Gregory, R. Tailleux, G. R. Bigg, A. T. Blaker, D. R. Cameron, N. R. Edwards, A. P. Megann, L. C. Shaffrey, and B. Sinha
Ocean Sci., 7, 471–486, https://doi.org/10.5194/os-7-471-2011, https://doi.org/10.5194/os-7-471-2011, 2011
Cited articles
Ambar, I. and Howe, M. R.: Observations of the Mediterranean outflow. II. The
deep circulation in the vicinity of the Gulf of Cadiz, Deep-Sea Res., 26A, 555–568, 1979.
Amo Baladrón, A., Levier, B., and Sotillo, M. G.: Product User Manual for
Atlantic-Iberian Biscay Irish-Ocean Physics Reanalysis Product: IBI_REANALYSIS_PHYS_005_002,
Copernicus Marine Environment Monitoring Service, available at:
http://cmems-resources.cls.fr/documents/PUM/CMEMS-IBI-PUM-005-002.pdf (17 May 2019), 2018.
Arhan, M. and King, B.: Lateral mixing of the Mediterranean water in the eastern
North Atlantic, J. Mar. Res., 53, 865–895, https://doi.org/10.1357/0022240953212990, 1995.
Armi, L. and Zenk, W.: Large lenses of highly saline Mediterranean water, J.
Phys. Oceanogr., 14, 1560–1576, 1984.
Armi, L., Hebert, D., Oakey, N., Price, J., Richardson, P., Rossby, H., and
Ruddinck, B.: Two years in the life of a Mediter- ranean salt lens, J. Phys.
Oceanogr., 19, 354–383, 1989.
Artale, V., Calmanti, S., Malanotte-Rizzoli, P., Pisacane, G., Rupolo, V., and
Tsimplis, M.: The Atlantic and Mediterranean Sea as connected systems, in:
Mediterranean Climate Variability, edited by: Lionello, P., Malanotte-Rizzoli,
P., and Boscolo, R., Elsevier, Oxford, UK, 283–322, 2006.
Aznar, R., Sotillo, M. G., Cailleau, S., Lorente, P., Levier, B.,
Amo-Baladrón, A., Reffray, G., and Álvarez-Fanjul, E.: Strengths and
weaknesses of the CMEMS forecasted and reanalyzed solutions for the
Iberia-Biscay-Ireland (IBI) waters, J. Mar. Syst., 159, 1–14, https://doi.org/10.1016/j.jmarsys.2016.02.007, 2016.
Baringer, M. O. and Price, J. F.: Mixing and spreading of the Mediterranean
outflow, J. Phys. Oceanogr., 27, 1654–1677, 1997.
Becker, J. J., Sandwell, D. T., Smith, W. H. F., Braud, J., Binder, B., Depner,
J., Fabre, D., Factor, J., Ingalls, S., Kim, S.-H., Ladner, R., Marks, K.,
Nelson, S., Pharaoh, A., Trimmer, R., von Rosenberg, J., Wallace, G., and
Weatherall, P.: Global bathymetry and elevation data at 30 arc seconds
resolution: SRTM30_PLUS, Mar. Geod., 32, 355–371, https://doi.org/10.1080/01490410903297766, 2016.
Bower, A. S., Armi, L., and Ambar, I.: Lagrangian observations of meddy formation
during A Mediterranean Undercurrent Seeding Experiment, J. Phys. Oceanogr.,
27, 2545–2575, 1997.
Bower, A. S., Lecann, B., Rossby, T., Zenk, W., Gould, J., Speer, K., Richardson,
P. L., Prater, M. D., and Zhang, H.-M.: Directly measured mid-depth circulation
in the northeastern North Atlantic Ocean, Nature, 419, 603–607, https://doi.org/10.1038/nature01078, 2002.
Bozec, A., Lozier, M. S., Chasignet, E. P., and Halliwel, G. R.: On the
variability of the Mediterranean Outflow Water in the North Atlantic from 1948
to 2006, J. Geophys. Res.-Oceans, 116, C09033, https://doi.org/10.1029/2011JC007191, 2011.
Cabanes, C., Grouazel, A., von Schuckmann, K., Hamon, M., Turpin, V., Coatanoan,
C., Paris, F., Guinehut, S., Boone, C., Ferry, N., de Boyer Montegut, C.,
Carval, T., Reverdin, G., Pouliquen, S., and Le Traon, P.-Y.: The CORA dataset:
validation and diagnostics of in-situ ocean temperature and salinity measurements,
Ocean Sci., 9, 1–18, https://doi.org/10.5194/os-9-1-2013, 2013.
Carracedo, L., Gilcoto, M., Mercier, H., and Pérez, F.: Seasonal dynamics
in the Azores-Gibraltar Strait region: A climatologically-based study, Prog.
Oceanogr., 122, 116–130, https://doi.org/10.1016/j.pocean.2013.12.005, 2014.
Copernicus Marine Environment Monitoring Service: Atlantic-Iberian Biscay
Irish-Ocean Physics Reanalysis, available at:
http://marine.copernicus.eu/services-portfolio/access-to-products/?option=com_csw&view=details&product_id=IBI_REANALYSIS_PHYS_005_002,
last access: 21 May 2019.
Daniault, N., Mazé, J. P., and Arhan, M.: Circulation and mixing of
Mediterranean water west of the Iberian Peninsula, Deep-Sea Res., 41, 11–12,
https://doi.org/10.1016/0967-0637(94)90068-X, 1994.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi,
S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars,
A. C. M., van de Berg, L., Bidlot, J. R., Bormann, N., Delsol, C., Dragani, R.,
Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm,
E. V., Isaksen, L., Kallberg, P., Köhler, M., Matricardi, M., McNally, A.
P., Monge-Sanz, B. M., Morcrette, J. J., Park, B. K., Peubey, C., de Rosnay, P.,
Tavolato, C., Thépaut, J. N., and Vitart, F.: The ERA-interim reanalysis:
configuration and performance of the data assimilation system, Q. J. Roy.
Meteorol. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2016.
Egbert, G. D. and Erofeeva, S. Y.: Efficient inverse modeling of Barotropic
Ocean tides, J. Atmos. Ocean. Tech., 19, 183–204, https://doi.org/10.1175/1520-0426(2002)019b0183:EIMOBON2.0.CO;2, 2002.
Friocourt, Y., Levier, B., Speich, S., Blanke, B., and Drijfhout, S. S.: A
regional numerical ocean model of the circulation in the Bay of Biscay, J.
Geophys. Res.-Oceans, 112, 1–19, https://doi.org/10.1029/2006JC003935, 2007.
Fucso, G., Artale, V., and Cotroneo, Y.: Thermohaline variability of
Mediterranean Water in the Gulf of Cadiz over the last decades (1948–1999),
Deep-Sea Res. Pt. I, 55, 1624–1638, https://doi.org/10.1016/j.dsr.2008.07.009, 2008.
García-Lafuente, J., Delgado, J., Criado-Aldeanueva, F., Bruno, M.,
del Río, J., and Miguel Vargas, J.: Water mass circulation on the
continental shelf of the Gulf of Cádiz, Deep-Sea Res. Pt. II, 53, 1182–1197,
https://doi.org/10.1016/j.dsr2.2006.04.011, 2006.
Garric, G. and Parent, L.: Product User Manual for Global Ocean Reanalysis
Product: GLOBAL-REANALYSIS-PHY-001-025, Copernicus Marine Environment
Monitoring Service, available at: http://cmems-resources.cls.fr/documents/PUM/CMEMS-GLO-PUM-001-025.pdf (last access: 17 May 2019), 2018.
Gasser, M. Pelegrí, J. L., Emelianov, M., Bruno, M., Grácia, E., Pastor,
M., Peters, H., Rodríguez-Santana, A., Salvador, J., Sánchez-Leal, R.
L.: Tracking the Mediterranean outflow in the Gulf of Cadiz, Prog. Oceanogr.,
157, 47–71, https://doi.org/10.1016/j.pocean.2017.05.015, 2017.
Gatti, J. and Pouliquen, S.: Product user manual for near real time and delayed
mode objective analysis products INSITU_GLO_TS_OA_REP_OBSERVATIONS_013_002_ab
Period covered: 1990–2015, Copernicus Marine Environment Monitoring Service,
available at: http://cmems-resources.cls.fr/documents/PUM/CMEMS-INS-PUM-013-002-ab.pdf (17 May 2019), 2017.
Iorga, M. C. and Lozier, M. S.: Signatures of the Mediterranean outflow from a
North Atlantic climatology 1. Salinity and density fields, J. Geophys. Res.,
104, 25985–26009, 1999a.
Iorga, M. C. and Lozier, M. S.: Signatures of the Mediterranean outflow from a
North Atlantic climatology 2. Diagnostic velocity fields, J. Geophys. Res.,
104, 26011–26029, 1999b.
Izquierdo, A. and Mikolajewicz U.: The role of tides in the spreading of
Mediterranean Outflow Waters along the Southwestern Iberian Margin, Ocean Model.,
133, 27–43, https://doi.org/10.1016/j.ocemod.2018.08.003, 2019.
Jia, Y.: Formation of an Azores Current Due to Mediterranean Overflow in a
Modeling Study of the North Atlantic, J. Phys. Oceanogr., 30, 2342–2358, https://doi.org/10.1175/1520-0485(2000)030<2342:FOAACD>2.0.CO;2, 2000.
Large, W. G. and Yeager, S. G.: Diurnal to Decadal Global Forcing for Ocean
and Sea-Ice Models: the Data Sets and Flux Climatologies, NCAR technical
note, NCAR/TN-460CSTR, National Center for Atmospheric Research, Boulder,
Colorado, https://doi.org/10.5065/D6KK98Q6, 2004.
Leadbetter, S. J., Williams, R. G., McDonagh, E. L., and King, B. A.: A twenty
year reversal in water mass trends in the subtropical North Atlantic, Geophys.
Res. Lett., 34, 1–6, https://doi.org/10.1029/2007GL029957, 2007.
Lellouche, J.-M., Le Galloudec, O., Drévillon, M., Régnier, C., Greiner,
E., Garric, G., Ferry, N., Desportes, C., Testut, C.-E., Bricaud, C.,
Bourdallé-Badie, R., Tranchant, B., Benkiran, M., Drillet, Y., Daudin, A.,
and De Nicola, C.: Evaluation of global monitoring and forecasting systems at
Mercator Océan, Ocean Sci., 9, 57–81, https://doi.org/10.5194/os-9-57-2013, 2013.
Levier, B., Benkiran, M., Reffray, G., and Sotillo, M. G.: IBIRYS: A Regional
High Resolution Reanalysis (Physical and Biogeochemical) over the European
North East Shelf, EGU General Assembly, id.14014, 2014.
Lozier, M. S. and Stewart N. M.: On the temporally varying penetration of
Mediterranean overflow waters and eastward penetration of Labrador Sea Water,
J. Phys. Oceanogr., 38, 2097–2103, https://doi.org/10.1175/2008JPO3908.1, 2008.
Lozier, M. S. and Sindlinger, L.: On the Source of Mediterranean Overflow Water
Property Changes, J. Phys. Oceanogr., 39, 1800–1817, https://doi.org/10.1175/2009JPO4109.1, 2009,
Lyard, F., Lefevre, F., Letellier, T., and Francis, O.: Modelling the global
ocean tides: modern insights from FES2004, Ocean Dynam., 56, 394–415,
https://doi.org/10.1007/s10236-006-0086-x, 2006.
Machín, F. and Pelegrí, J. L.: Northward Penetration of Antarctic
Intermediate Water off Northwest Africa, J. Phys. Oceanogr., 39, 512–535, 2009.
Machín, F., Pelegrí, J. L., Marrero-Díaz, A., Laiz, I., and
Ratsimandresy, A. W.: Near-surface circulation in the southern Gulf of Cádiz,
Deep-Sea Res. Pt. II, 53, 1161–1181, https://doi.org/10.1016/j.dsr2.2006.04.001, 2006.
Madec, G.: NEMO Ocean General Circulation Model, Reference Manual, Internal
Report, LODYC/IPSL, Paris, 2008.
Maraldi, C., Chanut, J., Levier, B., Reffray, G., Ayoub, N., De Mey, P., Lyard,
F., Cailleau, S., Drévillon, M., Fanjul, E. A., Sotillo, M. G., Marsaleix,
P., and the Mercator team: NEMO on the shelf: assessment of the
Iberia-Biscay-Ireland configuration, Ocean Sci., 9, 745–771, https://doi.org/10.5194/os-9-745-2013, 2013.
Mazé, J. P., Arhan, M., and Mercier, H.: Volume budget of the eastern
boundary layer off the Iberian Peninsula, Deep-Sea Res. Pt. I, 44, 1543–1574,
https://doi.org/10.1016/S0967-0637(97)00038-1, 1997.
McCartney, M. and Mauritzen, C.: On the origin of the warm inflow to the Nordic
Seas, Prog. Oceanogr., 51, 125–214, https://doi.org/10.1016/S0079-6611(01)00084-2, 2001.
New, A. L., Barnard, S., Herrmann, P., and Molines, J.-M.: On the origin and
pathway of saline inflow to the Nordic Seas: Insights from the models, Prog.
Oceanogr., 48, 255–287, https://doi.org/10.1016/S0079-6611(01)00007-6, 2001.
Ochoa, J. and Bray, N. A.: Water mass exchange in the Gulf of Cadiz, Deep-Sea
Res., 38, 5465–5503, 1991.
Pascual, Á., Levier, B., and Sotillo, M.: Characterisation of Mediterranean
outflow water in the Iberian-Gulf of Biscay-Ireland region, in: Copernicus
Marine Service Ocean State Report, Issue 2, J. Operat. Oceanogr., 11, s1–s142,
https://doi.org/10.1080/1755876X.2018.1489208, 2018.
Potter, R. A. and Lozier, M. S.: On the warming and salinification of the
Mediterranean outflow waters in the North Atlantic, Geophys. Res. Lett., 31,
1–4, https://doi.org/10.1029/2003GL018161, 2004.
Prieto, E., González-Pola, C., Lavín, A., Sánchez, R. F., and
Ruiz-Villarreal, M.: Seasonality of intermediate waters hydrography west of
the Iberian Peninsula from an 8 yr semiannual time series of an oceanographic
section, Ocean Sci., 9, 411–429, https://doi.org/10.5194/os-9-411-2013, 2013.
Reid, J. L.: On the contribution of the Mediterranean Sea outflow to the
Norwegian-Greenland Sea, Deep-Sea Res. Pt. A, 26, 1199–1223, https://doi.org/10.1016/0198-0149(79)90064-5, 1979.
Reid, J. L.: On the total geostrophic circulation of the North Atlantic Ocean:
Flow patterns, tracers, and transports, Prog. Oceanogr., 33, 1–92,
https://doi.org/10.1016/0079-6611(94)90014-0, 1994.
Sánchez-Leal, R. F., Bellanco, M. J., Fernández-Salas, L. M.,
García-Lafuente, J., Gasser-Rubinat, M., González-Pola, C.,
Hernández-Molina, F. J., Pelegrí, J. L., Peliz, A., Relvas, P., Roque,
D., Ruiz-Villarreal, M., Sammartino, S., and Sánchez-Garrido, J. C.: The
Mediterranean Overflow in the Gulf of Cadiz: A rugged journey, Sci. Adv., 3,
1–12, https://doi.org/10.1126/sciadv.aao0609, 2017.
Sangrà, P., Pascual, A., Rodríguez-Santana, Á., Machín, F.,
Mason, E., McWilliams, J. C., Pelegrí, J. L., Dong, C., Rubio, A.,
Arístegui, J., Marrero-Díaz, Á., Hernández-Guerra, A.,
Martínez-Marrero, A., and Auladell, M.: The Canary Eddy Corridor: A major
pathway for long-lived eddies in the subtropical North Atlantic, Deep-Sea Res.
Pt. I, 56, 2100–2114, https://doi.org/10.1016/j.dsr.2009.08.008, 2009.
Sotillo, M. G., Cailleau, S., Lorente, P., Levier, B., Aznar, R., Reffray, G.,
Amo-Baladrón, A., Chanut, J., Benkiran, M., and Álvarez Fanjul, E.:
The MyOcean IBI Ocean forecast and reanalysis systems: operational products
and roadmap to the future Copernicus Service, J. Operat. Oceanogr., 8, 63–79,
https://doi.org/10.1080/1755876X.2015.1014663, 2015.
Talley, L. D. and McCartney, M. S.: Distribution and Circulation of Labrador
Sea Water, J. Phys. Oceanogr., 12, 1189–1205, https://doi.org/10.1175/1520-0485(1982)012<1189:DACOLS>2.0.CO;2, 1982.
Umlauf, L. and Burchard, H.: A generic length-scale equation for geophysical
turbulence models, J. Mar. Res., 61, 235–265, https://doi.org/10.1357/002224003322005087, 2003.
van Aken, H. M.: The hydrography of the mid-latitude Northeast Atlantic Ocean
II: The intermediate water masses, Deep-Sea Res., 47, 789–824,
https://doi.org/10.1016/S0967-0637(99)00112-0, 2000.
van Aken, H. M. and Becker, G.: Hydrography and through-fow in the north-eastern
North Atlantic Ocean: the NANSEN project, Prog. Oceanogr., 38, 297–346, 1996.
von Schuckmann, K., Le Traon, P.-T., Alvarez-Fanjul, E., Axell, L., Balmaseda,
M., Breivik, L.-A., Brewin, R. J. W., Bricaud, C., Drevillon, M., Drillet, Y.,
Dubois, C., Embury, O., Etienne, H., Sotillo, M. G., Garric, G., Gasparin, F.,
Gutknecht, E., Guinehut, S., Hernandez, F., Juza, M., Karlson, B., Korres, G.,
Legeais, J.-F., Levier, B., Lien, V. S., Morrow, R., Notarstefano, G., Parent,
L., Pascual, Á., Pérez-Gómez, B., Perruche, C., Pinardi, N., Pisano,
A., Poulain, P.-M., Pujol, I. M., Raj, R. P., Raudsepp, U., Roquet, H.,
Samuelsen, A., Sathyendranath, S., She, J., Simoncelli, S., Solidoro, C., Tinker,
J., Tintoré, J., Viktorsson, L., Ablain, M., Almroth-Rosell, E., Bonaduce,
A., Clementi, E., Cossarini, G., Dagneaux, Q., Desportes, C., Dye, S., Fratianni,
C., Good, S., Greiner, E., Gourrion, J., Hamon, M., Holt, J., Hyder, P., Kennedy,
J., Manzano-Muñoz, F., Melet, A., Meyssignac, B., Mulet, S.,
Buongiorno Nardelli, B., O'Dea, E., Olason, E., Paulmier, A., Pérez-González,
I., Reid, R., Racault, M.-F., Raitsos, D. E., Ramos, A., Sykes, P., Szekely, T.,
and Verbrugge, N.: The Copernicus Marine Environment Monitoring Service Ocean
State Report, J. Operat. Oceanogr., 9, s235–s320, https://doi.org/10.1080/1755876X.2016.1273446, 2016.
von Schuckmann, K., Le Traon, P.-Y., Smith, N., Pascual, A., Braseur, P., Fennel,
K., and Djavidnia, S.: Copernicus Marine Service Ocean State Report, Issue 2,
J. Operat. Oceanogr., 11, s1–s142, https://doi.org/10.1080/1755876X.2018.1489208, 2018.
Zenk, W. and Armi, L.: The complex spreading pattern of Mediterranean Water off
the Portuguese continental slope, 37, 1805–1823, https://doi.org/10.1016/0198-0149(90)90079-B, 1990.
Zenk, W., Schultz Tokos, K., and Boebel, O.: New observations of meddy movement
south of the Tejo Plateau, Geophys. Res. Lett., 19, 2389–2392, 1992.
Short summary
The Mediterranean Outflow Water (MOW) is a dense water mass originated in the Gibraltar Straight. The CMEMS IBI ocean reanalysis is used to provide a detailed view of the circulation and mixing processes of MOW near the Iberian and African Continental slopes. This work emphasizes the relevance of the complex bathymetric features defining the circulation and variability processes of MOW in this region.
The Mediterranean Outflow Water (MOW) is a dense water mass originated in the Gibraltar...