Articles | Volume 15, issue 2
https://doi.org/10.5194/os-15-249-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/os-15-249-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A multi-collocation method for coastal zone observations with applications to Sentinel-3A altimeter wave height data
Johannes Schulz-Stellenfleth
CORRESPONDING AUTHOR
Helmholtz Zentrum Geesthacht (HZG), Institute of Coastal Research (IfK), Max-Planck-Str. 1, 21502 Geesthacht, Germany
Joanna Staneva
Helmholtz Zentrum Geesthacht (HZG), Institute of Coastal Research (IfK), Max-Planck-Str. 1, 21502 Geesthacht, Germany
Related authors
Astrid Lampert, Konrad Bärfuss, Andreas Platis, Simon Siedersleben, Bughsin Djath, Beatriz Cañadillas, Robert Hunger, Rudolf Hankers, Mark Bitter, Thomas Feuerle, Helmut Schulz, Thomas Rausch, Maik Angermann, Alexander Schwithal, Jens Bange, Johannes Schulz-Stellenfleth, Thomas Neumann, and Stefan Emeis
Earth Syst. Sci. Data, 12, 935–946, https://doi.org/10.5194/essd-12-935-2020, https://doi.org/10.5194/essd-12-935-2020, 2020
Short summary
Short summary
With the research aircraft Do-128 of TU Braunschweig, meteorological measurements were performed in the wakes of offshore wind parks during the project WIPAFF. During stable atmospheric conditions, the areas of reduced wind speed and enhanced turbulence behind wind parks had an extension larger than 45 km downwind. The data set consisting of 41 measurement flights is presented. Parameters include wind vector, temperature, humidity and significant wave height.
Simon K. Siedersleben, Andreas Platis, Julie K. Lundquist, Bughsin Djath, Astrid Lampert, Konrad Bärfuss, Beatriz Cañadillas, Johannes Schulz-Stellenfleth, Jens Bange, Tom Neumann, and Stefan Emeis
Geosci. Model Dev., 13, 249–268, https://doi.org/10.5194/gmd-13-249-2020, https://doi.org/10.5194/gmd-13-249-2020, 2020
Short summary
Short summary
Wind farms affect local weather and microclimates. These effects can be simulated in weather models, usually by removing momentum at the location of the wind farm. Some debate exists whether additional turbulence should be added to capture the enhanced mixing of wind farms. By comparing simulations to measurements from airborne campaigns near offshore wind farms, we show that additional turbulence is necessary. Without added turbulence, the mixing is underestimated during stable conditions.
Anne Wiese, Joanna Staneva, Johannes Schulz-Stellenfleth, Arno Behrens, Luciana Fenoglio-Marc, and Jean-Raymond Bidlot
Ocean Sci., 14, 1503–1521, https://doi.org/10.5194/os-14-1503-2018, https://doi.org/10.5194/os-14-1503-2018, 2018
Short summary
Short summary
The increase of data quality of wind and wave measurements provided by the new Sentinel-3A satellite in coastal areas is demonstrated compared to measurements of older satellites with in situ data and spectral wave model simulations. Furthermore, the sensitivity of the wave model to wind forcing is evaluated using data with different temporal and spatial resolution, where an hourly temporal resolution is necessary to represent the peak of extreme events better.
Burkard Baschek, Friedhelm Schroeder, Holger Brix, Rolf Riethmüller, Thomas H. Badewien, Gisbert Breitbach, Bernd Brügge, Franciscus Colijn, Roland Doerffer, Christiane Eschenbach, Jana Friedrich, Philipp Fischer, Stefan Garthe, Jochen Horstmann, Hajo Krasemann, Katja Metfies, Lucas Merckelbach, Nino Ohle, Wilhelm Petersen, Daniel Pröfrock, Rüdiger Röttgers, Michael Schlüter, Jan Schulz, Johannes Schulz-Stellenfleth, Emil Stanev, Joanna Staneva, Christian Winter, Kai Wirtz, Jochen Wollschläger, Oliver Zielinski, and Friedwart Ziemer
Ocean Sci., 13, 379–410, https://doi.org/10.5194/os-13-379-2017, https://doi.org/10.5194/os-13-379-2017, 2017
Short summary
Short summary
The Coastal Observing System for Northern and Arctic Seas (COSYNA) was established in order to better understand the complex interdisciplinary processes of northern seas and the Arctic coasts in a changing environment. Particular focus is given to the heavily used German Bight in the North Sea. The automated observing and modelling system is designed to monitor real-time conditions, to provide short-term forecasts and data products, and to assess the impact of anthropogenically induced change.
Emil V. Stanev, Johannes Schulz-Stellenfleth, Joanna Staneva, Sebastian Grayek, Sebastian Grashorn, Arno Behrens, Wolfgang Koch, and Johannes Pein
Ocean Sci., 12, 1105–1136, https://doi.org/10.5194/os-12-1105-2016, https://doi.org/10.5194/os-12-1105-2016, 2016
Short summary
Short summary
This paper describes coastal ocean forecasting practices exemplified for the North Sea and Baltic Sea. It identifies new challenges, most of which are associated with the nonlinear behavior of coastal oceans. It describes the assimilation of remote sensing, in situ and HF radar data, prediction of wind waves and storm surges, as well as applications to search and rescue operations. Seamless applications to coastal and estuarine modeling are also presented.
Joanna Staneva, Angelique Melet, Jennifer Veitch, and Pascal Matte
State Planet Discuss., https://doi.org/10.5194/sp-2024-44, https://doi.org/10.5194/sp-2024-44, 2024
Preprint under review for SP
Short summary
Short summary
Coastal areas are critical for society, with a significant portion of the global population residing near the coast. Predicting ocean conditions in these regions is challenging due to the need to model complex processes like tidal currents, wind-wave interactions, and shallow water dynamics. This paper explores advancements in high-resolution coastal modeling and observations, which improve predictions and refine monitoring systems. It highlights innovative approaches to enhance coastal realism
Roderik van de Wal, Angélique Melet, Debora Bellafiore, Paula Camus, Christian Ferrarin, Gualbert Oude Essink, Ivan D. Haigh, Piero Lionello, Arjen Luijendijk, Alexandra Toimil, Joanna Staneva, and Michalis Vousdoukas
State Planet, 3-slre1, 5, https://doi.org/10.5194/sp-3-slre1-5-2024, https://doi.org/10.5194/sp-3-slre1-5-2024, 2024
Short summary
Short summary
Sea level rise has major impacts in Europe, which vary from place to place and in time, depending on the source of the impacts. Flooding, erosion, and saltwater intrusion lead, via different pathways, to various consequences for coastal regions across Europe. This causes damage to assets, the environment, and people for all three categories of impacts discussed in this paper. The paper provides an overview of the various impacts in Europe.
Wei Chen and Joanna Staneva
State Planet, 4-osr8, 7, https://doi.org/10.5194/sp-4-osr8-7-2024, https://doi.org/10.5194/sp-4-osr8-7-2024, 2024
Short summary
Short summary
Marine heatwaves (MHWs), which are the unusually warm periods in the ocean, are becoming more frequent and lasting longer in the northwest European Shelf (NWES), particularly near the coast, from 1993 to 2023. However, thermal stratification is weakening, implying that the sea surface warming caused by MHWs is insufficient to counteract the overall stratification decline due to global warming. Moreover, the varying salinity has a notable impact on the trend of density stratification change.
Pascal Matte, John Wilkin, and Joanna Staneva
State Planet Discuss., https://doi.org/10.5194/sp-2024-9, https://doi.org/10.5194/sp-2024-9, 2024
Preprint under review for SP
Short summary
Short summary
Rivers, vital to the Earth's system, connect the ocean with the land, governing hydrological and biogeochemical contributions and influencing processes like upwelling and mixing. This paper reviews advancements in river modeling, focusing on estuaries, from coarse-resolution ocean forecasting to more precise coastal coupling approaches. It discusses river data sources and examines how river forcing is treated in global, regional and coastal operational systems.
Carolina B. Gramcianinov, Joanna Staneva, Celia R. G. Souza, Priscila Linhares, Ricardo de Camargo, and Pedro L. da Silva Dias
State Planet, 1-osr7, 12, https://doi.org/10.5194/sp-1-osr7-12-2023, https://doi.org/10.5194/sp-1-osr7-12-2023, 2023
Short summary
Short summary
We analyse extreme wave event trends in the south-western South Atlantic in the last 29 years using wave products and coastal hazard records. The results show important regional changes associated with increased mean sea wave height, wave period, and wave power. We also find a rise in the number of coastal hazards related to waves affecting the state of São Paulo, Brazil, which partially agrees with the increase in extreme waves in the adjacent ocean sector but is also driven by local factors.
Stefania A. Ciliberti, Enrique Alvarez Fanjul, Jay Pearlman, Kirsten Wilmer-Becker, Pierre Bahurel, Fabrice Ardhuin, Alain Arnaud, Mike Bell, Segolene Berthou, Laurent Bertino, Arthur Capet, Eric Chassignet, Stefano Ciavatta, Mauro Cirano, Emanuela Clementi, Gianpiero Cossarini, Gianpaolo Coro, Stuart Corney, Fraser Davidson, Marie Drevillon, Yann Drillet, Renaud Dussurget, Ghada El Serafy, Katja Fennel, Marcos Garcia Sotillo, Patrick Heimbach, Fabrice Hernandez, Patrick Hogan, Ibrahim Hoteit, Sudheer Joseph, Simon Josey, Pierre-Yves Le Traon, Simone Libralato, Marco Mancini, Pascal Matte, Angelique Melet, Yasumasa Miyazawa, Andrew M. Moore, Antonio Novellino, Andrew Porter, Heather Regan, Laia Romero, Andreas Schiller, John Siddorn, Joanna Staneva, Cecile Thomas-Courcoux, Marina Tonani, Jose Maria Garcia-Valdecasas, Jennifer Veitch, Karina von Schuckmann, Liying Wan, John Wilkin, and Romane Zufic
State Planet, 1-osr7, 2, https://doi.org/10.5194/sp-1-osr7-2-2023, https://doi.org/10.5194/sp-1-osr7-2-2023, 2023
Kathrin Wahle, Emil V. Stanev, and Joanna Staneva
Nat. Hazards Earth Syst. Sci., 23, 415–428, https://doi.org/10.5194/nhess-23-415-2023, https://doi.org/10.5194/nhess-23-415-2023, 2023
Short summary
Short summary
Knowledge of what causes maximum water levels is often key in coastal management. Processes, such as storm surge and atmospheric forcing, alter the predicted tide. Whilst most of these processes are modeled in present-day ocean forecasting, there is still a need for a better understanding of situations where modeled and observed water levels deviate from each other. Here, we will use machine learning to detect such anomalies within a network of sea-level observations in the North Sea.
Wei Chen, Joanna Staneva, Sebastian Grayek, Johannes Schulz-Stellenfleth, and Jens Greinert
Nat. Hazards Earth Syst. Sci., 22, 1683–1698, https://doi.org/10.5194/nhess-22-1683-2022, https://doi.org/10.5194/nhess-22-1683-2022, 2022
Short summary
Short summary
This study links the occurrence and persistence of density stratification in the southern North Sea to the increased number of extreme marine heat waves. The study further identified the role of the cold spells at the early stage of a year to the intensity of thermal stratification in summer. In a broader context, the research will have fundamental significance for further discussion of the secondary effects of heat wave events, such as in ecosystems, fisheries, and sediment dynamics.
Astrid Lampert, Konrad Bärfuss, Andreas Platis, Simon Siedersleben, Bughsin Djath, Beatriz Cañadillas, Robert Hunger, Rudolf Hankers, Mark Bitter, Thomas Feuerle, Helmut Schulz, Thomas Rausch, Maik Angermann, Alexander Schwithal, Jens Bange, Johannes Schulz-Stellenfleth, Thomas Neumann, and Stefan Emeis
Earth Syst. Sci. Data, 12, 935–946, https://doi.org/10.5194/essd-12-935-2020, https://doi.org/10.5194/essd-12-935-2020, 2020
Short summary
Short summary
With the research aircraft Do-128 of TU Braunschweig, meteorological measurements were performed in the wakes of offshore wind parks during the project WIPAFF. During stable atmospheric conditions, the areas of reduced wind speed and enhanced turbulence behind wind parks had an extension larger than 45 km downwind. The data set consisting of 41 measurement flights is presented. Parameters include wind vector, temperature, humidity and significant wave height.
Simon K. Siedersleben, Andreas Platis, Julie K. Lundquist, Bughsin Djath, Astrid Lampert, Konrad Bärfuss, Beatriz Cañadillas, Johannes Schulz-Stellenfleth, Jens Bange, Tom Neumann, and Stefan Emeis
Geosci. Model Dev., 13, 249–268, https://doi.org/10.5194/gmd-13-249-2020, https://doi.org/10.5194/gmd-13-249-2020, 2020
Short summary
Short summary
Wind farms affect local weather and microclimates. These effects can be simulated in weather models, usually by removing momentum at the location of the wind farm. Some debate exists whether additional turbulence should be added to capture the enhanced mixing of wind farms. By comparing simulations to measurements from airborne campaigns near offshore wind farms, we show that additional turbulence is necessary. Without added turbulence, the mixing is underestimated during stable conditions.
Johannes Pein, Annika Eisele, Richard Hofmeister, Tina Sanders, Ute Daewel, Emil V. Stanev, Justus van Beusekom, Joanna Staneva, and Corinna Schrum
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-265, https://doi.org/10.5194/bg-2019-265, 2019
Revised manuscript not accepted
Short summary
Short summary
The Elbe estuary is subject to vigorous tidal forcing from the sea side and considerable biological inputs from the land side. Our 3D numerical coupled physical-biogeochemical integrates these forcing signals and provides highly realistic hindcasts of the associated dynamics. Model simulations show that the freshwater part of Elbe estuary is inhabited by plankton. According to simulations these organism play a key role in converting organic inputs into nitrate, the major inorganic nutrient.
Huw W. Lewis, Juan Manuel Castillo Sanchez, John Siddorn, Robert R. King, Marina Tonani, Andrew Saulter, Peter Sykes, Anne-Christine Pequignet, Graham P. Weedon, Tamzin Palmer, Joanna Staneva, and Lucy Bricheno
Ocean Sci., 15, 669–690, https://doi.org/10.5194/os-15-669-2019, https://doi.org/10.5194/os-15-669-2019, 2019
Short summary
Short summary
Forecasts of ocean temperature, salinity, currents, and sea height can be improved by linking state-of-the-art ocean and wave models, so that they can interact to better represent the real world. We test this approach in an ocean model of north-west Europe which can simulate small-scale details of the ocean state. The intention is to implement the system described in this study for operational use so that improved information can be provided to users of ocean forecast data.
Anne Wiese, Joanna Staneva, Johannes Schulz-Stellenfleth, Arno Behrens, Luciana Fenoglio-Marc, and Jean-Raymond Bidlot
Ocean Sci., 14, 1503–1521, https://doi.org/10.5194/os-14-1503-2018, https://doi.org/10.5194/os-14-1503-2018, 2018
Short summary
Short summary
The increase of data quality of wind and wave measurements provided by the new Sentinel-3A satellite in coastal areas is demonstrated compared to measurements of older satellites with in situ data and spectral wave model simulations. Furthermore, the sensitivity of the wave model to wind forcing is evaluated using data with different temporal and spatial resolution, where an hourly temporal resolution is necessary to represent the peak of extreme events better.
Burkard Baschek, Friedhelm Schroeder, Holger Brix, Rolf Riethmüller, Thomas H. Badewien, Gisbert Breitbach, Bernd Brügge, Franciscus Colijn, Roland Doerffer, Christiane Eschenbach, Jana Friedrich, Philipp Fischer, Stefan Garthe, Jochen Horstmann, Hajo Krasemann, Katja Metfies, Lucas Merckelbach, Nino Ohle, Wilhelm Petersen, Daniel Pröfrock, Rüdiger Röttgers, Michael Schlüter, Jan Schulz, Johannes Schulz-Stellenfleth, Emil Stanev, Joanna Staneva, Christian Winter, Kai Wirtz, Jochen Wollschläger, Oliver Zielinski, and Friedwart Ziemer
Ocean Sci., 13, 379–410, https://doi.org/10.5194/os-13-379-2017, https://doi.org/10.5194/os-13-379-2017, 2017
Short summary
Short summary
The Coastal Observing System for Northern and Arctic Seas (COSYNA) was established in order to better understand the complex interdisciplinary processes of northern seas and the Arctic coasts in a changing environment. Particular focus is given to the heavily used German Bight in the North Sea. The automated observing and modelling system is designed to monitor real-time conditions, to provide short-term forecasts and data products, and to assess the impact of anthropogenically induced change.
Kathrin Wahle, Joanna Staneva, Wolfgang Koch, Luciana Fenoglio-Marc, Ha T. M. Ho-Hagemann, and Emil V. Stanev
Ocean Sci., 13, 289–301, https://doi.org/10.5194/os-13-289-2017, https://doi.org/10.5194/os-13-289-2017, 2017
Short summary
Short summary
Reduction of wave forecasting errors is a challenge, especially in dynamically complicated coastal ocean areas such as the southern part of the North Sea area. We study the effects of coupling between an atmospheric and two nested-grid wind wave models. Comparisons with data from in situ and satellite altimeter observations indicate that two-way coupling improves the simulation of wind and wave parameters of the model and justifies its implementation for both operational and climate simulation.
Joanna Staneva, Kathrin Wahle, Wolfgang Koch, Arno Behrens, Luciana Fenoglio-Marc, and Emil V. Stanev
Nat. Hazards Earth Syst. Sci., 16, 2373–2389, https://doi.org/10.5194/nhess-16-2373-2016, https://doi.org/10.5194/nhess-16-2373-2016, 2016
Short summary
Short summary
This study addresses the impact of wind, waves, tidal forcing and baroclinicity on the sea level of the German Bight during extreme storm events. The role of wave-induced processes, tides and baroclinicity is quantified, and the results are compared with in situ measurements and satellite data. Considering a wave-dependent approach and baroclinicity, the surge is significantly enhanced in the coastal areas and the model results are closer to observations, especially during the extreme storm.
Emil V. Stanev, Johannes Schulz-Stellenfleth, Joanna Staneva, Sebastian Grayek, Sebastian Grashorn, Arno Behrens, Wolfgang Koch, and Johannes Pein
Ocean Sci., 12, 1105–1136, https://doi.org/10.5194/os-12-1105-2016, https://doi.org/10.5194/os-12-1105-2016, 2016
Short summary
Short summary
This paper describes coastal ocean forecasting practices exemplified for the North Sea and Baltic Sea. It identifies new challenges, most of which are associated with the nonlinear behavior of coastal oceans. It describes the assimilation of remote sensing, in situ and HF radar data, prediction of wind waves and storm surges, as well as applications to search and rescue operations. Seamless applications to coastal and estuarine modeling are also presented.
Joanna Staneva, Kathrin Wahle, Heinz Günther, and Emil Stanev
Ocean Sci., 12, 797–806, https://doi.org/10.5194/os-12-797-2016, https://doi.org/10.5194/os-12-797-2016, 2016
Short summary
Short summary
This study addresses the impact of coupling between wind wave and circulation models on the quality of coastal ocean predicting systems. This topic reflects the increased interest in operational oceanography to reduce prediction errors of state estimates at coastal scales. The improved skill of the coupled forecasts compared to the non-coupled ones, in particular during extreme events, justifies the further enhancements of coastal operational systems by including wind wave models.
Related subject area
Approach: Remote Sensing | Depth range: Surface | Geographical range: Shelf Seas | Phenomena: Surface Waves
A simple method for retrieving significant wave height from Dopplerized X-band radar
Ruben Carrasco, Michael Streßer, and Jochen Horstmann
Ocean Sci., 13, 95–103, https://doi.org/10.5194/os-13-95-2017, https://doi.org/10.5194/os-13-95-2017, 2017
Short summary
Short summary
The significant wave height (Hs) is one of the most relevant parameters to describe a sea state statistically. This parameter is commonly monitored by measurement devices placed in the water (wave rider buoy, ADCP), which require expensive maintenance. In this study, X-band radar, generally used for ship navigation, was modified to measure water particle speeds using the Doppler effect. Based on the obtained data, a simple method is introduced to remotely estimate Hs with a reasonable accuracy.
Cited articles
Alari, V., Staneva, J., Breivik, O., Bidlot, J.-R., Mogensen, K., and Janssen,
P.: Surface wave effects on water temperature in the Baltic Sea:
simulations with the coupled NEMO-WAM model, Ocean Dynam., 66,
917–930, https://doi.org/10.1007/s10236-016-0963-x, 2016. a
Anderson, G., Carse, F., Turton, J., and Saulter, A.: Quantification of bias of
wave measurements from lightvessels, J. Oper. Oceanogr., 9,
93–102, https://doi.org/10.1080/1755876X.2016.1239242, 2016. a, b
Bidlot, J. and Holt, M.: Verification of operational global and regional wave
forecasting systems against measurements from moored buoys, JCOMM
Technical Report 30, WMO & IOC, Geneva, Switzerland,
available at: http://hdl.handle.net/11329/101 (last access:
28 February 2019), 2006. a
Bidlot, J.-R., Holmes, D. J., Wittmann, P. A., Lalbeharry, R., and Chen, H. S.:
Intercomparison of the performance of operational ocean wave forecasting
systems with buoy data, Weather Forecast., 17, 287–310,
https://doi.org/10.1175/1520-0434(2002)017<0287:IOTPOO>2.0.CO;2,
2002. a
Boukhanovsky, A., Lopatoukhin, L., and Soares, G.: Spectral wave climate of the
North Sea, Appl. Ocean Res., 29, 146–154,
https://doi.org/10.1016/j.apor.2007.08.004, 2007. a
Bouws, E. and Komen, G.: On the balance between growth and dissipation in an
extreme depth-limited wind-sea in the southern North Sea, J.
Phys. Oceanogr., 13, 1653–1658,
https://doi.org/10.1175/1520-0485(1983)013<1653:OTBBGA>2.0.CO;2, 1983. a
Cavaleri, L., Abdalla, S., Benetazzo, A., Bertotti, L., Bidlot, J.-R., Breivik,
Ø., Carniel,
S., Jensen, R. E., Portilla-Yandun, J., Rogers, W. E., Roland, A.,
Sanchez-Arcilla, A., Smith, J. M., Staneva, J., Toledo, Y., van Vledder, G. Ph.,
van der Westhuysen, A. J.:
Wave modelling in coastal and inner seas, Progr. Oceanogr., 167, 164–233,
https://doi.org/10.1016/j.pocean.2018.03.010, 2018. a
Chelton, D. B., Walsh, E. J., and MacArthur, J. L.: Pulse compression and sea
level tracking in satellite altimetry, J. Atmos. Ocean.
Technol., 6, 407–438, 1989. a
Chelton, D. B., Ries, J. C., Haines, B. J., Fu, L.-L., and Callahan, P. S.:
Satellite altimetry, in: Satellite Altimetry and Earth Sciences,
Vol. 69 of International Geophysics, 1–ii, Academic Press,
2001. a
ERA-5: wind forcing data, available at:
https://cds.climate.copernicus.eu/cdsapp#!/search?type=dataset, last
access: 30 November 2018.
Hansen, M. W., Collard, F., Dagestad, K.-F., Johannessen, J. A., Fabry, P., and
Chapron, B.: Retrieval of sea surface range velocities from Envisat ASAR
Doppler centroid measurements, IEEE Trans. Geosci. Remote
Sens., 49, 3582–3592, 2011. a
Herbers, T., Hendrickson, E., and O'Reilly, W.: Propagation of swell across a
wide continental shelf, J. Geophys. Res.-Oceans, 105,
19729–19737, https://doi.org/10.1029/2000JC900085, 2000. a
Hersbach, H. and Dee, D.: ERA5 reanalysis is in production, ECMWF newsletter,
147, 2016. a
Komen, G. J., Cavaleri, L., Donelan, M., Hasselmann, K., Hasselmann, S., and
Janssen, P.: Dynamics and modelling of ocean waves, Cambridge university
press, 1996. a
Le Roy, Y., Deschaux-Beaume, M., Mavrocordatos, C., Aguirre, M., and Heliere,
F.: SRAL SAR radar altimeter for sentinel-3 mission, in: Geoscience and
Remote Sensing Symposium, 2007, IGARSS 2007, IEEE International,
219–222, IEEE, 2007. a
McColl, K. A., Vogelzang, J., Konings, A. G., Entekhabi, D., Piles, M., and
Stoffelen, A.: Extended triple collocation: Estimating errors and
correlation coefficients with respect to an unknown target, Geophys.
Res. Lett., 41, 6229–6236, https://doi.org/10.1002/2014GL061322, 2014. a
Reistad, M., Breivik, O., Haakenstad, H., Aarnes, O. J., Furevik, B. R., and
Bidlot, J.-R.: A high-resolution hindcast of wind and waves for the North
Sea, the Norwegian Sea, and the Barents Sea, J. Geophys.
Res.-Oceans, 116, C05019, https://doi.org/10.1029/2010JC006402, 2011. a
Stanev, E., Ziemer, F., Schulz-Stellenfleth, J., Seemann, J., Staneva, J., and
Gurgel, K.-W.: Blending surface currents from HF radar observations and
numerical modelling: Tidal hindcasts and forecasts, J. Atmos.
Ocean. Technol., 32, 256–281, https://doi.org/10.1175/JTECH-D-13-00164.1, 2015. a
Staneva, J., Behrens, A., and Groll, N.: Recent advances in wave modelling for
the North Sea and German Bight, Die Küste, 81, 233–254, 2014. a
Staneva, J., Alari, V., Breivik, O., Bidlot, J.-R., and Mogensen, K.: Effects
of wave-induced forcing on a circulation model of the North Sea, Ocean
Dynam., 67, 81–101, https://doi.org/10.1007/s10236-016-1009-0, 2017. a, b
Stoffelen, A.: Toward the true near-surface wind speed: Error modeling and
calibration using triple collocation, J. Geophys. Res.-Oceans, 103, 7755–7766,
https://doi.org/10.1029/97JC03180, 1998. a, b
Triantafyllopoulos, K.: On the central moments of the multidimensional
Gaussian distribution, Math. Sci., 28, 125–128, 2003. a
Van Leeuwen, P. J.: Representation errors and retrievals in linear and
nonlinear data assimilation, Q. J. Roy. Meteorol.
Soc., 141, 1612–1623, 2015. a
Voorrips, A., Hersbach, H., Koek, F., Komen, G., Makin, V., and Onvlee, J.:
Wave prediction and data assimilation at the North Sea, in: Elsevier
Oceanography Series, Elsevier, 62, 463–471,
https://doi.org/10.1016/S0422-9894(97)80056-6, 1997. a, b
WAM: WAM model code, available at: http://mywave.github.io/WAM/, last
access: 30 November 2018.
Wiese, A., Staneva, J., Schulz-Stellenfleth, J., Behrens, A., Fenoglio-Marc,
L., and Bidlot, J.-R.: Synergy of wind wave model simulations and satellite
observations during extreme events, Ocean Sci., 14, 1503–1521,
https://doi.org/10.5194/os-14-1503-2018, 2018. a, b
Woolf, D. K., Challenor, P., and Cotton, P.: Variability and predictability of
the North Atlantic wave climate, J. Geophys. Res.-Oceans,
107, 3145, https://doi.org/10.1029/2001JC001124, 2002.
a
Young, I., Babanin, A. V., and Zieger, S.: The decay rate of ocean swell
observed by altimeter, J. Phys. Oceanogr., 43, 2322–2333,
https://doi.org/10.1175/JPO-D-13-083.1, 2013. a
Short summary
Errors of observations and numerical model data are analysed with a focus on heterogeneous coastal areas. An extension of the triple collocation method is proposed, which takes into account gradients in the collocation of datasets separated by distances which may not be acceptable for a nearest-neigbour approximation, but still be feasible for linear or higher order interpolations. The technique is applied to wave height data from in situ stations, models, and the Sentinel-3A altimeter.
Errors of observations and numerical model data are analysed with a focus on heterogeneous...