
Ocean Sci., 15, 249–268, 2019
https://doi.org/10.5194/os-15-249-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

A multi-collocation method for coastal zone observations with
applications to Sentinel-3A altimeter wave height data
Johannes Schulz-Stellenfleth and Joanna Staneva
Helmholtz Zentrum Geesthacht (HZG), Institute of Coastal Research (IfK), Max-Planck-Str. 1, 21502 Geesthacht, Germany

Correspondence: Johannes Schulz-Stellenfleth (johannes.schulz-stellenfleth@hzg.de)

Received: 19 October 2018 – Discussion started: 24 October 2018
Revised: 13 February 2019 – Accepted: 18 February 2019 – Published: 13 March 2019

Abstract. In many coastal areas there is an increasing num-
ber and variety of observation data available, which are often
very heterogeneous in their temporal and spatial sampling
characteristics. With the advent of new systems, like the radar
altimeter on board the Sentinel-3A satellite, a lot of questions
arise concerning the accuracy and added value of different in-
struments and numerical models. Quantification of errors is a
key factor for applications, like data assimilation and forecast
improvement. In the past, the triple collocation method to es-
timate systematic and stochastic errors of measurements and
numerical models was successfully applied to different data
sets. This method relies on the assumption that three inde-
pendent data sets provide estimates of the same quantity. In
coastal areas with strong gradients even small distances be-
tween measurements can lead to larger differences and this
assumption can become critical. In this study the triple col-
location method is extended in different ways with the spe-
cific problems of the coast in mind. In addition to nearest-
neighbour approximations considered so far, the presented
method allows for use of a large variety of interpolation ap-
proaches to take spatial variations in the observed area into
account. Observation and numerical model errors can there-
fore be estimated, even if the distance between the differ-
ent data sources is too large to assume that they measure the
same quantity. If the number of observations is sufficient, the
method can also be used to estimate error correlations be-
tween certain data source components. As a second novelty,
an estimator for the uncertainty in the derived observation er-
rors is derived as a function of the covariance matrices of the
input data and the number of available samples.

In the first step, the method is assessed using synthetic
observations and Monte Carlo simulations. The technique is
then applied to a data set of Sentinel-3A altimeter measure-

ments, in situ wave observations, and numerical wave model
data with a focus on the North Sea. Stochastic observation
errors for the significant wave height, as well as bias and
calibration errors, are derived for the model and the altime-
ter. The analysis indicates a slight overestimation of altimeter
wave heights, which become more pronounced at higher sea
states. The smallest stochastic errors are found for the in situ
measurements.

Different observation geometries of in situ data and al-
timeter tracks are furthermore analysed, considering 1-D and
2-D interpolation approaches. For example, the geometry of
an altimeter track passing between two in situ wave instru-
ments is considered with model data being available at the
in situ locations. It is shown that for a sufficiently large sam-
ple, the errors of all data sources, as well as the error corre-
lations of the model, can be estimated with the new method.

1 Introduction

Coastal areas like the German Bight are often characterised
by strongly heterogeneous ocean dynamics, typically asso-
ciated with complicated bathymetry, small-scale coastline
features, and river runoff. A few instruments, like high-
frequency (HF) radar, are able to capture at least 2-D sur-
face currents with large coverage and high resolution quite
nicely. Such systems have a typical range of about 100 km,
spatial resolutions on the kilometre scale, and about 20 min
sampling (Stanev et al., 2015). However, most instruments
provide only point measurements (e.g. buoys) or transects
(e.g. satellite altimeter). The combination, and interpretation,
of such data is therefore often a challenge. In heterogeneous
coastal areas with strong gradients, spatially distributed in-
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Figure 1. Bathymetry of the North Sea with the locations of some
in situ wave observation instruments considered in this study. The
plot shows isobaths for 30, 60, 90, and 120 m water depth.

struments can observe very different components of the dy-
namics, even if they are in close proximity.

In the following, this situation is studied in more detail
with respect to ocean waves and the significant wave height
in particular. Wave height information is of paramount im-
portance for many applications, e.g. shipping, offshore oper-
ations, or coastal protection. Although numerical wave fore-
cast models have reached an impressive level of accuracy,
there is still room for improvement, in particular in coastal
areas with complicated dissipation processes associated with
wave breaking and bed friction (Woolf et al., 2002; Reistad
et al., 2011; Voorrips et al., 1997; Herbers et al., 2000; Bouws
and Komen, 1983; Young et al., 2013; Semedo et al., 2015),
as well as with coupling processes between ocean waves,
ocean circulation, and the atmosphere (Cavaleri et al., 2018;
Staneva et al., 2017; Alari et al., 2016). The focus in this
study is on the North Sea, which has interesting ocean wave
dynamics mainly caused by the semi-enclosed geometry
(Semedo et al., 2015; Voorrips et al., 1997; Boukhanovsky
et al., 2007; Staneva et al., 2014). The bathymetry of the con-
sidered area with the locations of some in situ wave mea-
surement stations used in the following analysis is shown
in Fig. 1.

Traditionally, validations of new data sets are performed
by comparing to data from established standard in situ mea-

surements, which are regarded as a reference. As a first step
this is acceptable; however, one has to take into account that
these reference instruments are affected by measurement er-
rors as well, and the separation of the error contributions
from the new data set and the reference instrument is, in gen-
eral, not possible unless additional information is used. This
is easy to see if two data sets, x and y, with uncorrelated
additive noise are considered, i.e.

x = t + εx, (1)
y = t + εy , (2)

where t represents the “truth”. If statistics are performed on
the difference ξ of x and y, one gets for the mean square error

ξ = 〈(x− y)2〉 = 〈ε2
x〉+ 〈ε

2
y〉, (3)

and it is apparent that it is not possible to derive either 〈ε2
x〉

or 〈ε2
y〉 from ξ alone. The usual approach is therefore to use

additional data sets and to make certain a priori assumptions
about the errors. If only one data set is added, this leads to
the triple collocation method, which has been used and dis-
cussed in a number of previous studies (Janssen et al., 2007;
Vogelzang and Stoffelen, 2012; Stoffelen, 1998; Caires and
Sterl, 2003; McColl et al., 2014). Collocation studies, as pre-
sented here, often use a mixture of observations and numeri-
cal models. The term “data source” will therefore be used in
the following to refer to different types of input data.

In this study the triple collocation approach is extended
and adjusted with the special requirements of the coast in
mind, where one can usually expect stronger gradients and
smaller scale variations than in the open ocean. The objective
of the study is to deal with the following four specific issues:

– In the triple collocation method, different information
sources within a certain distance are assumed to mea-
sure the same quantity, which can be unrealistic in re-
gions with strong gradients, like most coastal areas.

– So far, assumptions about correlation errors were made
a priori (Vogelzang and Stoffelen, 2012), but they were
not obtained as a result of the collocation process.

– So far, no systematic approach was presented to deal
with more than three data sources.

– The quantification of uncertainties concerning estima-
tions of systematic and stochastic data source errors was
so far only done based on bootstrap approaches (Caires
and Sterl, 2003).

The question about the accuracy of error estimates is of par-
ticular concern for new instruments, like Sentinel-3A, for
which the amount of available data is still relatively lim-
ited. It is also clear that collocation distances are of concern
mainly for point measurements or transect observations from
satellites. The interpolation of numerical model data to given
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observation locations is usually less critical if the spatial res-
olution is appropriate.

The work presented here addresses the issues mentioned
above and makes the following main contributions:

– A generalisation of the triple collocation method is in-
troduced, where the truth is not necessarily represented
by a single number, but by a more general parameteri-
sation of the truth state that is measured by a group of
instruments within a certain distance. The analysis pre-
sented here concentrates on 1-D models (i.e. lines), and
2-D models (i.e. planes), but can be easily extended to
include more sophisticated approaches.

– In certain configurations, i.e. definitions of truth vectors
and spatial distributions of data sources, the approach
allows an estimation of cross covariance components of
the stochastic errors contained in the considered obser-
vations or numerical models.

– The theory includes the definition of a general data
source vector, which can contain an arbitrary number
of observations and numerical model data.

– Analytical expressions are derived for the estimation
errors regarding both systematic calibration errors and
stochastic errors of the different data sources.

Like the standard triple collocation method, the extended ap-
proach also provides estimates of systematic bias and cali-
bration errors. We will refer to the standard triple colloca-
tion method as “TRIPCOL”, and to the multi-collocation as
“MULTCOL” in the following.

As an example for the generalised parameterisation of the
truth, one can imagine two wave buoys and a satellite al-
timeter track passing between them. Let us furthermore think
about a situation where the wave buoys are too far away from
the track to assume that all three instruments measure the
same quantity. However, it may be an acceptable assumption
that the wave height measured by the altimeter is a linear
combination of the wave heights observed by the two buoys.
If independent numerical model wave height estimates are
available at the buoy locations, the method presented in the
following provides a systematic approach to estimate not
only the stochastic errors of all data sets, but also the error
correlation of the model at the buoy locations.

The present study is supposed to make a contribution to the
exploitation of measurements with larger distances, where
additional assumptions about the spatial variation in the truth
are required. As an illustration, Fig. 2 shows maps of the
North Sea with altimeter tracks and collocated buoys with the
colour coding referring to the number of obtained collocated
data samples within the period April 2016 to August 2017.
The data sets will be introduced in more detail in Sect. 3.
The plot Fig. 2a shows the situation if a collocation distance
of 10 km is assumed as acceptable, whereas Fig. 2b shows the
same with a collocation distance of 20 km. One can see that

the number of data sets increases rapidly if larger distances
are considered.

With regards to the estimation errors, expressions are de-
rived which provide a quantification depending on the covari-
ance matrices of the data sources, and the number of avail-
able data samples. These results can give valuable informa-
tion on the trustworthiness of estimated observation errors,
in particular in situations with a small number of samples.

The paper is structured as follows. The multi-collocation
method is introduced in Sect. 2. This includes the explanation
of the underlying theory for the treatment of the stochastic
and systematic errors in Sects. 2.1 and 2.2, as well Monte
Carlo simulations to illustrate and verify the method. In
Sect. 3 the analysed significant wave heights from in situ
stations, Sentinel-3A altimeter, and numerical model wave
height data are introduced. As a special case of the multi-
collocation method, the triple collocation technique is ap-
plied to the wave height data sets in Sect. 4. This includes a
new step in the analysis, in which estimation errors are quan-
tified. Section 5 describes the combination of more than three
observations taken at a certain distance to estimate measure-
ment errors and error correlations.

2 Multi-collocation method

In this section the multi-collocation method is explained,
which includes the triple collocation technique as a special
case. In the first step, the approach for the estimation of the
stochastic errors is presented, and in the second part system-
atic bias and calibration errors are considered.

2.1 Symmetric approach

The approach presented in this section to estimate stochas-
tic errors does not require bias-free reference instruments.
Calibration errors are not considered in this first step. Let us
assume the truth is given by a vector t of dimension nt , and
no data sources, y1, . . .,yno , are related to the truth by

y = At + ε+ b . (4)

Here, A is an no× nt matrix; ε is an no-dimensional zero
mean Gaussian process, which represents the stochastic data
source errors; and b is a vector of length no containing the
biases of the different data source components. Bold type is
used for vectors. The triple collocation method is then a spa-
cial case with nt = 1, no = 3, and A= (1,1,1)T . Here and in
the following, the symbol T denotes the transpose operation.
This case will be considered in Sect. 4 looking at a larger
number of in situ observation locations in the North Sea. Us-
ing different definitions of the truth vector and the matrix A,
various relationships between the truth and the data sources
can be formulated with the above approach. In this study, we
will concentrate on 1-D and 2-D linear models. It should be
emphasised that the truth cannot, in general, be represented
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Figure 2. (a) Map showing Sentinel-3A altimeter tracks together with wave observation platforms with less than 10 km distance to satellite
measurements. The colour coding refers to the number of obtained collocated measurements in the period April 2016 to August 2017. (b) The
same as (a) with a collocation distance of 20 km.

by a finite number of parameters. However, it is reasonable
to assume that the reality is sufficiently smooth, and hence
a Taylor expansion can be applied. The triple collocation
method is then a special case, where only the constant term
is considered. Depending on the number of available obser-
vations, the approach in Eq. (4) allows for the addition of
higher-order terms. We will concentrate on linear approxima-
tions in this study; however, the method is able to deal with
interpolation approaches of higher order if a sufficient num-
ber of data sources is available. Conceptually, this issue is re-
lated to the topic of representation errors (e.g. Van Leeuwen,
2015). The 1-D case will be considered in the Monte Carlo
simulations presented in Sect. 2.5, as well as in Sect. 5.1. The
2-D case will be discussed in Sect. 5.2.

Let us now define a matrix B, which contains a basis of
the null-space of A as rows. This can, for example, be ob-
tained by singular value decomposition of A and selecting
the eigenvectors corresponding to vanishing eigenvalues. If
A has full rank, B is a (no− nt )× no matrix. For the triple
collocation method this leads to

B=
1
√

2

(
1 −1 0
1 0 −1

)
. (5)

Multiplying Eq. (4) from the left by B gives

By= Bε+Bb. (6)

Averaging over all measurements then leads to

〈By〉 = Bb. (7)

Forming the second-order moments results in

B〈yyT 〉BT −〈By〉〈By〉T = BA〈ttT 〉ATBT +B〈εεT 〉BT

= B〈εεT 〉BT =: Z, (8)

where we have a symmetric (no− nt )× (no− nt ) matrix on
both sides of the equation. Because of the symmetry, one gets

m=
(no− nt )

2
+ (no− nt )

2
(9)

equations. The right-hand side Z is of the form

Zij =

no∑
q,k=1
〈εqεk〉BiqBjk =

no∑
k=1
〈|εk|

2
〉BikBjk (10)

+

∑
q<k

〈εqεk〉(BiqBjk +BikBjq). (11)

Eq. (8) is therefore a linear system of equations of the form

r = Dε, (12)

where the vector ε contains the unknown variances and co-
variances of ε and r contains elements of the matrix on the
left-hand side of Eq. (8). If it is possible to limit the num-
ber of unknowns tom, or less, using appropriate assumptions
about the variance structure (e.g. independence of error com-
ponents), this system can be solved when the corresponding
system matrix D is regular. Table 1 summarises some feasi-
ble combinations of nt , no, and the number of error variances
nvar and covariances ncovar that can be estimated if D is reg-
ular. Possible observation system configurations correspond-
ing to these cases are shown in Fig. 3. Here, Fig. 3a corre-
sponds to the standard TRIPCOL approach, where all data
sources within a certain distance are assumed to measure the
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Table 1. The number of data source error variances nvar and covari-
ances ncovar that can be estimated using different dimensions of the
truth parameterisation nt, and number of data sources no according
to Eq. (9).

nt no nvar ncovar

0-D (TRIPCOL) 1 3 3 –
1-D (MULTCOL) 2 5 5 1
2-D (MULTCOL) 3 6 6 –

3 7 7 3

same truth. Linear approximations in 1-D and 2-D used in
the MULTCOL approach, which relate data sources with a
larger distance, are depicted in Fig. 3b and c, respectively.

If there are more equations than unknowns, a standard lin-
ear squares approach can be used to find a reasonable esti-
mate for the unknown variance and covariance components
of ε. It is interesting to note that this approach also works for
biased measurements, although it is in general not possible to
estimate the bias explicitly. All that is required is an estimate
of Bb and this is easy to obtain via averaging of Eq. (7).

For the case of the triple collocation method, the system
matrix D is in fact regular and the inverse is given by

D−1
= 2

0 0 1
1 0 −1
0 1 −1

 . (13)

For the triple collocation problem this leads to the well
known expressions for the stochastic error variances (Janssen
et al., 2007).

〈ε2
1〉 = 〈(y1− y2)(y1− y3)〉, (14)

〈ε2
2〉 = 〈(y2− y1)(y2− y3)〉, (15)

〈ε2
3〉 = 〈(y3− y2)(y3− y1)〉. (16)

This corresponds to the “0-D” case in Table 1 and the geom-
etry in Fig. 3a.

If the available number of samples ns is small, the esti-
mated observation errors may be affected by large errors. To
quantify these uncertainties at least in an approximate way,
the covariance of the covariance estimator

COVAR(xi,xj )=
1
ns

ns∑
q=1

x
q
i x

q
j (17)

is considered, where the stochastic vector (x1,x2, . . .) is as-
sumed to be Gaussian and zero mean. The covariance of
these estimators χi,j,i′,j ′ for different pairs of (i,j) and
(i′,j ′) can then be written as

χi,j,i′,j ′ := COVAR(COVAR(xi,xj ),COVAR(xi′xj ′))

=
1
n2
s

∑
qq ′

〈x
q
i x

q
j x

q ′

i′
x
q ′

j ′
〉−

1
n2
s

∑
qq ′

〈x
q
i x

q
j 〉〈x

q ′

i′
x
q ′

j ′
〉. (18)

Using standard relationships for the higher-order central mo-
ments of Gaussian-distributed variables (Triantafyllopoulos,
2003), this can be expressed as

χi,j,i′,j ′ =
1
ns

COVAR(xi,xi′) COVAR(xj ,xj ′)

+
1
ns

COVAR(xi,xj ′) COVAR(xj ,xi′). (19)

The latter expression for χi, j, i′, j ′ can be used to estimate
the variances and covariances in the estimation errors on the
left-hand side of Eqs. (8) and (12), respectively. Therefore,
the uncertainties in the estimated vector ε can be approxi-
mated by

covar(ε)= D−1covar(r)(D−1)T . (20)

From Eqs. (19) and (20) it is evident that observations with
large variance and strong positive correlations will tend to
lead to stronger estimation errors for ε. This is in particu-
lar the case when the geophysical background statistics al-
ready contribute a lot of variance, or when measurements are
within the correlation distance of the background fields and
the uncorrelated observation errors are relatively small. The
usefulness of the approximation Eq. (20) will be considered
in Sect. 2.3 based on Monte Carlo simulations.

2.2 Use of reference instruments

In this section a special, but also typical, situation is con-
sidered, where for a couple of measurements systematic er-
rors can be neglected. Typically, this assumption is made for
standard in situ observations systems, like waverider buoys
(Janssen et al., 2007) or wind anemometers (Stoffelen, 1998).
In this case, the error model for the different data sources can
be formulated as follows:(
x

y

)
=

(
I
λ

)(
Ax
Ay

)
t +

(
εx
εy

)
+

(
0

by

)
. (21)

Here, x represents the vector of reference measurements, and
y contains the remaining data sources. In the examples dis-
cussed in the following sections, x will contain in situ wave
height measurements and y will represent a combination of
satellite altimeter and numerical wave model data. The di-
mensions of x and y are denoted by nx and ny in the fol-
lowing. The matrices Ax and Ay translate the truth vector t
to the expected reference measurements x and the other data
sources y. In addition, it is assumed that the matrix Ax is in-
vertible, i.e. it is possible to obtain an estimate of the truth
vector t from the observations x. The matrix I is the identity
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Figure 3. Illustration of three considered observation scenarios. (a) Data sources are assumed to provide information on the same quantity
(0-D). (b) Measurements are located along a line and a 1-D linear approximation is employed for the measured quantity (1-D). (c) The same
as (b), but using a 2-D interpolation method for more general spatial distributions of data sources (2-D).

matrix. Apart from a possible bias, the vector of data sources
y may be also affected by systematic calibration errors rep-
resented by the diagonal matrix λ.

To obtain expressions for the scaling parameters contained
in λ, the first- and second-order moments of the input data x
and y are considered. For the first-order moments Mx and
My of x and y, one gets

Mx = Ax〈t〉, (22)

My = λAy〈t〉+by = λAyA−1
x Mx + by . (23)

The second-order moments Mxx and Myy follow as

Mxx = Ax〈ttT 〉ATx +〈εxε
T
x 〉, (24)

Myy = λAy〈ttT 〉ATy λ+〈εyε
T
y 〉+bybTy + λAy〈t〉bTy

+by〈t〉ATy λ . (25)

The covariance functions Cxx and Cyy can then be written as

Cxx = Ax〈ttT 〉ATx +〈εxε
T
x 〉−Ax〈t〉〈t〉TATx , (26)

Cyy = λAy〈ttT 〉ATy λ+〈εyε
T
y 〉+bybTy + λAy〈t〉by

T

+by〈t〉TATy λ−
(
λAyA−1

x Mx +by
)

(
λAyA−1

x Mx +by
)T

(27)

= λAy〈ttT 〉ATy λ− λAyA−1
x MxMT

x (A
−1
x )TATy λ

+〈εyε
T
y 〉 (28)

and the cross covariance Cxy between x and y as

Cxy = Ax〈ttT 〉ATy λ+〈εxε
T
y 〉−Ax〈t〉〈t〉TATy λ (29)

λAyA−1
x Cxy = λAy〈ttT 〉ATy λ− λAyA−1

x MxM
T
x (A

−1
x )T ATy λ. (30)

The equation for Cyy then gives

Cyy = λAyA−1
x Cxy +〈εyεTy 〉. (31)

This results in ny equations for each scaling component ac-
cording to

λi =
Cij −〈εiεj 〉∑

qνiqCqj
:=
�1

�2
j = 1, . . .,ny, (32)

where νiq are the elements of the matrix AyA−1
x .

Let us assume for a moment that the scaling parameters λ
are available. One can then derive the bias of y from Eq. (23).
Furthermore, defining the matrix A in Eq. (4) as

A=
(

Ax
λAy

)
, (33)

the approach in Sect. 2.1 can be applied to estimate the
stochastic errors of the different data sources.

There are now two basic approaches to estimate the scaling
parameters.

– Direct method: Those terms in Eq. (32) are used for
which 〈εiεj 〉 is known, e.g. because the error compo-
nents are assumed independent. In this case the estima-
tion of the observation errors and the scaling parameters
are independent and can be treated separately.

– Iterative method: Terms in Eq. (32) are used for which
〈εiεj 〉 is not known a priori. In this case an iterative
method has to be used, where the estimation of the data
source errors and the scaling parameters are performed
in succession until convergence is achieved. Similar it-
eration techniques were also discussed for the triple col-
location method in Janssen et al. (2007) and Vogelzang
and Stoffelen (2012).

In Janssen et al. (2007) an iterative method had to be applied
for the triple collocation analysis, because the proposed pro-
cedure for the scaling parameter estimation leads to a non-
linear expression, which could not be treated in a direct way.
The direct method for the standard triple collocation problem
leads to the known expressions (Caires and Sterl, 2003):

λy1 =
Cy1y2

Cx1y2

, (34)

λy2 =
Cy1y2

Cx1y1

. (35)

One can see that for the estimation of λy1 no use is made
of correlations between y1 and x1, which may contain a lot
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of useful information. This can be overcome by the iterative
version with

λy1 =
Cy1y1 −〈|εy1 |

2
〉

Cx1y1

, (36)

λy2 =
Cy2y2 −〈|εy2 |

2
〉

Cx1y2

. (37)

In some cases, there may be several equations for one com-
ponent of λ, and it is then important to have an approximation
for the respective estimation errors to pick the estimator with
the smallest variance. Quantification of these uncertainties is
also of general interest in the statistical analysis of data, in
particular if the sample size is small. For the analysis in this
study, we only consider the direct method, where the 〈εiεj 〉
in Eq. (32) are known constants. We also do not consider the
additional uncertainty, which is caused by estimation errors
for these stochastic error variances and covariances. Denot-
ing the nominator and denominator in Eq. (32) by �1 and
�2, a Taylor expansion gives

λk ≈
1
〈�2〉

(�1−〈�1〉)−
〈�1〉

〈�2〉2
(�2−〈�2〉)+

〈�1〉

〈�2〉
. (38)

For the variance one gets

var (λk)=
var(�1)

〈�2〉2
+

var(�2)〈�1〉
2

〈�2〉4

− 2
covar(�1,�2)〈�1〉

〈�2〉3
. (39)

The variances and covariances in �1 and �2 can be derived
by making, again, use of Eq. (19).

2.3 Generation of background statistics

In the following, the techniques presented in Sects. 2.1 and
2.2 will be assessed and validated based on synthetic obser-
vations for which the observation errors are known a priori.
This requires Monte Carlo simulations for which realistic
background statistics are desirable. Here, we use parameters
derived from an 11-month time series of two buoys in the
German Bight. The buoys “ELB” and “HEL” can be iden-
tified in Fig. 1 as the instruments closest to the entrance of
the river Elbe. The buoy HEL is near the island Heligoland
at about 25 m water depth and about 30 km north-west of the
buoy ELB, which is at about 27 m water depth. The wave
height distributions of both buoys shown in Fig. 4b and c in-
dicate a shape, which can be very well approximated with a
log-normal distribution superimposed as green curves. The
joint distribution in Fig. 4a shows a quite good correlation
between the data sets, which is expected due to the relative
close proximity of the buoys. The histogram of the differ-
ence between the Elbe buoy and the Heligoland buoy shown
in Fig. 4d indicates that the majority of cases have higher
waves at the Heligoland location than the Elbe location. This

Table 2. Mean, variance (var), covariance (covar), and correlation
(corr) parameters used for the simulation of the background wave
height statistics at the locations of the Heligoland and Elbe buoys in
the German Bight. These numbers were derived from measurements
taken during the period June 2016–April 2017. The respective prob-
ability distributions with a log-normal approximation are shown in
Fig. 4.

mean var
Buoy (log(Hs m−1)) (log(Hs m−1)) covar corr

Elbe −0.109 0.391
0.354 0.944

Heligoland −0.014 0.359

makes sense because north-westerly winds are predominant
in the area. Therefore, situations with waves coming from
offshore and being dissipated by wave breaking and bottom
friction are most often observed in the German Bight. The
fewer cases with higher waves near Heligoland are associ-
ated with southerly winds, where waves are actually gener-
ated near the coast and the wave height increases with fetch
length. The respective parameters for the log-normal distri-
bution including the correlations of both buoy time series are
given in Table 2.

2.4 Impact of coastal gradients and spatial data set
resolutions on triple collocations

In this section a brief analysis is presented concerning the
impact of coastal gradients on the standard triple colloca-
tion approach and the role of spatial data set resolutions.
The analysis is illustrated using the background statistics pre-
sented in Sect. 2.3.

As explained before, the triple collocation method makes
the assumption that all three data sets represent the same
truth. We consider the case now, where this assumption is
violated, and where we have data sets representing the wave
height at three different locations x, x′, and x′′. Let us denote
the wave heights at the three locations by

Hx =H x + Ĥx,

Hx′ =H x′ + Ĥx′ , (40)

Hx′′ =H x′′ + Ĥx′′ ,

whereH x,H x′ , andH x′′ are the respective mean values, and
Ĥx, Ĥx′ , and Ĥx′′ are the departures from the mean. Further-
more, it is assumed that the three wave height data sets are af-
fected by uncorrelated additive zero mean errors εx,εx′ , and
εx′′ . According to Eq. (14), the measurement error of the data
source corresponding to location x would be estimated as fol-
lows if the standard triple collocation method is applied:
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Figure 4. Background statistics used for the Monte Carlo Simulations. (a) 2-D histogram of the joint distribution for the Elbe and Heligoland
buoys derived from the period June 2016–April 2017 with diagonal given as a dashed green line and the black isolines referring to probability
density. (b) 1-D histogram for the Heligoland buoy wave heights with log-normal probability density function (pdf) superimposed in green.
(c) The same as (b) for the Elbe buoy. (d) Histogram of the difference between the Elbe and Heligoland wave height with Gaussian pdf
superimposed in green, and the dashed red line indicating the zero position.

〈ε2
x〉 ≈ 〈

(
Ĥx +H x + εx − Ĥx′ −H x′ − εx′

)
(
Ĥx +H x + εx − Ĥx′′ −H x′′ − εx′′

)
〉

= 〈ε2
x〉+ 〈

(
Ĥx − Ĥx′

)(
Ĥx − Ĥx′′

)
〉

+
(
H x −H x′

)(
H x −H x′′

)
=: 〈ε2

x〉+Rx +Rx . (41)

The angle brackets refer to averages over different realisa-
tions of the background state and data source errors. As one
can see, the estimation of 〈ε2

x〉 is affected by an error which
has two components. The termRx is related to correlations of
wave height differences in the background statistics. In situ-
ations where all three data sources are in a region with a spa-
tial wave height gradient, typically observed in coastal areas,
this term will not vanish, at least as long as the data sources
are located along the gradient. The term Rx is related to the

differences in mean wave heights at the three locations. This
term can be expected to contribute to the estimation error in
coastal areas as well.

We are now estimating these error contributions for the
background statistics derived in Sect. 2.3. Let us assume that
the wave height along a straight line between the stations
HEL and ELB can be approximated reasonably well with a
linear function, i.e.

Hx =
x(HHel−HElb)+ dHElb

d
, (42)

where x denotes the distance of some point X from the Elbe
station in the direction of Heligoland; HHel and HElb are the
wave heights at the Heligoland and Elbe stations; and d =
24 km is the distance between the two stations. Defining ĤHel
and ĤElb analogues to Eq. (40), we get for the wave height
covariance of two points x,x′
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〈ĤxĤx′〉 =
1
d2 〈

(
x(ĤHel− ĤElb)+ dĤElb

)
(
x′(ĤHel− ĤElb)+ dĤElb

)
〉

= xx′〈
(ĤHel− ĤElb)

2

d2 〉+ (x+ x′)

〈ĤElb
(ĤHel− ĤElb)

d
〉+ 〈Ĥ 2

Elb〉 (43)

=: xx′α1+ (x+ x
′)α2+α3 ,

where α1 = 0.000147, α2 = 0.003174m, and α3 =

1.7529m2 for the considered case. With this informa-
tion Eq. (41) can be evaluated. For the spatial distribution
of the three data sources we assume that x = 10, x′ = 5,
and x′′ = 15 km, i.e. all three data sources are within 10 km
distance. The resulting errors for the triple collocation
method then follow as (see Eq. 41):

R10 km
x +R

10 km
x =−0.003675 m2

− 0.00035 m2

=−0.0040 m2. (44)

If an instrument at location x is considered, which has a truth
observation error standard deviation of

√
〈ε2
x〉 = 0.1 m, these

error terms would lead to an estimation error by the triple
collocation method of about 40 % in terms of variance. If the
collocation distance is increased to 20 km, and one has data
sources at x = 10, x′ = 0, and x′′ = 20 km, the following er-
ror is obtained:

R20 km
x +R

20 km
x =−0.01473 m2

− 0.00138 m2

=−0.0161 m2 (45)

In this case the collocation error grows to 160 % with respect
to the truth observation error. As explained in Sect. 2.1, the
multi-collocation method proposed in this study is designed
to take spatial gradients, as discussed above, into account;
however, this is at the cost of requiring a larger number of
data sources. This will be illustrated in Sect. 2.5 using the
same background statistics.

The second issue to be discussed in this section is the role
of the spatial resolution of the different models and observa-
tions. The main point to consider here is that sub-resolution
variations in wave height become part of the estimated data
set error if the triple or multi-collocation methods are ap-
plied. This has two main consequences:

– The estimated data source errors are influenced by the
background statistics.

– For two data sources with a common unresolved band
of spatial scales, the data source errors are correlated
(Vogelzang and Stoffelen, 2012).

In general, the expected unresolved sub-resolution variance
in wave height is given by

H 2
sub =

1
A

∫
A

〈(Hx′ −H
data
x )2〉dx′, (46)

where A is the resolution cell of the assumed data source and
the respective data source wave height H

data
x is computed as

H
data
x =

1
A

∫
A

Hx′dx′, (47)

where Hx′ is the truth wave height at location x′ within the
resolution cell. We now evaluate these terms, again using the
background statistics presented in Sect. 2.3. For simplicity,
we assume that the resolution cell is one-dimensional and
spans from the Elbe station (x = 0) to some point x = a in
the direction of Heligoland. The data set then corresponds to
averages of the form

H
data
a/2 =

a
2 (HHel−HElb)+ dHElb

d
. (48)

The mean unresolved variance within one resolution cell can
then be written as

H 2
sub =

1
a

a∫
0

〈

(x′(HHel−HElb)+ dHElb

d
−H

data
a/2

)2
〉dx′

=
1
a

a∫
0

〈

( (x′− a/2)(HHel−HElb)

d

)2
〉dx′ (49)

=
a2

12

(
〈(ĤHel− ĤElb)

2
〉

d2 +
(HHel−HElb)

2

d2

)
.

One can see that the mean sub-resolution variance is depend-
ing on the mean gradient, as well as the variance in the gradi-
ent within the resolution cell. Using the background statistic
values in Sect. 2.3, the variance H 2

sub was computed for dif-
ferent values of the cell size a. For a = 5 km one getsH 2

sub =

0.0003m2, for a = 10 km the result isH 2
sub = 0.0012m2, and

a = 20 km gives H 2
sub = 0.005m2. Let us imagine an obser-

vation instrument located at x = a/2 with a measurement er-
ror standard deviation of 0.1 m. This value is supposed to
only describe the instrumental errors, i.e. the errors that one
always has, even if the wave height within the resolution cell
is constant. Furthermore, assume that the observations repre-
sent averages over wave heights in the resolution cell of size
a as described by Eq. (48). For a = 10km this averaging pro-
cess adds about 10 % to the data set error variance, and for
a = 20km this increases to 50 %.

The above analysis has shown that both the collocation
distance and the spatial data set resolutions are important fac-
tors for the quantification and interpretation of the respective
data set errors. The separation of instrumental errors and sub-
resolution-related errors is a challenge, because it requires
knowledge about the truth background wave statistics on a
sub-resolution scale. In general, such information can only be
obtained if one of the data sources has a significantly higher
spatial resolution than the other data sources.
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2.5 Monte Carlo simulation for the 1-D case

As an example, we consider the case where we have data
sources which are approximately located along a straight
line. This corresponds to the scenario depicted in Fig. 3b.
We approximate the truth state by a linear model with two
parameters. From Eq. (9) it follows that we need at least five
data sources to estimate the errors. Let us assume we have
two buoys, a satellite altimeter with two measurements close
to the buoys, and a numerical model estimate in the middle
between the two buoys. Using the wave heights at the buoy
positions as the state parameters t one gets

A=


1 0
0 1

1/7 6/7
6/7 1/7
1/2 1/2

 (50)

for the matrix A, which relates the truth vector to the obser-
vations (see Eq. 4). Here, we have assumed a geometry as
depicted in Fig. 3b. The first and second row of A refer to
the two buoy measurements, which are assumed to be with-
out systematic errors. The third and fourth row correspond to
the two altimeter measurements near the ELB buoys and the
HEL buoy, which are assumed to be affected by calibration
errors with scaling parameters of 1.2 and 1.3. The last row
represents the wave height estimate provided by the wave
model in the middle between the two buoys. The model is
assumed to have a calibration error with a factor of 0.9.

The Monte Carlo experiments were then performed as fol-
lows:

– 120 observation vectors y were created using a random
simulator with prescribed variances and covariances for
the background statistics and the observation errors.

– The observation errors and their uncertainty were esti-
mated using the approach described in Sect. 2.1.

– These experiments were repeated 1000 times to obtain
statistically robust results.

The parameters used for the simulations, as well as the ob-
tained results, are summarised in Table 3. The first three
columns refer to the assumed observation error statistics for
the buoys, the altimeter, and the numerical model. One can
see that a covariance of 0.056 m2 was used for the two satel-
lite measurements, which corresponds to an error correlation
of 0.5. The last three columns refer to the estimation errors,
which were obtained in two different ways:

– The uncertainties are estimated directly by computing
the variance of the estimated observation errors over all
experiments. This is called the “averaged experiments”
approach (AVEXP) in the following.

– The uncertainties were estimated for each experiment
from the input data covariance matrices as explained in
Sect. 2.1. These estimates were than averaged over all
experiments. This is called the “covariance matrix” ap-
proach (COMAT) in the following.

For the obtained data source errors averaged over all experi-
ments, the numbers agree with the assumed errors to within
three decimals, which illustrates the validity of Eq. (12). The
same is also true for the estimated uncertainties for the vari-
ances and covariances estimated from Eq. (20). The last three
columns in Table 3 show that the covariance matrix method
and the numbers from the averaged experiments are in very
good agreement. The last column contains the respective
comparison for the covariance of the altimeter measurement
errors, where the two approaches also give very consistent
results. Overall, these results confirm that the estimation of
uncertainties in the estimated stochastic errors by Eq. (20) is
a reasonable approach.

In a second step the same exercise was done for the esti-
mation of the systematic errors. The first column of Table 4
shows the assumed calibration errors, i.e. scaling parameters
used in the generation of the synthetic observations. In this
case the estimated calibration factors averaged over all exper-
iments shown in the second column agree with the theoretical
values to within two decimals, which seems reasonable. The
values for the estimation errors obtained with the COMAT
approach (third column) and the AVEXP approach (fourth
column) are also in good agreement, considering that several
approximations (e.g. Eq. 38) were used.

3 Description of data sets

In this section the observation and numerical model data used
for the multi-collocation analysis are introduced. The data
sets are from the period April 2016 to August 2017.

3.1 Satellite altimeter data

The satellite data used here were taken by the European
satellite Sentinel-3A launched in February 2016. The satel-
lite flies on a sun-synchronous orbit with an exact repeat cy-
cle of 27 days. The spatial accuracy of the revisit is ± 1 km
in the longitudinal direction. Among other instruments, the
platform hosts a radar altimeter (SRAL) operating at Ku and
C bands (Le Roy et al., 2007). The main frequency used for
range measurements is in the Ku band (13.575 GHz), while
the C-band frequency (5.41 GHz) is used for ionospheric cor-
rection. The basic footprint of the altimeter antenna is a disc
with approximately 20 km diameter. However, the effective
area actually influencing the measurements is more narrowly
centred around the nadir point with a diameter of about

A=
πR0(cτ + 2Hs)

1+R0/Re
. (51)
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Table 3. Parameters used for the Monte Carlo simulations in Sect. 2.5. The first two columns refer to the stochastic wave height error standard
deviation (SD) and variance (var) assumed for the considered data sources. The third column gives the assumed error cross covariance (covar)
values for the two altimeter measurements and the two buoy data sets. The fourth column is the error standard deviation of the estimator for
the observation error variances obtained by averaging over 1000 estimation experiments (AVEXP approach). The values in column five refer
to the same estimation errors, but derived by application of the method described in Sect. 2.1 (COMAT approach). The last column gives the
COMAT and AVEXP standard deviations for the covariance estimation errors.

truth truth AVEXP COMAT COMAT/
SD var covar SD SD AVEXP SD
(m) (m2) (m2) (m2) (m2) (m2)

Buoy Elbe 0.25 0.063
0

0.024 0.024
0

Buoy Heligoland 0.2 0.040 0.023 0.024

Alt Elbe 0.32 0.102
0.056

0.028 0.028
0.016/0.016

Alt Heligoland 0.35 0.122 0.025 0.026

Model 0.27 0.073 0.013 0.013

Table 4. Parameters used for the Monte Carlo simulations to validate the approach described in Sect. 2.2 for the quantification of errors in the
calibration factor estimates. The MULTCOL technique is applied to a 1-D configuration with five data sources, of which three (two altimeter
(Alt) observations and one model estimate) are affected by calibration errors. The first column gives the assumed truth scaling parameters and
the second column gives the respective estimates. The last two columns represent the uncertainty estimates for the derived scaling parameters
in terms of standard deviation (SD) based on two different procedures. See text for details.

truth estimated COMAT AVEXP
scaling scaling SD SD

Alt Elbe 1.20 1.20 0.052 0.053
Alt Heligoland 1.30 1.30 0.063 0.063
Model 0.90 0.90 0.041 0.041

Here, R0 = 814 km is the altitude of the satellite, Re is the
radius of the earth, c is the speed of light, τ is the pulse
duration, and Hs is significant wave height (Chelton et al.,
1989). For the typical pulse durations of the order of 3 ns, the
effective footprint varies between 1 and 10 km with larger
footprints at high sea states. In particular in coastal areas, the
altimeter data processing is quite involved (Chelton et al.,
2001), and a number of instrument and processing param-
eters can have a strong impact on the characteristics of the
wave height estimates.

In this study Sentinel-3A data with 1 Hz sampling are
analysed, which correspond to measurements taken every
7 km along the track. The analysed data were acquired in
the so-called reduced synthetic aperture radar (RDSAR)
mode, which provides data comparable to measurements
from a traditional satellite altimeter. A comparison of differ-
ent Sentinel-3A altimeter modes can be found in Wiese et al.
(2018).

Figure 2a shows the distribution of Sentinel-3A tracks over
the North Sea. “Ascending” passes are from south-south-east
to north-north-west, whereas “descending” passes are from
north-north-east to south-south-west.

3.2 In situ measurements

In this study in situ wave height measurements distributed
over the Global Telecommunication System (GTS) were
used, which are archived at the European Centre for
Medium-Range Weather Forecasts (ECMWF; Bidlot and
Holt, 2006). Additional wave observation data were gath-
ered by ECMWF as part of the JCOMM Forecast Verifica-
tion project (Bidlot et al., 2002). These measurements have
a quite inhomogeneous geographical distribution as shown
in Fig. 2. As one can see, the focus of the observations is
on coastal areas and regions with intense offshore activities,
like the northern part of the North Sea. Some of the in situ
stations shown in Figs. 1 and 2b, which are referenced in
the subsequent analysis, are labelled by either 5 digit num-
bers (e.g. 62168) or three character strings (e.g. ELB). Due to
the lack of respective metadata, it was not possible to distin-
guish between different types of instruments, e.g. waverider
buoys or platform-mounted devices. One exception is the sta-
tion 62170 near the east English Channel entrance, which is
identical to the light ship “F3” mentioned in Anderson et al.
(2016). In addition to the GTS data, in situ wave measure-
ments taken in the German Bight were obtained from the
Bundesamt für Seeschifffahrt und Hydrographie (BSH). The
GTS data have a temporal sampling of 1 h, while the BSH
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buoys provide observations every 30 min. The in situ obser-
vations represent raw values and were checked for unrealis-
tic wave heights. Looking at all the in situ stations for the
analysed period in summary, the provided significant wave
heights were in the range between 0.1 and 7.8 m. These are
realistic values for the North Sea (Semedo et al., 2015) and
hence all observations were used in the analysis.

3.3 Wave model WAM and meteorological input data
used

For this study, data generated with the spectral wave model
WAM were used (Komen et al., 1996). The model version
cycle 4.6.2 considered here includes depth refraction and
wave breaking and is therefore suitable for coastal applica-
tions (Staneva et al., 2017). Spatial variations in bathymetry
are taken into account; however, temporal variations in water
depth due to tides are not included in the simulations. The
2-D-wave spectra are calculated on a polar grid with 30 di-
rectional 15◦ sectors and 30 logarithmically spaced frequen-
cies ranging from 0.042 to 0.66 Hz. A spherical grid is used
for the space dimensions with ∼ 0.06◦ resolution in zonal
and ∼ 0.03◦ resolution in meridional direction. The required
forcing at the open boundaries of the North Sea model do-
main are derived from a coarser model simulation for the
whole North Atlantic. Model output with 1 h time steps was
available for the analysis. ERA-5 data are used as meteoro-
logical forcing for the North Sea model runs (Hersbach and
Dee, 2016). This data set is a global re-analysis product from
ECMWF with a spatial resolution of 31 km. The model re-
sults are interpolated to a 0.25◦ grid, and the time step is
1 h in the final product. A detailed comparison of different
model setups with satellite altimeter data can be found in
Wiese et al. (2018).

Compared to previous studies (Janssen et al., 2007; Caires
and Sterl, 2003), the spatial resolutions of the three analysed
data sources are in quite close agreement. The effective res-
olutions of the altimeter and the in situ instruments both de-
pend on the actual sea state. For the altimeter typical foot-
print sizes are between 1 and 10 km as explained in Sect. 3.1.
For the in situ data, the translation of the typical 20 min aver-
ages to spatial averages is determined by the group velocity.
For example, the energy will propagate with about 15 km h−1

if the dominant wave length is 50 m long and the water is
deep (> 50 m). A 20 min temporal average would therefore
correspond to a 5 km spatial average in this case, which is in
good correspondence to the spatial model resolution of about
3.5 km. We have therefore used the original data for the anal-
ysis and not generated super-observations by averaging, as
done in Janssen et al. (2007) and Caires and Sterl (2003),
who used wave model data with significantly coarser resolu-
tion.

4 Triple collocations for the entire North Sea

In this section the triple collocation method, as a special
case of the multi-collocation approach, is applied to the
Sentinel-3A altimeter wave height measurements introduced
in Sect. 3.1 to assess the respective systematic and stochastic
errors. The novelty lies in the analysis of a new satellite data
set and the provision of error bars for the estimated stochastic
and systematic errors.

Traditionally, validations of new data sets are performed
by comparing to data from established in situ measurements,
which are regarded as a reference. Here, the following as-
sumptions are made:

– Sentinel-3A and the WAM model may be affected by
calibration problems represented by the calibrations fac-
tors λS3 and λWAM.

– Sentinel-3A and the WAM model may be affected by
biases bWAM and bS3.

– Buoys are regarded as reference systems, i.e. they are
assumed as bias free and without calibration errors.

Each of the Sentinel-3A tracks shown in Fig. 2a is passed
by the satellite about once a month. Figure 2b shows the re-
spective number of collocations found if a maximum dis-
tance of 10 km is accepted. The collocation involves some
necessary interpolation steps, which were performed as fol-
lows (Janssen et al., 2007):

– The model is interpolated to the buoy using linear inter-
polation.

– The model is interpolated to the closest altimeter point
using linear interpolation.

– Both the buoy and the model are interpolated to the
satellite overflight time.

– The model value used for the location is taken as the
average of the buoy and the satellite interpolation (see
Janssen et al., 2007).

The triple collocation technique was applied to each in situ
platform for which altimeter data within the acceptable col-
location could be found. The direct method as described in
Sect. 2.2 was used for this analysis.

As an example, Fig. 5 shows the obtained results for the
Elbe buoy ELB located at 54.0◦ N 8.1◦ E. The location of this
buoy can also be found in Fig. 1. The three scatter plots show
the used data sets in different combinations (buoy versus
WAM, Fig. 5a; buoy versus Sentinel-3A, Fig. 5b; and WAM
versus Sentinel-3A, Fig. 5c). The three data sets were cor-
rected according to the slope and bias parameters estimated
in the collocation procedure. The slope parameters for both
the model and Sentinel-3A were found to be below 1, and
there exists a larger positive bias for the altimeter. The red
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triangles correspond to ascending satellite passes and green
triangles indicate descending satellite heading. A connection
between the satellite flight direction and errors is not clearly
visible. This is an important result, because the altimeter data
processing is known to be more challenging for passes going
from land to sea. It is evident that the best agreement is be-
tween the buoy and the model. The smallest stochastic error
is found for the buoy with 0.04 m standard deviation. For this
location, the collocation procedure gives the largest stochas-
tic error of 0.25 m for the altimeter data.

Figure 6 shows the estimated biases (Fig. 6a and d) for
the Sentinel-3A altimeter (Fig. 6a, b, c) and the wave model
(Fig. 6d, e, d). One can see that the altimeter seems to be
either bias free or slightly biased high for most of the cases
(Fig. 6a). Averaging over all buoys gives a bias estimate of

〈bS3〉buoys ≈ 0.07± 0.31 m. (52)

Concerning the spatial distribution of observation errors, it is
hard to draw a conclusion. It is, however, evident that the few
cases with low bias are far offshore (Fig. 6a). For the wave
model there a few more cases where a small low bias is found
(Fig. 6d). Again, averaging over all buoys gives

〈bWAM〉buoys ≈−0.03± 0.26 m. (53)

The spatial distribution shows a weak clustering of low-bias
cases in the northern part of the North Sea. It is interesting
to note that for the location of the light vessel 62170 near the
east entrance of the English Channel (see Fig. 1), the satellite
and the model show a positive bias of about 0.3 and 0.2 m,
respectively. According to Anderson et al. (2016), one can
expect a systematic low bias for wave height measurements
from light vessels of about 0.3 to 0.4 m. It is thus possible
that the estimated high bias for satellite and model is in this
case an artefact caused by the violated assumption of bias-
free in situ observations.

The scaling parameter for the satellite altimeter shown in
Fig. 6b indicates values above 1 for most of the cases. In fact,
averaging over all buoys gives

〈λS3〉buoys ≈ 1.11± 0.27. (54)

The respective scaling parameter estimation errors derived
using the approach described in Sect. 2.2 are shown in
Fig. 6c. It is evident that quite a few of the cases with excep-
tionally high scaling values (around 1.2) are affected by large
estimation errors. This is a good illustration of the added
value provided by the error estimation procedure presented
in this study. The corresponding scaling parameters for the
WAM model shown in Fig. 6e show values which are closer
to unity for the most part. The respective mean value is

〈λWAM〉buoys ≈ 1.02± 0.20 (55)

with higher values (around 1.1) found in the English Chan-
nel. Most of the other cases closer to the coast have slope

values slightly below unity. Most of the cases with large esti-
mation errors for the scaling factor (Fig. 6f) are found close
to the coast.

Results for the stochastic errors are summarised in Fig. 7.
The columns refer to Sentinel-3A (Fig. 7a and d), the WAM
model (Fig. 6b and e), and the buoys (Fig. 6c and f). Fig-
ure 7a, b, and c show the estimated stochastic error standard
deviation and the Fig. 7d, e, and f the respective relative esti-
mation errors ν, defined as

ν = 100%
SD(〈ε2

〉)

〈ε2〉
, (56)

where 〈ε2
〉 is the error variance, and SD(〈ε2

〉) is the stan-
dard deviation of the respective estimator, derived using the
approach described in Sect. 2.1. One can see that, overall,
the smallest stochastic errors are found for the buoys, as ex-
pected (Fig. 7c). In fact, one gets

〈〈ε2
Buoy〉

1/2
〉buoys ≈ 0.12± 0.11 m (57)

averaging over all buoys. There are two buoys which stand
out with errors above 0.25 m in the northern part of the North
Sea. In this case, the estimation errors are not exceptionally
high and possible reasons for these relatively high error levels
should be further investigated. In general, one can see that
the estimation errors are quite large, exceeding in most cases
20 % (Fig. 7f).

The stochastic errors of the WAM model (Fig. 7b) and the
altimeter (Fig. 7a) are quite similar in their average values

〈〈ε2
WAM〉

1/2
〉buoys ≈ 0.17± 0.07 m, (58)

〈〈ε2
S3〉

1/2
〉buoys ≈ 0.18± 0.14 m. (59)

It is interesting to see that the two buoys mentioned above
also stand out with respect to the corresponding model errors.
Theoretically, this could be due to a correlation between the
background statistics and both the model and buoy errors.
However, because this is observed in a quite homogeneous
offshore area, with neighbouring buoys not showing the same
effect, this explanation is not very likely. It is more likely that
the basic assumptions about zero bias or absent calibration
errors are violated for these buoys.

The finding that, on average, the in situ stations have the
smallest stochastic errors is at first sight in disagreement with
results presented in Janssen et al. (2007). One has to take into
account, however that there are a number of significant dif-
ferences in the analysis. First of all, a global wave model
with 55 km resolution was used in the former study, whereas
the computational model grid used in our analysis has a res-
olution more than 15 times higher. It is unlikely, however
that the coarser model resolution is the only factor, because
Caires and Sterl (2003) also concluded that the in situ stations
have the smallest stochastic errors using wave model output
with even coarser resolution (1.5◦) than used by Janssen et al.
(2007). Both studies introduced altimeter super-observations
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Figure 5. (a, b) Comparison of wave heights measured by the Elbe buoy with numerical model results (a), and Sentinel-3A altimeter
measurements (b). The model and satellite data sets were corrected according to the calibration factors λWAM and λS3 and bias parameters
bWAM and bS3 estimated in the triple collocation procedure (see Eq. 21). (c) Direct comparison between model and satellite data. Numbers
are given for the estimated calibration factors, bias, and stochastic error standard deviations εWAM, εS3, and εBuoy. The red triangles refer to
ascending (asc) satellite passes and the green ones to descending (desc) passes.

Figure 6. Colour coded biases (a, d) and calibration factors (b, e) derived by triple collocation for the Sentinel-3A altimeter (a, b, c) and
WAM model wave heights (d, e, f). The right column (c, f) gives the uncertainties in the slope estimations derived using the approach in
Sect. 2.2 as standard deviation.

(averages over subsequent measurements) to make the al-
timeter observations more consistent with the model esti-
mates. In the present study this was not considered neces-
sary, because the altimeter and model resolutions are in much
closer agreement. The second major difference with respect
to previous studies is the geographic locations and the type
of altimeter data considered in the analysis. Janssen et al.
(2007) investigated global ERS-2 and Envisat altimeter data

sets, while Caires and Sterl (2003) concentrated on TOPEX
and ERS-1 altimeter data acquired over the Pacific and the
US east coast. This means that there are certainly differences
both with regard to the background wave statistics and the
satellite and in situ observation errors. A third important dif-
ference between the studies is the applied collocation cri-
teria. Janssen et al. (2007) required the model, in situ, and
satellite estimates to be within 200 km distance and Caires
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Figure 7. (a, b, c) Colour coded stochastic error standard deviations of wave heights provided by the Sentinel-3A altimeter (a), the WAM
model (b), and the in situ stations (c) estimated by triple collocation. (d, e, f) Relative uncertainties in the stochastic error estimates derived
by using the approach in Sect. 2.1.

and Sterl (2003) used a smaller collocation distance of 0.75◦.
The allowed distance of 10 km used in the present study is
still significantly smaller than that, and the collocation errors
are therefore also likely to be smaller. For the above reasons,
one cannot conclude that the present study contradicts the re-
sults in Janssen et al. (2007). The conclusion is rather that a
common set of reference in situ data and collocation criteria
are desirable to make different studies more comparable.

It is evident that the observed heterogeneity of in situ mea-
surements is a big complicating factor in the analysis. Wave
model computations and satellite altimeter observations have
reached a level of accuracy where further improvements re-
quire a very careful selection and treatment of validation data
sets. This in particular requires more knowledge about the
type of in situ instruments and applied data processing tech-
niques (e.g. averaging intervals). This could also be an argu-
ment for investments into dedicated validation instruments
with more transparent and better documented error charac-
teristics and quality control. The deployment of such instru-
ments should take into account both research aspects and re-
quirements for operational use.

5 Multi-collocations

In this section different examples are presented where more
than three observations are combined, i.e. this is beyond the
standard triple collocation approach. The two examples dis-
cussed in the following are typical situations encountered
when analysing in situ data, model data, and satellite mea-
surements in combination.

5.1 1-D example

The geometry of the first example is depicted in Fig. 8a.
Here, an ascending Sentinel-3A track passes between the two
in situ stations 62150 and 62289. The station on the easterly
side is within 10 km distance of the track and was therefore
used in the triple collocation study presented in Sect. 4. Sta-
tion 62150 did not match the criteria and was disregarded for
the analysis. Both stations can be found in Figs. 1 and 2b,
where they are indicated by triangle symbols.

The idea to relate both in situ measurements to the altime-
ter track is to use a linear interpolation of the truth wave
height between the two stations, which makes the use of the
instrument with the larger distance more acceptable in the
collocation procedure. In principle, this corresponds to the
1-D case depicted in Fig. 3b with the role of altimeter and
model interchanged. In the present situation there is one al-
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Figure 8. (a) Example of observation configuration with a descending Sentinel-3A altimeter track passing between two in situ wave ob-
servation instruments (62150 and 62289), (b) Observation geometry with Sentinel-3A track passing through a group of three in situ wave
measurement devices. The blue and red altimeter measurements are used to estimate error correlations for both the altimeter and the numerical
model.

timeter measurement between the two reference instruments
and for simplicity the numerical model wave height estimate
is taken at the location of the buoys. Because of the small
number of available samples, we have also used altimeter
measurements which are slightly above and below the con-
necting line (red dots in Fig. 8a). This resulted in ns = 14
common data samples that could be used for the statistics.

Using this geometry allows for the estimation of the errors
of all data sources, as well as the error correlations between
the model wave heights (see Table 1). The calibration factors
and their respective standard deviations were estimated with
the direct and iterative method and are as follows.

λWAM
62150 = 0.662± 0.147 (0.788± 0.161)

λWAM
62289 = 0.779± 0.113 (0.778± 0.100) (60)
λS3 = 1.023± 0.246 (1.023± 0.360)

The values in brackets were obtained with the iterative
method. Significant differences are only found for the first
scaling parameter. However, both methods provide consistent
results if the error bars are taken into account. It is interesting
to note that the scaling value for Sentinel-3A is closer to unity
than the smaller value of about 0.8 found by the triple collo-
cation method (Fig. 6b). This value was exceptional among
the other buoys for which numbers above 1 were found for
the most part. This could be an indication of a problem with
station 62289, which also stands out in the stochastic errors
shown in Fig. 7c.

The numbers obtained for the stochastic errors are as fol-
lows.

var(εBuoy
62150)=−0.0890± 0.0914 m2 (−0.0889± 0.0781 m2)

var(εBuoy
62289)=−0.0072± 0.0234 m2 (−0.0072± 0.0235 m2)

var(εWAM
62150)= 0.0749± 0.0467 m2 (0.0913± 0.0557 m2)

var(εWAM
62289)= 0.0234± 0.0167 m2 (0.0234± 0.0167 m2)

covar(εWAM
62150,ε

WAM
62289)= 0.0242± 0.0095 m2 (0.0241± 0.0095m2)

var(εS3)= 0.1372± 0.0555m2 (0.1372± 0.0550 m2) (61)

It can be seen that the estimates for the buoys are slightly
negative, which is not meaningful for a variance. This can
in fact happen for small sample sizes, since the estimators
do not guarantee positive values. In this case it is helpful to
look at the respective error bars, which are given as stan-
dard deviations. For a Gaussian-distributed variable the in-
terval given by ± SD gives a 68 % confidence interval, i.e.
more than 30 % of the cases are outside of this value range.
This means that the estimated values for buoys are consis-
tent with small positive error variances. The largest value is
found for the Sentinel-3A altimeter with a relatively small er-
ror bar. This is consistent with the finding already made with
the triple collocation method (see Fig. 7a). For the WAM
model at the location of the 62289 station, the triple collo-
cation method gave a similarly high value, but with almost
100 % error margin. The estimate obtained with the multi-
collocation is significantly lower, but again with a large rela-
tive estimation error of about 100 %. Because of the smaller
mean value, the latter estimates still point towards a smaller
model error than indicated by the triple collocation method.

The covariances estimated for the WAM wave height er-
rors at the two buoy locations correspond to a correlation
value of 0.58. If we assume that the error autocorrelation
function is Gaussian shaped, i.e.

ACF(1x)= exp(−
1x

λC
) (62)
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with correlation length λC and spatial distance1x, the above
value results in λC = 55 km.

Because of

〈(εWAM
62150− ε

WAM
62289)

2
〉 = var(εWAM

62289)+ var(εWAM
62150)

− 2 covar(εWAM
62289,ε

WAM
62150), (63)

knowledge about the variances and covariances also allows
an estimate of the uncertainties in the gradient estimates. In
this case an error standard deviation of 0.31 m was obtained
for the difference of the WAM model wave heights at the two
buoy locations.

5.2 2-D example

The geometry of the second example is depicted in Fig. 8b.
This is an area in the northern part of the North Sea around
58◦ latitude between England and Norway. In this case an
ascending Sentinel-3A track is passing through a group of
three in situ wave observation platforms, which are shown in
Figs. 1 and 2b. Here, we concentrate on two locations cov-
ered by the satellite, which appear as two clusters in Fig. 8b.
The “North” group of satellite observations is shown in blue
and the “South” group in red. Including the numerical model
estimates at those locations, the situation is then as described
by the last row in Table 1. One has 7 wave height estimates in
total, and a 2-D plane approximation is used for the observed
area. The multi-collocation method then allows an estimation
of the errors of all components, as well as three covariances.
As the buoy measurements can be assumed as independent,
only two covariances are required in this example; this is the
covariance between the model errors at the two locations and
the same for the altimeter measurements. With this configu-
ration the number of available data sets was ns = 11.

The scaling values and their standard deviations obtained
with the direct method are as follows.

λSouth
WAM = 1.130± 0.006

λNorth
WAM = 1.104± 0.004

λSouth
S3 = 1.270± 0.002 (64)

λNorth
S3 = 1.272± 0.003

Here, the values labelled “North” refer to the northern clus-
ter of Sentinel-3A measurements (blue points in Fig. 8b) and
the values labelled with “South” refer to the southern group
of observations (red points in Fig. 8b). These estimates seem
to be quite robust, because of the small error bars and the
fact that the errors in both areas are very similar. The re-
sults also confirm the overall finding of the triple collocation
analysis which indicated a wave height overestimation by the
Sentinel-3A altimeter.

The respective values for the stochastic errors and their
standard deviations with the same naming convention and
obtained with the direct method are as follows:

var(ε62168)= 0.003± 0.007 m2

var(ε62161)= 0.010± 0.006 m2

var(ε62134)= 0.014± 0.007 m2

var(εSouth
WAM)= 0.016± 0.008 m2

covar(εNorth
WAM,ε

South
WAM)= 0.009± 0.005 m2 (65)

var(εNorth
WAM)= 0.005± 0.003 m2

var(εSouth
S3 )= 0.011± 0.007 m2

covar(εNorth
S3 ,εSouth

S3 )= 0.005± 0.005 m2

var(εNorth
S3 )= 0.012± 0.007 m2

Due to the significant estimation errors it is hard to tell which
data source has the smallest errors. The obtained numbers are
consistent with an error standard deviation of around 0.1 m
for all data sets. The error estimates for the altimeter at the
two locations agree very well and are also consistent with
the values found with the triple collocation method (Fig. 7a).
The difference in the error variances for the WAM model
at the two locations appear to be quite big considering the
distance of about 30 km. But again, the error bars show that
there is a significant probability that the errors are actually in
closer agreement. In principle, it would be possible to force
the WAM error variances at the two locations to be the same,
using a respective formulation of the linear system Eq. (12).
However, looking at the spatial variations in the bathymetry
in Fig. 1, this is hard to justify.

For the correlation, a value of 0.39 was found for the al-
timeter and a value close to 1 for the WAM model. This cor-
responds to a correlation length of about 30 km for the satel-
lite data. It makes sense that the correlation length for the
WAM model is longer in this case compared to the configu-
ration discussed in the previous section, because the analysed
area is in deeper water quite far offshore, and can therefore be
assumed as more homogeneous with respect to model errors.

The examples show that the multi-collocation method is
in fact applicable to real data source configurations. In par-
ticular, the matrix D in Eq. (12) is regular for the considered
geometries, and estimates for error correlations can be ob-
tained. It is also evident, of course, that the limited number
of samples results in significant estimation errors. Accord-
ing to Eq. (19), the variance of the error variance estimation
scales with 1/ns, i.e. in order to reduce the error bars given
in Eqs. (61) and (65) by a factor of 2, the number of samples
has to be increased by a factor of 4.

6 Conclusions

The presented study provides an extension of the known
triple collocation method, which can be useful in areas
with stronger gradients, like coastal regions, where nearest-
neighbour approximations maybe critical. The proposed
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method is very flexible in the way that various parameteri-
sations can be used to describe the spatial variability of the
measured quantities. In this study we considered only lin-
ear models, but this is not a restriction of the method, since
more sophisticated functional forms (e.g. bilinear functions)
can be easily integrated. Such higher-order approaches are
certainly desirable for coastal areas with strong spatial varia-
tions; however, they require a larger number of data sources
(see Eq. 9).

An approach was proposed to estimate the uncertainties in
estimated calibration and stochastic errors, which is also use-
ful in the context of the standard triple collocation method,
which is a special case of the multi-collocation technique.
The technique uses the covariance matrices of the input data
and the number of samples as input, i.e. bootstrapping is not
required. These uncertainty estimates are seen as very valu-
able, in particular in the context of new instruments for which
only a limited data set is available for the assessment.

The proposed techniques were validated using Monte
Carlo simulations with realistic background statistics. It was
shown that the obtained error estimates and their respective
uncertainties are in good agreement with the expected val-
ues, although a couple of approximations had to be used in
the derivation.

The method was applied to a data set of in situ wave
measurements, Sentinel-3A altimeter observations, and nu-
merical wave model data. The number of available samples
was relatively small and estimation errors had therefore to
be taken into account. The usefulness of the derived error
bars for the interpretation of the data could be demonstrated.
For the analysed 16 months data set presented here, the es-
timation errors are significant, in particular if individual ge-
ographic locations are analysed. It would therefore be inter-
esting to continue some parts of the analysis at a later stage
of the Sentinel-3A mission, when a larger data set will be
available. More robust results are obtained if the systematic
and stochastic data set errors estimated for different in situ
instrument locations are averaged. The results obtained for
the North Sea indicate the smallest stochastic errors for the
in situ measurements, as expected. The stochastic errors of
the model and the altimeter seem comparable if averaged
over all in situ locations. The analysis indicates that on av-
erage the altimeter is overestimating wave heights by about
10 % for above-mean wave conditions. Two examples of
multi-collocations were analysed, which included a group of
two and three in situ platforms. In both cases a Sentinel-3A
track passed nearby, and model data were used in addition.
The use of 1-D and 2-D parameterisations for the first and
second example, respectively, resulted in estimates for the
spatial decorrelation of model and altimeter errors.

The proposed method can be used for many other applica-
tions not discussed in this study. For example, it is straight-
forward to extend the analysis of error correlations to the
time domain. The method can also be applied in situations
where different instruments do not measure exactly the same

quantity, but different components of a truth vector, for ex-
ample HF radar providing 2-D current vectors and satellite
SAR providing one current component (e.g. Hansen et al.,
2011).

This study is supposed to make a contribution to the op-
timal use of the growing number of observations, in partic-
ular in coastal areas. For applications, like data assimilation,
knowledge about the errors of different data sources is es-
sential. Analysis of observation errors is also a critical com-
ponent in the design and extension of observatories used for
various applications. This subject will be of growing con-
cern, for example, in the context of the European marine core
service (CMEMS), where in situ data are required to optimise
forecasts for all European seas.
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