Articles | Volume 15, issue 6
https://doi.org/10.5194/os-15-1783-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-15-1783-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Air–sea gas exchange at wind speeds up to 85 m s−1
Kerstin E. Krall
CORRESPONDING AUTHOR
Institute of Environmental Physics, Heidelberg University, Im Neuenheimer Feld 229, 69120 Heidelberg,
Germany
Andrew W. Smith
Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA
Naohisa Takagaki
Department of Mechanical Engineering, University of Hyogo, Himeji 671-2280, Japan
Bernd Jähne
Institute of Environmental Physics, Heidelberg University, Im Neuenheimer Feld 229, 69120 Heidelberg,
Germany
Heidelberg Collaboratory for Image Processing,
Heidelberg University, Berliner Straße 43, 69120 Heidelberg, Germany
Related authors
Leila Nagel, Kerstin E. Krall, and Bernd Jähne
Ocean Sci., 15, 235–247, https://doi.org/10.5194/os-15-235-2019, https://doi.org/10.5194/os-15-235-2019, 2019
E. Mesarchaki, C. Kräuter, K. E. Krall, M. Bopp, F. Helleis, J. Williams, and B. Jähne
Ocean Sci., 11, 121–138, https://doi.org/10.5194/os-11-121-2015, https://doi.org/10.5194/os-11-121-2015, 2015
Short summary
Short summary
Our article presents successful gas exchange measurements obtained in a large-scale wind-wave tank. The adopted box model methodology, experimental produce and instrumentation are described in detail. For the first time, parallel measurements of total transfer velocities for 14 individual gases within a wide range of solubility have been achieved. Various wind speed conditions and the effect of surfactant layers have been investigated providing exciting results.
L. Nagel, K. E. Krall, and B. Jähne
Ocean Sci., 11, 111–120, https://doi.org/10.5194/os-11-111-2015, https://doi.org/10.5194/os-11-111-2015, 2015
Short summary
Short summary
A comparative study of simultaneous heat and gas exchange measurements was performed in the large annular Heidelberg Air-Sea Interaction Facility, the Aeolotron, under homogeneous water surface conditions, including the measurement of the Schmidt number exponent. Provided the Schmidt number exponent is known and that the heated patch is large enough to reach the thermal equilibrium, it is possible to scale heat transfer velocities measured by active thermography to gas transfer velocities.
K. E. Krall and B. Jähne
Ocean Sci., 10, 257–265, https://doi.org/10.5194/os-10-257-2014, https://doi.org/10.5194/os-10-257-2014, 2014
Naohisa Takagaki, Naoya Suzuki, Yuliya Troitskaya, Chiaki Tanaka, Alexander Kandaurov, and Maxim Vdovin
Ocean Sci., 16, 1033–1045, https://doi.org/10.5194/os-16-1033-2020, https://doi.org/10.5194/os-16-1033-2020, 2020
Short summary
Short summary
Currents are high-speed continuous ocean flows. In general, currents accelerate surface waves. However, studies are performed at normal wind speeds only, with few studies at extremely high wind speeds. We investigate the effects of current on surface waves at extremely high wind speeds and use three wind-wave tanks to demonstrate surface waves and currents. As a result, at extremely high wind speeds, a similar acceleration effect is observed as under the conditions of normal wind speeds.
Leila Nagel, Kerstin E. Krall, and Bernd Jähne
Ocean Sci., 15, 235–247, https://doi.org/10.5194/os-15-235-2019, https://doi.org/10.5194/os-15-235-2019, 2019
D. Kiefhaber, C. J. Zappa, and B. Jähne
Ocean Sci. Discuss., https://doi.org/10.5194/osd-12-1291-2015, https://doi.org/10.5194/osd-12-1291-2015, 2015
Revised manuscript has not been submitted
E. Mesarchaki, C. Kräuter, K. E. Krall, M. Bopp, F. Helleis, J. Williams, and B. Jähne
Ocean Sci., 11, 121–138, https://doi.org/10.5194/os-11-121-2015, https://doi.org/10.5194/os-11-121-2015, 2015
Short summary
Short summary
Our article presents successful gas exchange measurements obtained in a large-scale wind-wave tank. The adopted box model methodology, experimental produce and instrumentation are described in detail. For the first time, parallel measurements of total transfer velocities for 14 individual gases within a wide range of solubility have been achieved. Various wind speed conditions and the effect of surfactant layers have been investigated providing exciting results.
L. Nagel, K. E. Krall, and B. Jähne
Ocean Sci., 11, 111–120, https://doi.org/10.5194/os-11-111-2015, https://doi.org/10.5194/os-11-111-2015, 2015
Short summary
Short summary
A comparative study of simultaneous heat and gas exchange measurements was performed in the large annular Heidelberg Air-Sea Interaction Facility, the Aeolotron, under homogeneous water surface conditions, including the measurement of the Schmidt number exponent. Provided the Schmidt number exponent is known and that the heated patch is large enough to reach the thermal equilibrium, it is possible to scale heat transfer velocities measured by active thermography to gas transfer velocities.
K. E. Krall and B. Jähne
Ocean Sci., 10, 257–265, https://doi.org/10.5194/os-10-257-2014, https://doi.org/10.5194/os-10-257-2014, 2014
Related subject area
Approach: Laboratory Studies | Depth range: Surface | Geographical range: All Geographic Regions | Phenomena: Air-Sea Fluxes
Analysis of the effect of fish oil on wind waves and implications for air–water interaction studies
Measuring air–sea gas-exchange velocities in a large-scale annular wind–wave tank
Comparative heat and gas exchange measurements in the Heidelberg Aeolotron, a large annular wind-wave tank
First laboratory study of air–sea gas exchange at hurricane wind speeds
Alvise Benetazzo, Luigi Cavaleri, Hongyu Ma, Shumin Jiang, Filippo Bergamasco, Wenzheng Jiang, Sheng Chen, and Fangli Qiao
Ocean Sci., 15, 725–743, https://doi.org/10.5194/os-15-725-2019, https://doi.org/10.5194/os-15-725-2019, 2019
Short summary
Short summary
Inspired by the known virtue of fish oil to still angry seas, a study has been made on the interaction between wind waves, paddle waves, and airflow in a tank containing a thin fish-oil film. It is rather peculiar that in the wind-only condition the wave field does not grow from the rest condition. This equilibrium was altered by paddle waves. We stress the benefit of experiments with surfactants to disentangle relevant mechanisms involved in the air–sea interaction.
E. Mesarchaki, C. Kräuter, K. E. Krall, M. Bopp, F. Helleis, J. Williams, and B. Jähne
Ocean Sci., 11, 121–138, https://doi.org/10.5194/os-11-121-2015, https://doi.org/10.5194/os-11-121-2015, 2015
Short summary
Short summary
Our article presents successful gas exchange measurements obtained in a large-scale wind-wave tank. The adopted box model methodology, experimental produce and instrumentation are described in detail. For the first time, parallel measurements of total transfer velocities for 14 individual gases within a wide range of solubility have been achieved. Various wind speed conditions and the effect of surfactant layers have been investigated providing exciting results.
L. Nagel, K. E. Krall, and B. Jähne
Ocean Sci., 11, 111–120, https://doi.org/10.5194/os-11-111-2015, https://doi.org/10.5194/os-11-111-2015, 2015
Short summary
Short summary
A comparative study of simultaneous heat and gas exchange measurements was performed in the large annular Heidelberg Air-Sea Interaction Facility, the Aeolotron, under homogeneous water surface conditions, including the measurement of the Schmidt number exponent. Provided the Schmidt number exponent is known and that the heated patch is large enough to reach the thermal equilibrium, it is possible to scale heat transfer velocities measured by active thermography to gas transfer velocities.
K. E. Krall and B. Jähne
Ocean Sci., 10, 257–265, https://doi.org/10.5194/os-10-257-2014, https://doi.org/10.5194/os-10-257-2014, 2014
Cited articles
Abraham, M. H. and Matteoli, E.: The temperature variation of the hydrophobic
effect, J. Chem. Soc., Faraday Trans., 1, 1985–2000,
https://doi.org/10.1039/F19888401985, 1988. a
Alves, S. S., Orvalho, S. P., and Vasconcelos, J. M. T.: Effect of bubble
contamination on rise velocity and mass transfer, Chem. Eng. Sci., 60, 1–9, https://doi.org/10.1016/j.ces.2004.07.053, 2005. a
Andreas, E. L. and Emanuel, K. A.: Effects of Sea Spray on Tropical Cyclone
Intensity, J. Atmos. Sci., 58, 3741–3751,
https://doi.org/10.1175/1520-0469(2001)058<3741:EOSSOT>2.0.CO;2, 2001. a
Andreas, E. L., Vlahos, P., and Monahan, E. C.: Spray-mediated air-sea gas
exchange: the governing time scales, J. Mar. Sci. Eng., 5, 60,
https://doi.org/10.3390/jmse5040060, 2017. a, b, c
Asher, W. E., Higgins, B. J., Karle, L. M., Farley, P. J., Sherwood, C. R.,
Gardiner, W. W., Wanninkhof, R., Chen, H., Lantry, T., Steckley, M., Monahan,
E. C., Wang, Q., and Smith, P. M.: Measurement of gas transfer, whitecap
coverage, and brightness temperature in a surf pool: an overview of
WABEX-93, in: Air-Water Gas Transfer, Selected Papers, 3rd Intern. Symp. on
Air-Water Gas Transfer, edited by: Jähne, B. and Monahan, E., 205–216,
AEON, Hanau, https://doi.org/10.5281/zenodo.10571, 1995. a
Asher, W. E., Karle, L. M., Higgins, B. J., Farley, P. J., Monahan, E. C., and
Leifer, I. S.: The influence of bubble plumes on air-seawater gas transfer
velocities, J. Geophys. Res., 101, 12027–12041, https://doi.org/10.1029/96JC00121,
1996. a
Bell, T. G., De Bruyn, W., Miller, S. D., Ward, B., Christensen, K. H., and Saltzman, E. S.: Air–sea dimethylsulfide (DMS) gas transfer in the North Atlantic: evidence for limited interfacial gas exchange at high wind speed, Atmos. Chem. Phys., 13, 11073–11087, https://doi.org/10.5194/acp-13-11073-2013, 2013. a
Bell, T. G., De Bruyn, W., Marandino, C. A., Miller, S. D., Law, C. S., Smith, M. J., and Saltzman, E. S.: Dimethylsulfide gas transfer coefficients from algal blooms in the Southern Ocean, Atmos. Chem. Phys., 15, 1783–1794, https://doi.org/10.5194/acp-15-1783-2015, 2015. a
Bell, T. G., Landwehr, S., Miller, S. D., de Bruyn, W. J., Callaghan, A. H., Scanlon, B., Ward, B., Yang, M., and Saltzman, E. S.: Estimation of bubble–mediated air–sea gas exchange from concurrent DMS and CO2 transfer velocities at intermediate-high wind speeds, Atmos. Chem. Phys., 17, 9019–9033, https://doi.org/10.5194/acp-17-9019-2017, 2017. a, b, c
Blomquist, B. W., Brumer, S. E., Fairall, C. W., Huebert, B. J., Zappa, C. J.,
Brooks, I. M., Yang, M., Bariteau, L., Prytherch, J., Hare, J. E., Czerski,
H., Matei, A., and Pascal, R. W.: Wind speed and sea state dependencies of
air-sea gas transfer: results from the high wind speed gas exchange study
(HiWinGS), J. Geophys. Res., 122, 8034–8062, https://doi.org/10.1002/2017JC013181,
2017. a, b, c
Brumer, S. E., Zappa, C. J., Blomquist, B. W., Fairall, C. W.,
Cifuentes-Lorenzen, A., Edson, J. B., Brooks, I. M., and Huebert, B. J.:
Wave-related Reynolds number parameterizations of CO2 and DMS transfer
velocities, Geophys. Res. Lett., 44, 9865–9875, https://doi.org/10.1002/2017GL074979,
2017. a, b
Carey, W. M., Fitzgerald, J. W., Monahan, E. C., and Wang, Q.: Measurements of
the sound produced by a tipping trough with fresh and salt water, J. Acoust.
Soc. Am., 93, 3178–3192, https://doi.org/10.1121/1.405702, 1993. a
Cunliffe, M., Engel, A., Frka, S., Gasparovic, B., Guitart, C., Murrell, J. C.,
Salter, M., Stolle, C., Upstill-Goddard, R., and Wurl, O.: Sea surface
microlayers: A unified physicochemical and biological perspective of the
air-ocean interface, Prog. Oceanog., 109, 104–116,
https://doi.org/10.1016/j.pocean.2012.08.004, 2013. a
Deike, L. and Melville, W. K.: Gas transfer by breaking waves, Geophys. Res.
Lett., 45, 10482–10492, https://doi.org/10.1029/2018GL078758, 2018. a, b, c
Deike, L., Lenain, L., and Melville, W. K.: Air entrainment by breaking waves,
Geophys. Res. Lett., 44, 3779–3787, https://doi.org/10.1002/2017GL072883, 2017. a, b, c, d
Donelan, M., Haus, B., Reul, N., Plant, W., Stiassnie, M., Graber, H., Brown,
O., and Saltzman, E.: On the limiting aerodynamic roughness of the ocean in
very strong winds, Geophys. Res. Lett., 31, L18306, https://doi.org/10.1029/2004GL019460, 2004. a
Donelan, M. A.: On the decrease of the oceanic drag coefficient in high winds,
J. Geophys. Res., 123, 1485–1501, https://doi.org/10.1002/2017JC013394, 2018. a
Fenclová, D., Blahut, A., Vrbka, P., Dohnal, V., and Böhme, A.: Temperature
dependence of limiting activity coefficients, Henry's law constants, and
related infinite dilution properties of C4–C6 isomeric n-alkyl
ethanoates/ethyl n-alkanoates in water, Measurement, critical compilation,
correlation, and recommended data, Fluid Phase Equilibria, 375, 347–359,
https://doi.org/10.1016/j.fluid.2014.05.023, 2014. a
Flothow, L.: Bubble Characteristics from Breaking Waves in Fresh
Water and Simulated Seawater, Master's thesis, Institut für
Umweltphysik, Universität Heidelberg, Germany,
https://doi.org/10.11588/heidok.00023754, 2017. a, b, c, d
Frew, N. M.: The role of organic films in air-aea gas exchange, in: The Sea
Surface and Global Change, edited by: Liss, P. S. and Duce, R. A., , Cambridge University Press, Cambridge, UK,
5, 121–171, https://doi.org/10.1017/CBO9780511525025.006, 1997. a
Garbe, C. S., Rutgersson, A., Boutin, J., Delille, B., Fairall, C. W., Gruber,
N., Hare, J., Ho, D., Johnson, M., de Leeuw, G., Nightingale, P., Pettersson,
H., Piskozub, J., Sahlee, E., Tsai, W., Ward, B., Woolf, D. K., and Zappa,
C.: Transfer across the air-sea interface, in: Ocean-Atmosphere Interactions
of Gases and Particles, edited by: Liss, P. S. and Johnson, M. T., Springer, 55–112, https://doi.org/10.1007/978-3-642-25643-1_2, 2014. a
Goddijn-Murphy, L., Woolf, D. K., Callaghan, A. H., Nightingale, P. D., and
Shutler, J. D.: A reconciliation of empirical and mechanistic models of the
air-sea gas transfer velocity, J. Geophys. Res., 121, 818–835,
https://doi.org/10.1002/2015JC011096, 2016. a, b
Hiatt, M. H.: Determination of Henry's Law Constants Using Internal Standards
with Benchmark Values, J. Chem. Eng. Data, 58, 902–908,
https://doi.org/10.1021/je3010535, 2013. a
Iwano, K., Takagaki, N., Kurose, R., and Komori, S.: Mass transfer velocity
across the breaking air-water interface at extremely high wind speeds, Tellus
B, 65, 21341, https://doi.org/10.3402/tellusb.v65i0.21341, 2013. a, b
Iwano, K., Takagaki, N., Kurose, R., and Komori, S.: Erratum: Mass transfer
velocity across the breaking air-water interface at extremely high wind
speeds, Tellus B, 66, 25233, https://doi.org/10.3402/tellusb.v66.25233, 2014. a
Jeong, D., Haus, B. K., and Donelan, M. A.: Enthalpy Transfer across the
Air-Water Interface in High Winds Including Spray, J. Atmos. Sci., 69, 2733–2748, https://doi.org/10.1175/JAS-D-11-0260.1, 2012. a
Jähne, B.: Air-Sea Gas Exchange, in: Encyclopedia of Ocean Sciences, edited by:
Cochran, J. K., Bokuniewicz, H. J., and Yager, P. L.,
Academic Press, 6, 1–13, https://doi.org/10.1016/B978-0-12-409548-9.11613-6, 2019. a, b
Jähne, B. and Geißler, P.: Depth from focus with one image, in: Proc.
Conference on Computer Vision and Pattern Recognition (CVPR '94), Seattle,
20–23 June 1994, 713–717, https://doi.org/10.1109/CVPR.1994.323885, 1994. a
Jähne, B., Wais, T., and Barabas, M.: A new optical bubble measuring device; a
simple model for bubble contribution to gas exchange, in: Gas transfer at
water surfaces, edited by: Brutsaert, W. and Jirka, G. H.,
Reidel, Hingham, MA, 237–246, https://doi.org/10.1007/978-94-017-1660-4_22, 1984. a, b
Jähne, B., Heinz, G., and Dietrich, W.: Measurement of the diffusion
coefficients of sparingly soluble gases in water, J. Geophys. Res., 92,
10767–10776, https://doi.org/10.1029/JC092iC10p10767, 1987. a
Jähne, B., Libner, P., Fischer, R., Billen, T., and Plate, E. J.:
Investigating the transfer process across the free aqueous boundary layer by
the controlled flux method, Tellus B, 41, 177–195,
https://doi.org/10.3402/tellusb.v41i2.15068, 1989. a
Kestin, J., Sokolov, M., and Wakeham, W. A.: Viscosity of Liquid Water in the
Range −8 ∘C to 150 ∘C, J. Phys. Chem. Ref. Data, 7, 941–948,
https://doi.org/10.1063/1.555581, 1978. a
King, D. B. and Saltzman, E. S.: Measurement of the diffusion coefficient of
sulfur hexafluoride in water, J. Geophys. Res., 100, 7083–7088,
https://doi.org/10.1029/94JC03313, 1995. a
Komori, S., Iwano, K., Takagaki, N., Onishi, R., Kurose, R., Takahashi, K., and
Suzuki, N.: Laboratory Measurements of Heat Transfer and Drag Coefficients at
Extremely High Wind Speeds, J. Phys. Oceanogr., 48, 959–974,
https://doi.org/10.1175/JPO-D-17-0243.1, 2018. a, b
Krall, K. E. and Jähne, B.: First laboratory study of air–sea gas exchange at hurricane wind speeds, Ocean Sci., 10, 257–265, https://doi.org/10.5194/os-10-257-2014, 2014. a, b, c
Leifer, I. and De Leeuw, G.: Bubble mesurements in breaking-wave generated
bubble plumes during the LUMINY wind-wave experiment, in: Gas Transfer at
Water Surfaces, edited by: Donelan, M. A., Drennan, W. M., Saltzman, E. S.,
and Wanninkhof, R., Geoph. Monog. Series, 127, 303–309,
https://doi.org/10.1029/GM127p0303, 2002. a
Liss, P. S. and Slater, P. G.: Flux of gases across the air-sea interface,
Nature, 247, 181–184, https://doi.org/10.1038/247181a0, 1974. a
Maaßen, S.: Experimentelle Bestimmung und Korrelierung von
Verteilungskoeffizienten in verdünnten Lösungen, PhD thesis,
Technische Universität Berlin, Germany, 1995. a
Maiß, M.: Modelluntersuchung zum Einfluss von Blasen auf den
Gasaustausch zwischen Atmosphäre und Meer, Diplomarbeit, Institut für
Umweltphysik, Fakultät für Physik und Astronomie, Univ. Heidelberg,
https://doi.org/10.5281/zenodo.15415, 1986. a, b
McNeil, C. and D'Asaro, E.: Parameterization of air sea gas fluxes at extreme
wind speeds, J. Mar. Syst., 66, 110–121,
https://doi.org/10.1016/j.jmarsys.2006.05.013, 2007. a, b, c
Memery, L. and Merlivat, L.: Modelling of gas flux through bubbles at the
air-water interface, Tellus B, 37, 272–285,
https://doi.org/10.1111/j.1600-0889.1985.tb00075.x, 1985. a
Merlivat, L. and Memery, L.: Gas exchange across an air-water interface:
experimental results and modeling of bubble contribution to transfer, J.
Geophys. Res., 88, 707–724, https://doi.org/10.1029/JC088iC01p00707, 1983. a
Mestayer, P. and Lefauconnier, C.: Spray droplet generation, transport, and
evaporation in a wind wave tunnel during the humidity exchange over the sea
experiments in the simulation tunnel, J. Geophys. Res., 93, 572–586,
https://doi.org/10.1029/JC093iC01p00572, 1988. a
Mischler, W. and Jähne, B.: Optical measurements of bubbles and spray in
wind/water facilities at high wind speeds, in: 12th International Triennial
Conference on Liquid Atomization and Spray Systems 2012, Heidelberg (ICLASS
2012), https://doi.org/10.5281/zenodo.10957, 2012. a
Monahan, E. C. and Spillane, M. C.: The role of oceanic whitecaps in air-sea
gas exchange, in: Gas transfer at water surfaces, edited by: Brutsaert, W. and
Jirka, G. H., Reidel, Hingham, MA,
495–503, https://doi.org/10.1007/978-94-017-1660-4_45, 1984. a
Nagel, L., Krall, K. E., and Jähne, B.: Measurements of air–sea gas transfer velocities in the Baltic Sea, Ocean Sci., 15, 235–247, https://doi.org/10.5194/os-15-235-2019, 2019. a
Patro, R., Leifer, I., and Bowyer, P.: Better bubble process modeling: improved
bubble hydrodynamics parameterization, in: Gas Transfer at Water Surfaces,
edited by Donelan, M. A., Drennan, W. M., Saltzman, E. S., and Wanninkhof,
R., Geoph. Monog. Series, 127, 315–320,
https://doi.org/10.1029/GM127p0315, 2002. a, b
Powell, M. D., Vickery, P. J., and Reinhold, T. A.: Reduced drag coefficient
for high wind speeds in tropical cyclones, Nature, 422, 279–283,
https://doi.org/10.1038/nature01481, 2003. a
Reichl, A.: Messung und Korrelierung von Gaslöslichkeiten halogenierter
Kohlenwasserstoffe, PhD thesis, Technische Universität Berlin, Germany,
1995. a
Sander, R.: Compilation of Henry's law constants (version 4.0) for water as solvent, Atmos. Chem. Phys., 15, 4399–4981, https://doi.org/10.5194/acp-15-4399-2015, 2015. a
Sander, S. P., Abbatt, J., Barker, J. R., Burkholder, J. B., Friedl, R. R.,
Golden, D. M., Huie, R. E., Kolb, C. E., Kurylo, M. J., Moortgat, G. K.,
Orkin, V. L., and Wine, P. H.: Chemical Kinetics and Photochemical Data for
Use in Atmospheric Studies: Evaluation No. 17, JPL Publication 10-6, Jet
Propulsion Laboratory, Pasadena,
http://jpldataeval.jpl.nasa.gov (last access: 13 December 2019), 2011. a
Soloviev, A. and Lukas, R.: Effects of bubbles and sea spray on air-sea
exchange in hurricane conditions, Bound.-Lay. Meteorol., 136, 365–376,
https://doi.org/10.1007/s10546-010-9505-0, 2010. a
Su, M.-Y. and Cartmill, J.: Effects of salinity on breaking wave generated void
fraction and bubble size spectra, in: Air-Water Gas Transfer, Selected
Papers, 3rd Intern. Symp. on Air-Water Gas Transfer, edited by: Jähne, B. and
Monahan, E., AEON, Hanau, 305–311, https://doi.org/10.5281/zenodo.10571, 1995. a
Takagaki, N., Komori, S., Suzuki, N., Iwano, K., Kuramoto, T., Shimada, S.,
Kurose, R., and Takahashi, K.: Strong correlation between the drag
coefficient and the shape of the wind sea spectrum over a broad range of wind
speeds, Geophys. Res. Lett., 39, L23604, https://doi.org/10.1029/2012GL053988, 2012. a, b, c, d, e, f
Toba, Y.: Local balance in the air-sea boundary processes I. On the growth
process of wind waves, J. Ocean. Soc. Jpn, 28,
109–121, https://doi.org/10.1007/BF02109772, 1972. a
Troitskaya, Y., Kandaurov, A., Ermakova, O., Kozlov, D., Sergeev, D., and
Zilitinkevich, S.: Bag-breakup fragmentation as the dominant mechanism of
sea-spray production in high winds, Sci. Rep., 7, 1614,
https://doi.org/10.1038/s41598-017-01673-9, 2017.
a
Vlahos, P. and Monahan, E. C.: A generalized model for the air-sea transfer of
dimethyl sulfide at high wind speeds, Geophys. Res. Lett., 36, 0094–8276,
https://doi.org/10.1029/2009GL040695, 2009. a
Wanninkhof, R., Asher, W. E., Ho, D. T., Sweeney, C., and McGillis, W. R.:
Advances in quantifying air-sea gas exchange and environmental forcing, Annu.
Rev. Mar. Sci., 1, 213–244, https://doi.org/10.1146/annurev.marine.010908.163742,
2009. a
Warneck, P. and Williams, J.: The Atmospheric Chemist's Companion, Numerical
Data for Use in the Atmospheric Sciences, Springer, Dordrecht,
https://doi.org/10.1007/978-94-007-2275-0, 2012. a
Woolf, D., Leifer, I., Nightingale, P., Rhee, T., Bowyer, P., Caulliez, G.,
de Leeuw, G., Larsen, S., Liddicoat, M., Baker, J., and Andreae, M.:
Modelling of bubble-mediated gas transfer: Fundamental principles and a
laboratory test, J. Mar. Syst., 66, 71–91,
https://doi.org/10.1016/j.jmarsys.2006.02.011, 2007. a, b, c
Woolf, D. K. and Thorpe, S. A.: Bubbles and the air-sea exchange of gases in
near-saturation conditions, J. Mar. Res., 49, 435–466,
https://doi.org/10.1357/002224091784995765, 1991. a
Yaws, C.: Transport Properties of Chemicals and Hydrocarbons, Elsevier Science,
https://doi.org/10.1016/B978-0-323-28658-9.00004-4, 2014. a
Zavarsky, A., Goddijn-Murphy, L., Steinhoff, T., and Marandino, C. A.:
Bubble-Mediated Gas Transfer and Gas Transfer Suppression of DMS and CO2,
J. Geophys. Res.-Atmos., 123, 6624–6647,
https://doi.org/10.1029/2017JD028071, 2018. a, b, c
Zheng, J., Fei, J., Du, T., Wang, Y., Cui, X., Huang, X., and Li, Q.: Effect of sea spray on the numerical simulation of super typhoon “Ewiniar”, J. Ocean U. China, 7, 362–372, https://doi.org/10.1007/s11802-008-0362-0,
2008. a
Short summary
We measured the transfer of 12 gases between air and sea at very high wind speeds in two different wind-wave tank labs with fresh water, simulated seawater and seawater. We separated the transfer across the water surface from the transfer through the surface of bubbles. At high winds, the transfer through the free water surface increases very strongly and bubbles become important but only for gases which are very weakly soluble in water. On the ocean, bubbles might be important at lower winds.
We measured the transfer of 12 gases between air and sea at very high wind speeds in two...