Articles | Volume 15, issue 6
https://doi.org/10.5194/os-15-1653-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-15-1653-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Depth is relative: the importance of depth for transparent exopolymer particles in the near-surface environment
Tiera-Brandy Robinson
CORRESPONDING AUTHOR
Institute for Chemistry and Biology of the Marine Environment,
University of Oldenburg, Wilhelmshaven, Germany
Christian Stolle
Institute for Chemistry and Biology of the Marine Environment,
University of Oldenburg, Wilhelmshaven, Germany
Biological oceanography, Molecular and microbial ecology, Leibniz-Institute for Baltic Sea Research Warnemünde (IOW),
Rostock, Germany
Oliver Wurl
Institute for Chemistry and Biology of the Marine Environment,
University of Oldenburg, Wilhelmshaven, Germany
Related authors
Manuela van Pinxteren, Tiera-Brandy Robinson, Sebastian Zeppenfeld, Xianda Gong, Enno Bahlmann, Khanneh Wadinga Fomba, Nadja Triesch, Frank Stratmann, Oliver Wurl, Anja Engel, Heike Wex, and Hartmut Herrmann
Atmos. Chem. Phys., 22, 5725–5742, https://doi.org/10.5194/acp-22-5725-2022, https://doi.org/10.5194/acp-22-5725-2022, 2022
Short summary
Short summary
A class of marine particles (transparent exopolymer particles, TEPs) that is ubiquitously found in the world oceans was measured for the first time in ambient marine aerosol particles and marine cloud waters in the tropical Atlantic Ocean. TEPs are likely to have good properties for influencing clouds. We show that TEPs are transferred from the ocean to the marine atmosphere via sea-spray formation and our results suggest that they can also form directly in aerosol particles and in cloud water.
Manuela van Pinxteren, Khanneh Wadinga Fomba, Nadja Triesch, Christian Stolle, Oliver Wurl, Enno Bahlmann, Xianda Gong, Jens Voigtländer, Heike Wex, Tiera-Brandy Robinson, Stefan Barthel, Sebastian Zeppenfeld, Erik Hans Hoffmann, Marie Roveretto, Chunlin Li, Benoit Grosselin, Veronique Daële, Fabian Senf, Dominik van Pinxteren, Malena Manzi, Nicolás Zabalegui, Sanja Frka, Blaženka Gašparović, Ryan Pereira, Tao Li, Liang Wen, Jiarong Li, Chao Zhu, Hui Chen, Jianmin Chen, Björn Fiedler, Wolf von Tümpling, Katie Alana Read, Shalini Punjabi, Alastair Charles Lewis, James Roland Hopkins, Lucy Jane Carpenter, Ilka Peeken, Tim Rixen, Detlef Schulz-Bull, María Eugenia Monge, Abdelwahid Mellouki, Christian George, Frank Stratmann, and Hartmut Herrmann
Atmos. Chem. Phys., 20, 6921–6951, https://doi.org/10.5194/acp-20-6921-2020, https://doi.org/10.5194/acp-20-6921-2020, 2020
Short summary
Short summary
An introduction to a comprehensive field campaign performed at the Cape Verde Atmospheric Observatory regarding ocean–atmosphere interactions is given. Chemical, physical, biological and meteorological techniques were applied, and measurements of bulk water, the sea surface microlayer, cloud water and ambient aerosol particles took place. Oceanic compounds were found to be transferred to atmospheric aerosol and to the cloud level; however, sea spray contributions to CCN and INPs were limited.
Xianda Gong, Heike Wex, Manuela van Pinxteren, Nadja Triesch, Khanneh Wadinga Fomba, Jasmin Lubitz, Christian Stolle, Tiera-Brandy Robinson, Thomas Müller, Hartmut Herrmann, and Frank Stratmann
Atmos. Chem. Phys., 20, 1451–1468, https://doi.org/10.5194/acp-20-1451-2020, https://doi.org/10.5194/acp-20-1451-2020, 2020
Short summary
Short summary
In this study, we examined number concentrations of ice nucleating particles (INPs) at Cabo Verde in the oceanic sea surface microlayer and underlying seawater, in the air close to both sea level and cloud level, and in cloud water. The results show that most INPs are supermicron in size, that INP number concentrations in air fit well to those in cloud water and that sea spray aerosols at maximum contributed a small fraction of all INPs in the air at Cabo Verde.
Lisa Deyle, Thomas H. Badewien, Oliver Wurl, and Jens Meyerjürgens
Earth Syst. Sci. Data, 16, 2099–2112, https://doi.org/10.5194/essd-16-2099-2024, https://doi.org/10.5194/essd-16-2099-2024, 2024
Short summary
Short summary
A dataset from the North Sea of 85 surface drifters from 2017–2021 is presented. Surface drifters enable the analysis of ocean currents by determining the velocities of surface currents and tidal effects. The entire North Sea has not been studied using drifters before, but the analysis of ocean currents is essential, e.g., to understand the pathways of plastic. The results show that there are strong tidal effects in the shallow North Sea area and strong surface currents in the deep areas.
Manuela van Pinxteren, Tiera-Brandy Robinson, Sebastian Zeppenfeld, Xianda Gong, Enno Bahlmann, Khanneh Wadinga Fomba, Nadja Triesch, Frank Stratmann, Oliver Wurl, Anja Engel, Heike Wex, and Hartmut Herrmann
Atmos. Chem. Phys., 22, 5725–5742, https://doi.org/10.5194/acp-22-5725-2022, https://doi.org/10.5194/acp-22-5725-2022, 2022
Short summary
Short summary
A class of marine particles (transparent exopolymer particles, TEPs) that is ubiquitously found in the world oceans was measured for the first time in ambient marine aerosol particles and marine cloud waters in the tropical Atlantic Ocean. TEPs are likely to have good properties for influencing clouds. We show that TEPs are transferred from the ocean to the marine atmosphere via sea-spray formation and our results suggest that they can also form directly in aerosol particles and in cloud water.
Nadja Triesch, Manuela van Pinxteren, Sanja Frka, Christian Stolle, Tobias Spranger, Erik Hans Hoffmann, Xianda Gong, Heike Wex, Detlef Schulz-Bull, Blaženka Gašparović, and Hartmut Herrmann
Atmos. Chem. Phys., 21, 4267–4283, https://doi.org/10.5194/acp-21-4267-2021, https://doi.org/10.5194/acp-21-4267-2021, 2021
Short summary
Short summary
To investigate the source of lipids and their representatives in the marine atmosphere, concerted measurements of seawater and submicrometer aerosol particle sampling were carried out on the Cabo Verde islands. This field study describes the biogenic sources of lipids, their selective transfer from the ocean into the atmosphere and their enrichment as part of organic matter. A strong enrichment of the studied representatives of the lipid classes on submicrometer aerosol particles was observed.
Manuela van Pinxteren, Khanneh Wadinga Fomba, Nadja Triesch, Christian Stolle, Oliver Wurl, Enno Bahlmann, Xianda Gong, Jens Voigtländer, Heike Wex, Tiera-Brandy Robinson, Stefan Barthel, Sebastian Zeppenfeld, Erik Hans Hoffmann, Marie Roveretto, Chunlin Li, Benoit Grosselin, Veronique Daële, Fabian Senf, Dominik van Pinxteren, Malena Manzi, Nicolás Zabalegui, Sanja Frka, Blaženka Gašparović, Ryan Pereira, Tao Li, Liang Wen, Jiarong Li, Chao Zhu, Hui Chen, Jianmin Chen, Björn Fiedler, Wolf von Tümpling, Katie Alana Read, Shalini Punjabi, Alastair Charles Lewis, James Roland Hopkins, Lucy Jane Carpenter, Ilka Peeken, Tim Rixen, Detlef Schulz-Bull, María Eugenia Monge, Abdelwahid Mellouki, Christian George, Frank Stratmann, and Hartmut Herrmann
Atmos. Chem. Phys., 20, 6921–6951, https://doi.org/10.5194/acp-20-6921-2020, https://doi.org/10.5194/acp-20-6921-2020, 2020
Short summary
Short summary
An introduction to a comprehensive field campaign performed at the Cape Verde Atmospheric Observatory regarding ocean–atmosphere interactions is given. Chemical, physical, biological and meteorological techniques were applied, and measurements of bulk water, the sea surface microlayer, cloud water and ambient aerosol particles took place. Oceanic compounds were found to be transferred to atmospheric aerosol and to the cloud level; however, sea spray contributions to CCN and INPs were limited.
Xianda Gong, Heike Wex, Manuela van Pinxteren, Nadja Triesch, Khanneh Wadinga Fomba, Jasmin Lubitz, Christian Stolle, Tiera-Brandy Robinson, Thomas Müller, Hartmut Herrmann, and Frank Stratmann
Atmos. Chem. Phys., 20, 1451–1468, https://doi.org/10.5194/acp-20-1451-2020, https://doi.org/10.5194/acp-20-1451-2020, 2020
Short summary
Short summary
In this study, we examined number concentrations of ice nucleating particles (INPs) at Cabo Verde in the oceanic sea surface microlayer and underlying seawater, in the air close to both sea level and cloud level, and in cloud water. The results show that most INPs are supermicron in size, that INP number concentrations in air fit well to those in cloud water and that sea spray aerosols at maximum contributed a small fraction of all INPs in the air at Cabo Verde.
Cited articles
Azetsu-Scott, K. and Passow, U.: Ascending marine particles: Significance
of transparent exopolymer particles (TEP) in the upper ocean,
Limnol. Oceanogr., 49, 741–748, https://doi.org/10.4319/lo.2004.49.3.0741, 2004.
Banko-Kubis, H. M., Wurl, O., Mustaffa, N. I. H., and Ribas-Ribas, M.: Gas transfer velocities in norwegian fjords and the adjacent north atlantic waters, Oceanologia, 61, 460–470, https://doi.org/10.1016/j.oceano.2019.04.002, 2019.
Behrenfeld, M. J. and Falkowski, P. G.: A consumer's guide to phytoplankton
primary productivity models, Limnol. Oceanogr., 42, 1479–1491,
https://doi.org/10.4319/lo.1997.42.7.1479, 1997.
Bittar, T. B., Passow, U., Hamaraty, L., Bidle, K. D., and Harvey, E. L.: An
updated method for the calibration of transparent exopolymer particle
measurements, Limnol. Oceanogr.-Methods, 16, 621–628,
https://doi.org/10.1002/lom3.10268, 2018.
Bjørnsen, P. K. and Nielsen, T. G.: Decimeter scale heterogeneity in the
plankton during a pycnocline bloom of Gyrodinium aureolum,
Mar. Ecol. Prog. Ser., 73, 263–267, https://doi.org/10.3354/meps073263 1991.
Blanchard, D. C. and Woodcock, A. H.: Bubble Formation and Modification in
the Sea and its Meteorological Significance, Tellus, 9, 145–158,
https://doi.org/10.3402/tellusa.v9i2.9094, 1957.
Bollens, S. M., Rollwagen-Bollens, G., Quenette, J. A., and Bochdansky, A.
B.: Cascading migrations and implications for vertical fluxes in pelagic
ecosystems, J. Plankton Res., 33, 349–355,
https://doi.org/10.1093/plankt/fbq152, 2010.
Busch, K., Endres, S., Iversen, M. H., Michels, J., Nöthig, E.-M., and
Engel, A.: Bacterial Colonization and Vertical Distribution of Marine Gel
Particles (TEP and CSP) in the Arctic Fram Strait,
Frontiers in Marine Science, 4, 166, https://doi.org/10.3389/fmars.2017.00166, 2017.
Carpenter, E. J., Janson, S., Boje, R., Pollehne, F., and Chang, J.: The
dinoflagellate Dinophysis norvegica: biological and ecological observations
in the Baltic Sea, Eur. J. Phycol., 30, 1–9,
https://doi.org/10.1080/09670269500650751, 1995.
Cheriton, O., McManus, M., Stacey, M., and Steinbuck, J.: Physical and
biological controls on the maintenance and dissipation of a thin
phytoplankton layer, Mar. Ecol. Prog. Ser., 378, 55–69,
https://doi.org/10.3354/meps07847, 2009.
Cipriano, R. J. and Blanchard, D. C.: Bubble and aerosol spectra produced
by a laboratory “breaking wave”, J. Geophys. Res.-Oceans,
86, 8085–8092, https://doi.org/10.1029/jc086ic09p08085, 1981.
Cisternas-Novoa, C., Lee, C., and Engel, A.: Transparent exopolymer
particles (TEP) and Coomassie stainable particles (CSP): Differences between
their origin and vertical distributions in the ocean, Mar. Chem., 175,
56–71, https://doi.org/10.1016/j.marchem.2015.03.009, 2015.
Cunliffe, M. and Murrell, C.: The sea-surface microlayer is a gelatinous
biofilm, ISME J., 3, 1001–1003, https://doi.org/10.1038/ismej.2009.69, 2009.
Cunliffe, M. and Wurl, O.: Guide to the best practices to study the ocean's
surface, Marine Biological Association of the United Kingdom, Plymouth, UK,
118 pp., 2014.
Cunliffe, M., Engel, A., Frka, S., Gasparovic, B., Guitart, C., Murrell, C.,
Salter, M., Stolle, C., Upstill-Goddard, R., and Wurl, O.: Sea surface
microlayers: A unified physicochemical and biological perspective of the
air–ocean interface, Prog. Oceanogr., 109, 104–116,
https://doi.org/10.1016/j.pocean.2012.08.004, 2013.
Deane, G. and Stokes, M.: Scale dependence of bubble creation mechanisms in
breaking waves, Nature, 418, 839–844, https://doi.org/10.1038/nature00967, 2002.
Dekshenieks, M. M., Donaghay, P. L., Sullivan, J. M., Rines, J. E., Osborn,
T. R., and Twardowski, M. S.: Temporal and spatial occurrence of thin
phytoplankton layers in relation to physical processes, Mar. Ecol. Prog. Ser., 223, 61–71, https://doi.org/10.3354/meps223061 2001.
Engel, A.: Distribution of transparent exopolymer particles (TEP) in the
northeast Atlantic Ocean and their potential significance for aggregation
processes, Deep-Sea Res. Pt. I, 51,
83–92, https://doi.org/10.1016/j.dsr.2003.09.001, 2004.
Engel, A., Bange, H. W., Cunliffe, M., Burrows, S. M., Friedrichs, G.,
Galgani, L., Herrmann, H., Hertkorn, N., Johnson, M., and Liss, P. S.: The
ocean's vital skin: Toward an integrated understanding of the sea surface
microlayer, Frontiers in Marine Science, 4, 165, https://doi.org/10.3389/fmars.2017.00165,
2017.
Goering, J. J. and Wallen, D.: The vertical distribution of phosphate and
nitrite in the upper one-half meter of the Southeast Pacific Ocean,
Deep-Sea Res., 14, 29–33, 1967.
Grasshoff, K., Kremling, K., and Ehrhardt, M.: Methods of seawater analysis,
Wiley, New York, https://doi.org/10.1002/9783527613984, 1999.
Haines, M. A. and Johnson, B. D.: Injected bubble populations in seawater
and fresh water measured by a photographic method,
J. Geophys. Res., 100, 7057–7068, https://doi.org/10.1029/94jc03226, 1995.
Hardy, J. T.: The Sea Surface Microlayer: Biology, Chemistry and
Anthropogenic Enrichment, Prog. Oceanogr., 11, 307–328,
https://doi.org/10.1016/0079-6611(82)90001-5, 1982.
Harvey, G. and Burzell, L.: A Simple Microlayer Method for Small Samples,
Limnol. Oceanogr., 17, 156–157, https://doi.org/10.4319/lo.1972.17.1.0156, 1972.
Kodama, T., Kurogi, H., and Okazaki, M.: Vertical distribution of
transparent exopolymer particle (TEP) concentration in the oligotrophic
western tropical North Pacific, Mar. Ecol. Prog. Ser., 513, 29–37,
https://doi.org/10.3354/meps10954, 2014.
Kuznetsova, M., Lee, C., Aller, J., and Frew, N.: Enrichment of amino acids
in the sea surface microlayer at coastal and open ocean sites in the North
Atlantic Ocean, Limnol. Oceanogr., 49, 1605–1619,
https://doi.org/10.4319/lo.2004.49.5.1605 2004.
Liss, P. and Duce, R.: The Sea Surface and Global Change, Cambridge
University Press, 251–286, 1997.
Liss, P. S., Liss, P. S., and Duce, R. A.: The sea surface and global
change, Cambridge University Press, 251–286, 2005.
Louis, J., Pedrotti, M. L., Gazeau, F., and Guieu, C.: Experimental evidence
of formation of Transparent Exopolymer Particles (TEP) and POC export
provoked by dust addition under current and high pCO2 conditions, PloS one,
12, e0171980, https://doi.org/10.1371/journal.pone.0171980, 2017.
Manzi, J., Stofan, P., and Dupuy, J.: Spatial heterogeneity of phytoplankton
populations in estuarine surface microlayers, Mar. Biol., 41, 29–38,
https://doi.org/10.1007/bf00390578, 1977.
Mari, X., Passow, U., Migon, C., Burd, A. B., and Legendre, L.: Transparent
exopolymer particles: Effects on carbon cycling in the ocean, Prog. Oceanogr., 151, 13–37, https://doi.org/10.1016/j.pocean.2016.11.002, 2017.
Marie, D., Simon, N., Guillou, L., Partensky, F., and Vaulot, D.: Flow cytometry analysis of marine picoplankton, in: In Living Color, 421–454, Springer, Berlin, Heidelberg, 2000.
Mitchell, J. G., Yamazaki, H., Seuront, L., Wolk, F., and Li, H.:
Phytoplankton patch patterns: seascape anatomy in a turbulent ocean,
J. Marine Syst., 69, 247–253, https://doi.org/10.1016/j.jmarsys.2006.01.019, 2008.
Momzikoff, A., Brinis, A., Dallot, S., Gondry, G., Saliot, A., and Lebaron,
P.: Field study of the chemical characterization of the upper ocean surface
using various samplers, Limnol. Oceanogr.-Meth., 2, 374–386,
https://doi.org/10.4319/lom.2004.2.374, 2004.
Nielsen, T. G., Kiørboe, T., and Bjørnsen, P. K.: Effects of a
Chrysochromulina polylepis subsurface bloom on the planktonic community,
Mar. Ecol. Prog. Ser., 62, 21–35, https://doi.org/10.3354/meps062021 1990.
Ortega-Retuerta, E., Sala, M. M., Borrull, E., Mestre, M., Aparicio, F. L.,
Gallisai, R., Antequera, C., Marrasé, C., Peters, F., and Simó, R.:
Horizontal and Vertical Distributions of Transparent Exopolymer Particles
(TEP) in the NW Mediterranean Sea Are Linked to Chlorophyll a and O2
Variability, Front. Microbiol., 7, 2159, https://doi.org/10.3389/fmicb.2016.02159,
2017.
Passow, U.: Production of transparent exopolymer particles (TEP) by phyto-
and bacterioplankton, Mar. Ecol. Prog. Ser., 236, 1–12,
https://doi.org/10.3354/meps236001, 2002a.
Passow, U.: Transparent exopolymer particles (TEP) in aquatic environments,
Prog. Oceanogr., 55, 287–333, https://doi.org/10.1038/npre.2007.1182.1, 2002b.
Passow, U. and Alldredge, A.: A dye-binding assay for the
spectrophotometric measurement of transparent exopolymer particles (TEP),
Limnol. Oceanogr., 40, 1326–1335, https://doi.org/10.4319/lo.1995.40.7.1326, 1995.
Reinthaler, T., Sintes, E., and Herndl, G.: Dissolved organic matter and
bacterial production and respiration in the sea–surface microlayer of the
open Atlantic and the western Mediterranean Sea, Limnol. Oceanogr.,
53, 122–136, https://doi.org/10.4319/lo.2008.53.1.0122, 2008.
Ribas-Ribas, M., Hamizah Mustaffa, N. I., Rahlff, J., Stolle, C., and Wurl,
O.: Sea Surface Scanner (S3): A Catamaran for High-Resolution Measurements
of Biogeochemical Properties of the Sea Surface Microlayer,
J. Atmos. Ocean. Tech., 34, 1433–1448,
https://doi.org/10.1175/jtech-d-17-0017.1, 2017.
Robinson, T.-B., Wurl, O., Bahlmann, E., Jürgens, K., and Stolle, C.:
Rising bubbles enhance the gelatinous nature of the air–sea interface,
Limnol. Oceanogr., 64, 2358–2372, https://doi.org/10.1002/lno.11188, 2019a.
Robinson, T.-B., Stolle, C., and Wurl, O.: Biochemical parameters in the underlying water (ULW) from Cape Verde, the Baltic Sea, and Norwegian fjords/Sea, PANGAEA, https://doi.org/10.1594/PANGAEA.903834 (dataset in review), 2019b.
Schuech, R. and Menden-Deuer, S.: Going ballistic in the plankton:
anisotropic swimming behavior of marine protists, Limnol. Oceanogr., 4, 1–16, https://doi.org/10.1215/21573689-2647998,
2014.
Sengupta, A., Carrara, F., and Stocker, R.: Phytoplankton can actively
diversify their migration strategy in response to turbulent cues, Nature,
543, 1–42, https://doi.org/10.1038/nature21415, 2017.
Shinki, M., Wendeberg, M., Vagle, S., Cullen, J. T., and Hore, D. K.:
Characterization of adsorbed microlayer thickness on an oceanic glass plate
sampler, Limnol. Oceanogr.-Meth., 10, 728–735,
10.4319/lom.2012.10.728, 2012.
Sieburth, J.: Microbiological and organic-chemical processes in the surface
and mixed layers, in: Air-Sea Exchange of Gases and Particles, edited by:
Liss, P. and Slinn, W., Reidel Publishers Co, Hingham, MA, 121–172, 1983.
Sun, C.-C., Sperling, M., and Engel, A.: Effect of wind speed on the size distribution of gel particles in the sea surface microlayer: insights from a wind-wave channel experiment, Biogeosciences, 15, 3577–3589, https://doi.org/10.5194/bg-15-3577-2018, 2018.
Wasmund, N., Topp, I., and Schories, D.: Optimising the storage and
extraction of chlorophyll samples, Oceanologia, 48, 125–144, 2006.
Wetzel, R. G. and Likens, G.: Limnological Analyses, Springer New York,
85–112, 2000.
Wurl, O. and Holmes, M.: The gelatinous nature of the sea-surface
microlayer, Mar. Chem., 110, 89–97, https://doi.org/10.1016/j.marchem.2008.02.009,
2008.
Wurl, O., Miller, L., Röttgers, R., and Vagle, S.: The distribution and
fate of surface-active substances in the sea-surface microlayer and water
column, Mar. Chem., 115, 1–9, https://doi.org/10.1016/j.marchem.2009.04.007, 2009.
Wurl, O., Miller, L., and Vagle, S.: Production and fate of transparent
exopolymer particles in the ocean, J. Geophys. Res., 116,
C00H13, https://doi.org/10.1029/2011JC007342, 2011a.
Wurl, O., Wurl, E., Miller, L., Johnson, K., and Vagle, S.: Formation and global distribution of sea-surface microlayers, Biogeosciences, 8, 121–135, https://doi.org/10.5194/bg-8-121-2011, 2011b.
Wurl, O., Stolle, C., Van Thuoc, C., The Thu, P., and Mari, X.: Biofilm-like
properties of the sea surface and predicted effects on air–sea CO2
exchange, Prog. Oceanogr., 144, 15–24,
https://doi.org/10.1016/j.pocean.2016.03.002, 2016.
Wurl, O., Ekau, W., Landing, W. M., and Zappa, C. J.: Sea surface microlayer
in a changing ocean–A perspective, Elem. Sci. Anth., 5, 31,
https://doi.org/10.1525/elementa.228, 2017.
Yamada, Y., Fukuda, H., Inoue, K., Kogure, K., and Nagata, T.: Effects of
attached bacteria on organic aggregate settling velocity in seawater,
Aquat. Microb. Ecol., 70, 261–272, https://doi.org/10.3354/ame01658, 2013.
Yamada, Y., Yokokawa, T., Uchimiya, M., Nishino, S., Fukuda, H., Ogawa, H.,
and Nagata, T.: Transparent exopolymer particles (TEP) in the deep ocean:
full-depth distribution patterns and contribution to the organic carbon
pool, Mar. Ecol. Prog. Ser., 583, 81–93, https://doi.org/10.3354/meps12339, 2017.
Zamanillo, M., Ortega-Retuerta, E., Nunes, S., Rodríguez-Ros, P., Dall'Osto, M., Estrada, M., Montserrat Sala, M., and Simó, R.: Main drivers of transparent exopolymer particle distribution across the surface Atlantic Ocean, Biogeosciences, 16, 733–749, https://doi.org/10.5194/bg-16-733-2019, 2019.
Zhou, J., Mopper, K., and Passow, U.: The role of surface-active
carbohydrates in the formation of transparent exopolymer particles by bubble
adsorption of seawater, Limnol. Oceanogr., 43, 1860–1871,
https://doi.org/10.4319/lo.1998.43.8.1860, 1998.
Short summary
Data from three campaigns were combined to look at the enrichment of gel particles, which act as a large source of organic matter transport, in the sea surface microlayer. Additionally, depth profiles showed that the vertical distribution in the upper 2 m of the ocean can be both homogeneously and heterogeneously mixed. This highlights the importance of depth for measurements when studying enrichment and the complexity of the near-surface environment.
Data from three campaigns were combined to look at the enrichment of gel particles, which act as...