Articles | Volume 15, issue 1
https://doi.org/10.5194/os-15-161-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-15-161-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Long Island Sound temperature variability and its associations with the ridge–trough dipole and tropical modes of sea surface temperature variability
Justin A. Schulte
CORRESPONDING AUTHOR
Science Systems and Applications, Inc., Lanham, Maryland, 20706,
USA
Sukyoung Lee
Department of Meteorology, The Pennsylvania State University,
University Park, 16802, USA
Related authors
Justin Schulte, Frederick Policielli, and Benjamin Zaitchik
Hydrol. Earth Syst. Sci., 24, 5473–5489, https://doi.org/10.5194/hess-24-5473-2020, https://doi.org/10.5194/hess-24-5473-2020, 2020
Short summary
Short summary
Wavelet coherence is now a commonly used method for detecting scale-dependent relationships between time series. In this study, the concept of wavelet coherence is generalized to higher-order wavelet coherence methods that quantify the relationship between higher-order statistical moments associated with two time series. The methods are applied to the El Niño–Southern Oscillation (ENSO) and the Indian monsoon to show that the ENSO–Indian monsoon relationship is impacted by ENSO nonlinearity.
Justin A. Schulte
Nonlin. Processes Geophys., 26, 91–108, https://doi.org/10.5194/npg-26-91-2019, https://doi.org/10.5194/npg-26-91-2019, 2019
Short summary
Short summary
Statistical hypothesis tests in wavelet analysis are used to asses the likelihood that time series features are noise. The choice of test will determine which features emerge as a signal. Tests based on area do poorly at distinguishing abrupt fluctuations from periodic behavior, unlike tests based on arclength that do better. The application of the tests suggests that there are features in Indian rainfall time series that emerge from background noise.
Justin A. Schulte
Nonlin. Processes Geophys., 23, 257–267, https://doi.org/10.5194/npg-23-257-2016, https://doi.org/10.5194/npg-23-257-2016, 2016
Justin A. Schulte
Nonlin. Processes Geophys., 23, 45–57, https://doi.org/10.5194/npg-23-45-2016, https://doi.org/10.5194/npg-23-45-2016, 2016
Short summary
Short summary
The paper presents a new method called cumulative areawise testing that allows scientists to better extract important signals from geophysical time series. The method was found to be able to distinguish aspects of time series that are random from those of potential physical importance better than existing methods in wavelet analysis.
J. A. Schulte, C. Duffy, and R. G. Najjar
Nonlin. Processes Geophys., 22, 139–156, https://doi.org/10.5194/npg-22-139-2015, https://doi.org/10.5194/npg-22-139-2015, 2015
Justin Schulte, Frederick Policielli, and Benjamin Zaitchik
Hydrol. Earth Syst. Sci., 24, 5473–5489, https://doi.org/10.5194/hess-24-5473-2020, https://doi.org/10.5194/hess-24-5473-2020, 2020
Short summary
Short summary
Wavelet coherence is now a commonly used method for detecting scale-dependent relationships between time series. In this study, the concept of wavelet coherence is generalized to higher-order wavelet coherence methods that quantify the relationship between higher-order statistical moments associated with two time series. The methods are applied to the El Niño–Southern Oscillation (ENSO) and the Indian monsoon to show that the ENSO–Indian monsoon relationship is impacted by ENSO nonlinearity.
Justin A. Schulte
Nonlin. Processes Geophys., 26, 91–108, https://doi.org/10.5194/npg-26-91-2019, https://doi.org/10.5194/npg-26-91-2019, 2019
Short summary
Short summary
Statistical hypothesis tests in wavelet analysis are used to asses the likelihood that time series features are noise. The choice of test will determine which features emerge as a signal. Tests based on area do poorly at distinguishing abrupt fluctuations from periodic behavior, unlike tests based on arclength that do better. The application of the tests suggests that there are features in Indian rainfall time series that emerge from background noise.
Justin A. Schulte
Nonlin. Processes Geophys., 23, 257–267, https://doi.org/10.5194/npg-23-257-2016, https://doi.org/10.5194/npg-23-257-2016, 2016
Justin A. Schulte
Nonlin. Processes Geophys., 23, 45–57, https://doi.org/10.5194/npg-23-45-2016, https://doi.org/10.5194/npg-23-45-2016, 2016
Short summary
Short summary
The paper presents a new method called cumulative areawise testing that allows scientists to better extract important signals from geophysical time series. The method was found to be able to distinguish aspects of time series that are random from those of potential physical importance better than existing methods in wavelet analysis.
J. A. Schulte, C. Duffy, and R. G. Najjar
Nonlin. Processes Geophys., 22, 139–156, https://doi.org/10.5194/npg-22-139-2015, https://doi.org/10.5194/npg-22-139-2015, 2015
Related subject area
Approach: Operational Oceanography | Depth range: Surface | Geographical range: Shelf Seas | Phenomena: Temperature, Salinity and Density Fields
An ECOOP web portal for visualising and comparing distributed coastal oceanography model and in situ data
A. L. Gemmell, R. M. Barciela, J. D. Blower, K. Haines, Q. Harpham, K. Millard, M. R. Price, and A. Saulter
Ocean Sci., 7, 445–454, https://doi.org/10.5194/os-7-445-2011, https://doi.org/10.5194/os-7-445-2011, 2011
Cited articles
Ault, T. R, Henebry, G. M., de Beurs, K. M., Schwartz, M. D., Betancourt, J.
L., and Moore, D.: The false spring of 2012, earliest in North American
record, Eos, T. Am. Geophys. Union, 94, 181–182, https://doi.org/10.1002/2013EO200001,
2013.
Barnston, A. and Livezey, R. E.: Classification, seasonality, and persistence
of low-frequency circulation patterns, Mon. Weather Rev., 115, 1083–1126,
1987.
Chen, K., Gawarkiewicz, G. G., Lentz, S. J., and Bane, J. M.: Diagnosing the
warming of the Northeastern US Coastal Ocean in 2012: A linkage between the
atmospheric jet stream variability and ocean response, J. Geophys.
Res.-Ocean., 119, 218–227, https://doi.org/10.1002/2013JC009393, 2014.
Collie, J. S., Wood, A. D., and Jeffries, H. P: Long-term shifts in the
species composition of a coastal fish community, Can. J. Fish. Aquat. Sci.,
65, 1352–1365, 2008.
Compo, G. P., Whitaker, J. S., Sardeshmukh, P. D., Matsui, N., Allan, R. J,
Yin, X., Gleason, B. E., Vose, R. S., Rutledge, G., Bessemoulin, P.,
Brönnimann, S., Brunet, M., Crouthamel, R. I., Grant, A. N., Groisman, P.
Y., Jones, P. D., Kruk, M., Kruger, A. C., Marshall, G. J., Maugeri, M., Mok,
H. Y., Nordli, Ø., Ross, T. F., Trigo, R. M., Wang, X. L., Woodruff, S.
D., and Worley, S. J.: The Twentieth Century Reanalysis Project, Q. J. Roy.
Meteor. Soc., 137, 1–28, https://doi.org/10.1002/qj.776, 2011.
Deser, C. and Blackmon, M. L.: Surface climate variations over the North
Atlantic Ocean during winter: 1900–1989, J. Clim., 6, 1743–1753, 1993.
Di Lorenzo, E., Schneider, N., Cobb, K. M., Franks, P. J. S., Chhak, K.,
Miller, A. J., McWilliams, J. C., Bograd, S. J., Arango, H., Curchitser, E.,
Powell, T. M., and Rivière, P.: North Pacific Gyre Oscillation links
ocean climate and ecosystem change, Geophys. Res. Lett., 35, L08607,
https://doi.org/10.1029/2007GL032838, 2008.
Dole, R., Hoerling, M., Kumar, A., Eischeid, J., Perlwitz, J., Quan, X.-W.,
Kiladis, G., Webb, R., Murray, D., Chen. M., Wolter, K., and Zhang, T.: The
making of an extreme event: Putting the pieces together, B. Am. Meteorol.
Soc., 95, 427–440, 2014.
Fan, M. and Schneider, E. K.: Observed decadal North Atlantic tripole SST
variability, Part I: Weather noise forcing and coupled response, J. Atmos.
Sci., 69, 35–50, https://doi.org/10.1175/JAS-D-11-018.1, 2011.
Franzke, C. and Feldstein, S. B.: The continuum and dynamics of Northern
Hemisphere teleconnection patterns, J. Atmos. Sci., 62, 3250–3267, 2005.
Georgas, N., Yin, L., Jiang, Y., Wang, Y., Howell, P., Saba, V., Schulte, J.,
Orton, P., and Wen, B.: An open-access, multi-decadal, three-dimensional,
hydrodynamic hindcast dataset for the Long Island Sound and New York/New
Jersey Harbor Estuaries, available at:
https://www.researchgate.net/publication/306256135_LIS_tmp_8113, last
access: 1 September 2015.
Georgas, N., Yin, L., Jiang, Y., Wang, Y., Howell, P., Saba, V., Schulte, J.,
Orton, P., and Wen, B.: An open-access, multi-decadal, three-dimensional,
hydrodynamic hindcast dataset for the Long Island Sound and New York/New
Jersey Harbor Estuaries, J. Mar. Sci. Eng., 4, 1–22, 2016.
Grinsted, A., Moore, J. C., and Jevrejeva, S.: Application of the cross
wavelet transform and wavelet coherence to geophysical time-series, Nonlin.
Process. Geophys., 11, 561–566, 2004.
Guttman, N. and Quayle, R.: A historical perspective of US climate divisions,
B. Am. Meteorol. Soc., 77, 293–303, 1996.
Hadley Centre for Climate Prediction and Research/Met Office/Ministry of
Defence/United Kingdom: updated monthly, Hadley Centre Global Sea Ice and
Sea Surface Temperature (HadISST), Research Data Archive at the National
Center for Atmospheric Research, Computational and Information Systems
Laboratory, available at: http://rda.ucar.edu/datasets/ds277.3/ (last
access: 12 October 2017), 2000.
Halpert, M. and Bell, G.: Climate assessment for 1996, B. Am. Meteorol. Soc.,
78, S1–S49, 1997.
Hartmann, D. L.: Pacific Sea Surface Temperature and the Winter of
2014, Geophys. Res. Lett., 42, 1894–1902, 2015.
Howell, P. and Auster, P.: Phase shift in an estuarine finfish community
associated with warming temperatures, Mar. Coast. Fish. Dyn. Manag. Ecosyst.
Sci., 4, 481–495, 2012.
Hu, S. and Fedorov, A. V.: The extreme El Nino of 2015–2016 and the end of
global warming hiatus, Geophys. Res. Lett., 44, 3816–3824, 2017.
Hurrell, J. W.: Decadal trends in the North Atlantic Oscillation regional
temperatures and precipitation, Science, 269, 676–679, 1995.
Hurrel, J. W. and H. van Loon: Decadal variations in climate associated with
the North Atlantic Oscillation, Climatic Change, 36, 301– 326, 1997.
Johnson, N. C.: How Many ENSO Flavors Can We Distinguish?, J. Clim., 26,
4816–4827, 2013.
Johnson, N. C. and Feldstein, S. B.: The continuum of North Pacific sea level
pressure patterns: Intraseasonal, interannual, and interdecadal variability,
J. Clim., 23, 851–867, 2010.
Johnson, N. C., Feldstein, S. B., and Tremblay, B.: The continuum of Northern
Hemisphere teleconnection patterns and a description of the NAO shift with
the use of self-organizing maps, J. Clim., 21, 6354–6371, 2008.
Johnson, N. C and Kosaka, Y.: The role of eastern equatorial Pacific
convection on the diversity of boreal winter El Niño teleconnection
patterns, Clim. Dynam., 47, 3737–3765, 2016.
Jones, J. E. and Cohen, J.: A diagnostic comparison of Alaskan and Siberian
strong anticyclones, J. Clim., 24, 2599–2611, 2011.
Jung, T., Vitart, F., Ferranti, L., and Morcrette, J.-J.: Origin and
pre-dictability of the extreme negative NAO winter of 2009/10, Geophys. Res.
Lett., 38, L07701, https://doi.org/10.1029/2011GL046786, 2011.
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L.,
Iredell, M., Saha, S., White, G., Wollen, J., Zhu, Y., Chelliah, M.,
Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K.C., Ropelewski, C., Wang, J.,
Leetmaa, A., Reynolds, R., Jenne, R., and Joseph, D.: The NCEP/NCAR 40-year
Reanalysis Project, B. Am. Meteorol. Soc., 77, 437–472, 1996.
Kao, H. Y. and Yu, J. Y.: Contrasting eastern-Pacific and central-Pacific
types of ENSO, J. Clim., 22, 615–632, https://doi.org/10.1175/2008JCLI2309.1, 2009.
Konrad, C. E.: Relationships between the intensity of cold-air outbreaks and
the evolution of synoptic and planetary-scale features over North America,
Mon. Weather Rev., 124, 1067–1083, 1996.
Konrad, C. E.: Persistent planetary scale circulation patterns and their
relationship with cold air outbreak activity over the eastern United States,
Int. J. Climatol., 18, 1209–1221, 1998.
Lee, T. and McPhaden, M. J.: Increasing intensity of El Niño in the
central-equatorial Pacific, Geophys. Res. Lett., 37, L14603,
https://doi.org/10.1029/2010GL044007, 2010.
Linkin, M. E. and Nigam, S.: The North Pacific Oscillation–West Pacific
teleconnection pattern: Mature-phase structure and winter impacts, J. Clim.,
21, 1979–1997, 2008.
Liu, Y., Weisberg, R. H., and Mooers, C. N. K.: Performance evaluation of the
self-organizing map for feature extraction, J. Geophys. Res., 111, C05018,
https://doi.org/10.1029/2005JC003117, 2006.
Mantua, N. J. and Hare, S. R.: The Pacific decadal oscillation, J. Oceanogr.,
58, 35–44, 2002.
Mantua, N. J., Zhang, Y., Wallace, J. M., and Francis, R. C.: A Pacific
interdecadal climate oscillation with impacts on salmon production, B. Am.
Meteorol. Soc., 78, 1069–1079, 1997.
Maraun, D. and Kurths, J.: Cross wavelet analysis: significance testing and
pitfalls, Nonlin. Process. Geophys., 11, 505–514, 2004.
Maraun, D., Kurths, J., and Holschneider, M.: Nonstationary Gaussian
processes in wavelet domain: synthesis, estimation, and significance testing,
Phys. Rev. E, 75, 016707, https://doi.org/10.1103/PhysRevE.75.016707, 2007.
McPhaden, M. J.: Genesis and evolution of the 1997–98 El Nino, Science, 283,
950–954, 1999.
MOHC: HadISST1 Data, available at:
https://www.metoffice.gov.uk/hadobs/hadisst/data/download.html, last
access: 15 June 2017.
NOAA/OAR/ESRL PSD: NCEP/NCAR Reanalysis 1: Summary, available at:
https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html,
last access: 29 May 2016.
NOAA/OAR/ESRL PSD: 20th Century Reanalysis, available at:
https://www.esrl.noaa.gov/psd/data/20thC_Rean/, last access: 15 June
2017.
NOAA/OAR/ESRL PSD: Climate Indices: Monthly Atmospheric and Ocean Time
Series, available at:
https://www.esrl.noaa.gov/psd/data/climateindices/list/, last access:
15 November 2018.
NOAA/OAR/ESRL PSD: Climate Timeseries, available at:
https://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/.
Pearce, J. and Balcom, N.: The 1999 Long Island Sound Lobster Mortality
Event: Findings of the Comprehensive Research Initiative, J. Shellfish Res.,
24, 691–697, 2005.
Pershing, A. J., Alexander, M. A., Hernandez, C. M., Kerr, L. A., Le Bris, A.
Mills, K. E., Nye, J. A., Record, N. R., Scannell, H. A., Scott, J. D.,
Sherwood, G. D., and Thomas, A. C.: Slow adaptation in the face of rapid
warming leads to collapse of the Gulf of Maine cod fishery, Science, 350,
809–812, https://doi.org/10.1126/science.aac9819, 2015.
Quiroz, R. S.: The climate of the “El Niño” winter of 1982–83 – A
season of extraordinary climatic anomalies, Mon. Weather Rev., 111,
1685–1706, 1983.
Rasmusson, E. M. and Wallace, J. M.: Meteorological aspects of the El
Niño – Southern Oscillation, Science, 222, 1195–1202, 1982.
Rayner, N. A., Brohan, P., Parker, D. E., Folland, C. K., Kennedy, J. J.,
Vanicek, M., Ansell, T., and Tett, S. F. B.: Improved analyses of changes and
uncertainties in sea surface temperature measured in situ since the
mid-nineteenth century: the HadSST2 data set, J. Clim., 19, 446–469, 2006.
Schulte, J.: Dipole Pattern Correlation Maps and Data, data available at:
http://justinschulte.com/forecasting/dipole.html, last access: 7 April
2018.
Schulte, J. A.: Cumulative areawise testing in wavelet analysis and its
application to geophysical time-series, Nonlin. Process. Geophys., 23,
45–57, 2016.
Schulte, J. A. and Lee, S.: Strengthening North Pacific Influences on United
States Temperature Variability, Sci. Rep., 7, 1–12,
https://doi.org/10.1038/s41598-017-00175-y, 2017.
Schulte, J. A., Duffy, C., and Najjar, R. G.: Geometric and Topological
Approaches to Significance Testing in Wavelet Analysis, Nonlin. Process.
Geophys., 22, 139–156, 2015.
Schulte, J. A., Najjar, R. G., and Li, M.: Impacts of Climate Modes on
Streamflow in the Mid-Atlantic Region of the United States, J. Hydrol. Reg.
Stud., 5, 80–99, 2016.
Schulte, J. A., Najjar, R. G., and Lee, S.: Salinity and Streamflow
Variability in the Mid-Atlantic Region of the United States and its
Relationship with Large-scale Atmospheric Circulation Patterns, J. Hydrol.,
550, 65–79, 2017a.
Schulte, J. A., Georgas, N., Saba, V., and Howell, P.: Meteorological Aspects
of the Eastern North American Pattern with Impacts on Long Island Sound
Salinity, J. Mar. Sci. Eng., 5, 1–27, 2017b.
Schulte, J. A., Georgas, N., Saba, V., and Howell, P.: North Pacific
Influences on Long Island Sound Temperature Variability, J. Clim., 31,
2745–2769, https://doi.org/10.1175/JCLI-D-17-0135.1, 2018.
Svoma, B. M.: El Nino–Southern Oscillation and snow level in the western
United States, J. Geophys. Res., 116, D24117, https://doi.org/10.1029/2011JD016287, 2011.
Thompson, D. W. J. and Wallace, J. M.: The Arctic Oscillation signature in
the wintertime geopotential height and temperature fields, Geophys. Res.
Lett., 25, 1297–1300, 1998.
Torrence, C. and Compo, G. P.: A practical guide to wavelet analysis, B. Am.
Meteorol. Soc., 79, 61–78, 1998.
Tremblay, L. B.: Can we consider the Arctic Oscillation independently from
the Barents Oscillation?, Geophys. Res. Lett., 28, 4227–4230, 2001.
Wallace, J. M. and Gutzler, D. S.: Teleconnections in the geopotential height
field during the Northern Hemisphere winter, Mon. Weather Rev., 109,
784–812, 1981.
Wang, S.-Y., Hipps, L., Gillies, R. R., and Yoon, J. -H.: Probable causes of
the abnormal ridge accompanying the 2013–2014 California drought: ENSO
precursor and anthropogenic warming footprint, Geophys. Res. Lett., 41,
3220–3226, 2014.
Wettstein, J. J. and L. O. Mearns: The influence of the North
Atlantic–Arctic Oscillation on mean, variance, and extremes of temperature
in the northeastern United States and Canada, J. Clim., 15, 3586–3600, 2002.
Yu, J-Y, Zou, Y., Kim, S. T., and Lee, T.: The changing impact of El Niño
on US winter temperatures, Geophys. Res. Lett., 39, L15702,
https://doi.org/10.1029/2012GL052483, 2012.
Yuan, J., Tan, B., Feldstein, S. B., and Lee, S.: Wintertime North Pacific
teleconnection patterns: Seasonal and interannual variability, J. Clim., 28,
8247–8263, 2015.
Short summary
Connections between Long Island Sound (LIS) water temperature variability and modes of tropical sea surface temperature (SST) variability have yet to be explored. It is shown that intense LIS cold-water temperature events are related to central equatorial Pacific SSTs. The decay phase of such events may be related to canonical El Niño events. Furthermore, a ridge–trough atmospheric pattern related to LIS water temperature variability fluctuates coherently with central equatorial Pacific SSTs.
Connections between Long Island Sound (LIS) water temperature variability and modes of tropical...