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Abstract. Possible mechanisms behind the longevity of in-
tense Long Island Sound (LIS) water temperature events are
examined using an event-based approach. By decomposing
an LIS surface water temperature time series into negative
and positive events, it is revealed that the most intense LIS
water temperature event in the 1979–2013 period occurred
around 2012, coinciding with the 2012 ocean heat wave
across the Mid-Atlantic Bight. The LIS events are related to
a ridge–trough dipole pattern whose strength and evolution
can be determined using a dipole index. The dipole index was
shown to be strongly correlated with LIS water temperature
anomalies, explaining close to 64 % of cool-season LIS water
temperature variability. Consistently, a major dipole pattern
event coincided with the intense 2012 LIS warm event. A
composite analysis revealed that long-lived intense LIS wa-
ter temperature events are associated with tropical sea surface
temperature (SST) patterns. The onset and mature phases of
LIS cold events were shown to coincide with central Pa-
cific El Niño events, whereas the termination of LIS cold
events was shown to possibly coincide with canonical El
Niño events or El Niño events that are a mixture of eastern
and central Pacific El Niño flavors. The mature phase of LIS
warm events was shown to be associated with negative SST
anomalies across the central equatorial Pacific, though the re-
sults were not found to be robust. The dipole pattern was also
shown to be related to tropical SST patterns, and fluctuations
in central Pacific SST anomalies were shown to evolve co-
herently with the dipole pattern and the strongly related East
Pacific–North Pacific pattern on decadal timescales. The re-
sults from this study have important implications for seasonal
and decadal prediction of the LIS thermal system.

1 Introduction

Fluctuations in sea surface temperature (SST) across coastal
portions of the United States (US) are driven by changes
in oceanic and atmospheric circulation patterns. Changes in
water temperature along the US west coast are related to
the Pacific Decadal Oscillation (PDO) and the North Pacific
Gyre Oscillation, as is well documented (Mantua et al., 1997;
Mantua and Hare, 2002; Di Lorenzo, 2008). For the US east
coast, water temperature fluctuations are related to changes
in the Gulf Stream position and variations in the Atlantic
Multidecadal Oscillation, PDO, and East Pacific–North Pa-
cific (EP–NP) pattern (Pershing et al., 2015; Schulte et
al., 2018). Superimposed on the water temperature changes
driven by natural modes of variability is background warm-
ing associated with anthropogenic climate change (Pershing
et al., 2015).

Although the mechanisms behind SST variability along
the US west coast are well documented, comparatively fewer
studies have focused on understanding SST variability across
the Mid-Atlantic Bight in the context of large-scale climate
modes. Two recent studies put water temperature variabil-
ity across the Gulf of Maine and the Long Island Sound
(LIS) in a climate-mode context. The first study by Persh-
ing et al. (2015) showed that the combination of Gulf Stream
and PDO influences led to the rapid warming of the Gulf of
Maine that resulted in the collapse of the cod fishery.

More recently, a second study by Schulte et al. (2018)
found the EP–NP pattern to be a dominant pattern govern-
ing LIS water temperature variability. The EP–NP pattern
was shown to be strongly correlated with LIS water tem-
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perature unlike the well-known North Atlantic Oscillation
(NAO; Hurrell, 1995), Pacific North American (PNA; Wal-
lace and Gutzler, 1981; Svoma, 2011), Arctic Oscillation
(AO; Thompson and Wallace, 1998), and West Pacific (WP;
Barston and Livezey, 1987; Linkin and Nigam, 2008) pat-
terns. In fact, Schulte and Lee (2017) found that the EP–
NP pattern is more strongly related to temperature variability
across the northeast US than the AO, which is often asso-
ciated with colder-than-normal conditions across the region
(Wettstein and Mearns, 2002). Those results suggest that the
EP–NP pattern is an important component to seasonal pre-
diction of air and water temperature across the LIS region.
Another important aspect of the EP–NP pattern is its strong
decadal variability, which could enable decadal prediction
of LIS water temperature. Schulte et al. (2018) termed the
decadal component of the EP–NP pattern the quasi-decadal
mode and showed that it fluctuates coherently with LIS water
temperature anomalies. The physical mechanism contribut-
ing to the EP–NP decadal variability was not identified, un-
derscoring the need for an additional study to identify a pos-
sible source of the EP–NP decadal variability. Understand-
ing the mechanisms behind the EP–NP decadal variability
has implications for seasonal and decadal prediction of LIS
water temperature.

Improving the current understanding of the climatic mech-
anisms governing LIS water temperature variability also has
important implications for managing fisheries. For example,
Howell and Auster (2012), using finfish abundance indices,
found shifts in spring community structures that are related to
water temperature. The LIS American lobster, which is sensi-
tive to water temperature, dramatically declined around 1997
(Pearce and Balcom, 2005), but managing the lobster har-
vests has failed to recover the lobster fishery. For the nearby
Rhode Island Sound, biological communities are related to
spring–summer water temperature (Collie et al., 2008), sug-
gesting that predicting spring–summer water temperature
could aid the setting of fish harvest quotas. These studies
underscore the need to better understand water temperature
variability across the LIS region so that changes in biologi-
cal communities can be better monitored and used to better
manage fish harvests.

Another reason that the LIS is important to study is that it
is in a region where air temperature and precipitation are not
strongly influenced by well-known climate modes such as the
NAO, AO, PNA, and WP that are extracted from the widely
used classical empirical orthogonal function (EOF) analysis
method (Barston and Livezey, 1987). Schulte et al. (2016)
found weak relationships between well-known climate in-
dices and the variability of precipitation and temperature
across the northeast US. As shown by Schulte et al. (2018),
LIS water temperature variability is strongly related to nei-
ther changes in the Gulf Stream position nor fluctuations
in the NAO despite being located adjacent to the Atlantic
Ocean. The weak Gulf Stream influence is likely the result
of the LIS being a semi-enclosed water basin, whereas the

general movement of weather systems from west to east may
reflect the weak NAO influences because the NAO’s centers
of action are located downstream of the LIS.

Recognizing that well-known climate indices are weakly
related to the salinity variability of northeast US estuar-
ies, Schulte et al. (2017a) adopted a continuum approach
(Franzke and Feldstein, 2005; Johnson and Feldstein, 2010;
Johnson et al., 2008) to teleconnection pattern extraction
and identified an eastern North American (ENA) sea level
dipole pattern that is more strongly correlated with stream-
flow than the PNA and NAO indices. In a subsequent study,
Schulte et al. (2017b) found the ENA pattern to be strongly
related to northeast US precipitation and LIS salinity. Those
results suggest that a continuum approach is better suited
for understanding climate variability and associated LIS wa-
ter temperature impacts than an EOF-based analysis. Al-
though Schulte et al. (2018) did show that the EOF-based
EP–NP pattern is strongly correlated with LIS water tem-
perature, the EP–NP pattern for December cannot be unam-
biguously extracted using the rotated principal component
analysis (RPCA) conducted by the Climate Prediction Center
(CPC). Furthermore, EOF analysis assumes atmospheric pat-
terns are orthogonal even though orthogonality does not hold
for the real atmosphere. This orthogonality assumption can
lead to the generation of unphysical modes (Tremblay, 2001).
In contrast, clustering methods such as self-organizing maps
(SOMs) that view the atmosphere as a continuum more accu-
rately produce patterns that are actually observed than EOF
analysis (Liu et al., 2006; Johnson et al., 2008; Yuan et al.,
2015).Therefore, an additional study is needed to construct
an atmospheric circulation index that is strongly related to
LIS water temperature variability, physically based, and un-
ambiguously defined for all months.

In this paper, we use an event-based approach to iden-
tify LIS water temperature relationships with atmospheric
and oceanic patterns. More specifically, the main objectives
of the study are the following: (1) identify the atmospheric
circulation patterns associated with LIS water temperature
events; (2) create a simple atmospheric index that is strongly
correlated with LIS water temperature; and (3) use the sim-
ple atmospheric index to better understand LIS water temper-
ature variability. Because tropical Pacific SST patterns are
often used in seasonal forecasting over North America, we
address the question as to whether there is an SST pattern
precursor to LIS temperature events.

2 Data

In this paper, SST fields from 1870 to 2013 are based on
the Hadley Centre Global Sea Ice and Sea Surface Tem-
perature (HadISST1) data set (Rayner et al., 2016). At-
mospheric fields were analyzed using 500 hPa geopotential
height and sea level pressure (SLP) fields based on the Na-
tional Oceanic Atmospheric Administration’s 20th century
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reanalysis (Compo et al., 2011) and the National Center for
Atmospheric Prediction (NCEP; Kalnay et al., 1996) reanal-
ysis. The 20th century reanalysis product was used because
the product extends back to 1851, whereas the NCEP reanal-
ysis product only extends back to 1948. Mean monthly air
temperature data from 1979 to 2013 were based on the ob-
served US climate divisional data set (Guttman and Quayle,
1996). The data set comprises average monthly temperature
data for 344 climate regions (Fig. 1a) that partition the US
into homogeneous climate zones. The annual cycles were re-
moved from the data by subtracting the mean monthly values
for each month from the monthly values of the corresponding
month for each grid point or climate division.

LIS surface water temperature data used in this study were
generated from the New York Harbor Observing Prediction
System (NYOPS; Georgas et al., 2016). Model-generated
data were preferred to observational data because observa-
tions are temporally sparse and continuous data are needed
for the methods adopted in this study. The NYHOPS model
is a three-dimensional hydrodynamic model with 11 verti-
cal levels. Following Schulte et al. (2018), water temperature
computed on the first vertical level was considered surface
water temperature. The LIS is a well-mixed estuary, so the
choice of vertical level is not critical to the results presented
in this study. To obtain a single time series representing LIS
surface water temperature (for brevity, referred to as LIS tem-
perature hereafter), water temperature was averaged over the
gray-shaded region shown in Fig. 1b. The annual cycle in
the resulting LIS temperature time series was removed using
1979–2013 monthly means.

The LIS temperature time series and the SST fields were
detrended to remove the long-term trend. The time series
were detrended by fitting a least-squares fit of a line to the
time series and subtracting the line from the time series. To
check the sensitivity of results to detrending, the analyses
were conducted using both the detrended and non-detrended
data. Results for the detrended analysis are shown unless oth-
erwise specified. The reason for showing the detrended re-
sults is that the study is focused on interannual variability
rather than long-term trends.

Indices for the NAO, AO, EP–NP, PNA, and the WP were
obtained from the CPC and were based on the 1979–2013
period. The NAO, WP, PNA, and EP–NP indices obtained
from the CPC were calculated from an RPCA of 500 hPa
geopotential height anomalies poleward of 20◦ N. The AO
index was calculated from an RPCA of 1000 hPa geopoten-
tial height anomalies. Data for the 1950–2013 period were
also used for the EP–NP index.

The Niño 3 and Niño 4 indices from 1870 to 2013
(available at https://www.esrl.noaa.gov/psd/gcos_wgsp/
Timeseries/, last access: 15 November 2018) were used to
measure the strength and evolution of the El-Niño–Southern
Oscillation (ENSO). Whereas the Niño 3 index better
describes the evolution of canonical ENSO, the Niño 4 index
better describes the evolution of central Pacific ENSO events

(Kao and Yu, 2009; Lee and McPhaden, 2010) Thus, using
these two indices, we accounted for two different flavors of
ENSO. The annual cycles from these ENSO metrics were
removed using the long-term (1870–2013) monthly means.

3 Methods

3.1 Event decomposition

To better understand the characteristics of climate time se-
ries, time series were decomposed into negative and positive
events. More specifically, let a time series X be a sequence
of N data points x1, x2, . . . ,xN at the time points t1, t2, . . . ,
tN , with the data points assumed to be equally spaced. Data
points were based on monthly anomalies so that they were
both positively and negatively valued. Thus, a complete se-
quence x1, x2, . . . , xN was partitioned into subsequences
comprising adjacent data points whose values are of simi-
lar sign. Such subsequences were termed positive or negative
events depending on the values of the data points.

The onset and decay of events were defined as follows.
A negative event Eneg was said to begin at tj if xj < 0 and
xj−1 > 0. A negative event beginning at tj was said to termi-
nate at tk ≥ tj if xk < 0, xk+1 > 0, and xi < 0 for all i such
that j ≤ i ≤ k. A similar definition was used to define posi-
tive events, but the sign conventions were reversed. The time
point tj was termed the onset phase and the time point tk
was termed the decay phase. The peak intensity of a negative
(positive) event was deemed the minimum (maximum) value
obtained by a data point within the event period

[
tj tk

]
. If the

peak intensity of an event occurred at tp, then tp was termed
the mature phase.

Given this definition of an event, an event occurring over
the time period

[
tj tk

]
contained M = tk− tj +1 data points,

with the integer M regarded as the persistence of the event.
The cumulative intensity (referred to as the intensity here-
after) of an event E was defined as

I =

M∑
i=1

yi, (1)

where yi is a data point composing the event E. The absolute
value of intensity was deemed the magnitude of an event.
The duration and intensity of events were depicted using an
event spectrum. The event spectrum was comprised of line
segments beginning at the onset phases and ending at the ter-
mination phases of the events. That is, for each event, a line
segment was drawn from the point

(
tj ,I

)
to the point (tk,I )

so that the length of the line segment represented the event
duration.

There are several advantages to using the event decompo-
sition approach. The first advantage is that the autocorrela-
tion of the data is accounted for by grouping the data into
events. The second advantage is that the persistence of indi-
vidual events can be readily defined, whereas the lag-1 au-
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Figure 1. (a) The 344 US climate divisions and (b) the LIS study region. Gray shading delineates the region used to calculate the LIS surface
water temperature time series.

tocorrelation coefficient measure of persistence needs to be
calculated using a data interval so that the lag-1 autocorrela-
tion coefficient may not reflect the persistence of an individ-
ual event. A third advantage is that potential nonlinearities
are accounted for by analyzing negative and positive events
separately.

3.2 Wavelet analysis

To extract time-frequency information from a time series X,
a wavelet analysis (Torrence and Compo, 1998) was imple-
mented. The wavelet transform of X is given by

WX
n (s)=

√
2δt
s

N∑
n′=1

xn′ψ
∗

[(
n′− n

)
δt

s

]
, (2)

where ψ is the Morlet wavelet given by

ψ (η)= π−1/4eiω0ηe−
1
2 η

2
, (3)

where ω0 = 6 is the dimensionless frequency, t is time, s is
wavelet scale, δt is a time step (1 month in this study), η =
s ·t , and the asterisk denotes the complex conjugate (Torrence
and Compo, 1998).

To quantify the relationships between climate modes and
water temperature as a function of frequency and time, a
wavelet coherence analysis was conducted. Following Grin-
sted et al. (2004), the (local) wavelet squared coherence be-
tween two time series X and Y is given by

R2
n(s)=

∣∣S (s−1WXY
n (s)

)∣∣2
S
(
s−1

∣∣WX
n (s)

∣∣2) · S (s−1
∣∣WY

n (s)
∣∣2) , (4)

where WXY
n (s) is the cross-wavelet transform defined as the

product of the wavelet transform of X and the complex con-
jugate of the wavelet transform of Y . In Eq. (4), S is a
smoothing operator that smooths coherence in time and in

wavelet scale (Grinsted et al., 2004). Using Monte Carlo
methods, the statistical significance of wavelet squared co-
herence was assessed by generating 10 000 pairs of surrogate
red-noise time series with the same lag-1 autocorrelation co-
efficients as the input time series and computing the wavelet
squared coherence between each pair (Grinsted et al., 2004).

To reduce the number of false positive results arising from
the simultaneous testing of multiple hypotheses (Maraun and
Kurths, 2004; Maraun et al., 2007; Schulte et al., 2015;
Schulte, 2016), the cumulative area-wise test developed by
Schulte (2016) was applied. The test tracked how the ar-
eas of contiguous regions of point-wise significance (signif-
icance patches) changed as the point-wise significance level
was altered. The test was applied by computing the normal-
ized areas of point-wise significance patches over a discrete
set of point-wise significance levels. The normalized area of
a patch was defined as the patch area divided by the square of
its centroid’s scale coordinate (Schulte et al., 2015; Schulte,
2016). In this study, the normalized areas were computed us-
ing point-wise significance levels ranging from α = 0.02 to
α = 0.18. The spacing between adjacent point-wise signifi-
cance levels was set to 0.02.

The strength of coherence was also measured using global
coherence (Schulte et al., 2016), the time-averaged represen-
tation of local wavelet squared coherence. Global coherence
is given by

GC (s)=

∣∣WXY (s)
∣∣2(

N∑
n=1

∣∣WX
n (s)

∣∣2)( N∑
n=1

∣∣WY
n (s)

∣∣2) , (5)

where

WXY (s)=

N∑
n=1

WX
n (s)W

Y∗
n (s). (6)
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Figure 2. (a) The LIS surface temperature anomaly time series
and (b) the corresponding event spectrum. Central Pacific El Niño
events are indicated by CP and eastern Pacific El Niño events are in-
dicated by EP. Blue curves represent the five most intense negative
LIS temperature events, while red curves represent the five most
intense positive LIS temperature events. The length of the line
segments in (b) represents the persistence of the LIS temperature
events. The vertical axis corresponds to the intensity of the event.

(Schulte et al., 2016). The statistical point-wise significance
of GC (s) was computed using Monte Carlo methods in a
similar manner to local wavelet squared coherence.

A lower-dimensional version of the cumulative area-wise
test was applied to the global coherence spectra to reduce the
number of false positive results (Schulte et al., 2018). The
test assessed the statistical significance of one-dimensional
arcs using arc length, which is an integrated metric account-
ing for the width of the peak in wavelet scale (frequency)
and the extent to which the peak is above the critical level
of the point-wise test. To track how the arc length of a given
point-wise significance peak changed as the point-wise sig-
nificance level was altered, the arc length of the point-wise
significance peak was computed at point-wise significance
levels ranging from 0.02 to 0.18. The test statistic in this case
is cumulative arc length. Normalized arc lengths were used
to account for how peaks widen with wavelet scale. This nor-
malization was achieved by computing the logarithm (base 2)
of the wavelet scales. To further normalize, global coherence
values at each wavelet scale were divided by the critical level
of the test associated with the point-wise significance level
0.02 at each wavelet scale. The null distribution for the cu-
mulative arc-wise test was obtained by generating surrogate
red-noise time series in the same manner as the cumulative
area-wise test. For reference, we also plotted the traditional
5 % point-wise significance bounds on all global spectra plots
in this study. The reader is referred to Schulte et al. (2018) for
more details regarding the cumulative arc-wise test.

Table 1. A total of 10 LIS detrended temperature events ranked by
the magnitude of their intensities.

Intensity Persistence Peak Onset Decay
(◦C) (months)

20 13 Mar 2012 Oct 2011 Oct 2012
−13 14 Jan 1982 Aug 1981 Sep 1982

13 15 May 1991 Dec1990 Feb 1992
−13 12 Feb 2003 Nov 2002 Oct 2003
−12 14 Jan 1996 Nov 1995 Dec 1996

11 6 Dec 2001 Nov 2001 Apr 2002
10 7 Jan 1983 Oct 1982 Apr 1983
9 14 Feb 1998 Dec 1998 Jan 2000
−8 8 Jan 2011 Sep 2010 Apr 2011
−8 5 Jan 1981 Nov 1980 Mar 1981

4 Results

4.1 LIS temperature time series

The time series of detrended LIS temperature anomalies is
shown in Fig. 2a. Some notable features are the cool periods
around 1982, 1996, and 2003 (thick blue lines) and the warm
events around 1991, 2001, and 2012. The 1982 cool period is
rather intense, with LIS temperature anomalies approaching
−2 ◦C. In contrast, the 2012 event is associated with a max-
imum temperature anomaly of approximately 3 ◦C, making
this water temperature anomaly the largest in the 1979–2013
period.

Unlike the simple time series shown in Fig. 2a, the event
spectrum shown in Fig. 2b clearly distinguishes the intense
LIS events from the weak short-lived events. For example,
both the cool period around 1982 and the warm episode
around 2012 emerge as the most intense cool and warm
events in the 1979–2013 period. The 1996, 2003, and 2011
cold events are nearly as intense as the 1982 event (Table 1).
It is interesting to note that the most intense negative events
shown in Table 1 peak in winter (December–February). This
tendency for negative events to peak in winter was confirmed
by computing the number of times a negative event peaked
in a given month for a larger set of events (32 events) whose
intensities fall below the median of all negative event inten-
sities. A similar but weaker tendency was found for positive
events, with a majority of the most intense (greater than 50th
percentile) positive events peaking in January and February.

The event spectrum also allows for the clear comparison
of event persistence. An inspection of Fig. 2b shows that the
intense events are generally more persistent than less intense
events. In fact, Table 1 shows that all the most intense events
have persistence of at least 5 months, exceeding the average
persistence of 3 months calculated using all events. Negative
and positive events were found to have similar average per-
sistence. Given that the average persistence is 3 months, the
1982, 1991, 1996, 2003, and 2012 LIS temperature events
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are unusually persistent compared to other events in the study
period. Moreover, not only is the 2012 event among the most
persistent, but also its magnitude far exceeds that of any other
event even with the removal of the long-term trend. This
result suggests that atmospheric variability may have con-
tributed strongly to that event.

4.2 LIS events and atmospheric patterns

To diagnose a possible mechanism behind the occurrence
of the intense LIS events, the correlation between 500 hPa
geopotential height anomalies and detrended LIS tempera-
ture anomalies was computed. We used this one-point cor-
relation approach to extract a relevant teleconnection pattern
from a continuum of patterns, much like how the PNA pat-
tern was originally derived (Wallace and Gutzler, 1981). For
this analysis, we focused on the December–February (DJF)
season because atmospheric circulation anomalies are gener-
ally most pronounced during the DJF season and because the
peak of events tends to occur in the winter.

Shown in Fig. 3a is the correlation between DJF LIS tem-
perature anomalies and 500 hPa geopotential height anoma-
lies. The positive correlation between LIS temperature
anomalies and 500 hPa geopotential height anomalies over
the eastern US suggests that warmer-than-normal LIS tem-
perature conditions are associated with a jet stream ridge,
which is consistent with how jet stream configurations can
influence the temperature in the coastal ocean off the north-
eastern US (Chen et al., 2014). Similarly, the negative cor-
relations with 500 hPa geopotential height anomalies across
Alaska indicate that LIS warm events are associated with an
anomalous trough over Alaska. Thus, it appears that LIS tem-
perature events are related to a ridge–trough dipole pattern,
an anomalously amplified wave pattern across the US.

For comparison, the 500 hPa geopotential height anomaly
field for the March 2012 event is shown in Fig. 4a. Nega-
tive 500 hPa geopotential height anomalies are seen across
Alaska, and positive 500 hPa geopotential height anomalies
are seen across the eastern US and across the central North
Pacific. This 500 hPa geopotential height anomaly configura-
tion is consistent with the results presented in Fig. 3a, sug-
gesting that the ridge–trough dipole pattern was an important
contributor to the March 2012 LIS temperature event.

A physical mechanism behind the ridge–trough dipole–
LIS temperature association was diagnosed by examining the
relationship between DJF SLP anomalies and LIS tempera-
ture anomalies. As shown in Fig. 3b, DJF LIS temperature
anomalies are negatively correlated with DJF SLP anoma-
lies across northwestern Canada. Thus, positive LIS tem-
perature anomalies are associated with anomalous cyclonic
flow, whereas negative LIS temperature anomalies are asso-
ciated with anomalous anticyclonic flow. These relationships
are physically consistent with findings from previous works
showing how upstream (relative to the LIS) surface anticy-
clones play a crucial role in the occurrence of cold tempera-

ture extremes across the northeast US (Konrad, 1996, 1998).
Such surface anticyclones have been shown to be dynami-
cally supported by a ridge–trough wave pattern in the mid-
dle troposphere (Konrad, 1998; Jones and Cohen, 2011), in
agreement with the results shown in Fig. 3a. At the surface,
the anticyclone results in cold advection from a high-latitude
source region into the LIS region (Fig. 5a). Cyclones are also
typically present along the east coast of the US during cold
temperature events (Konrad, 1998), which could explain the
positive correlation between LIS temperature anomalies and
SLP anomalies along the east coast of the US. Features as-
sociated with positive LIS temperature anomalies are oppo-
site to those found for negative LIS temperature anomalies
(Fig. 5b).

As a specific example, consider the SLP anomaly pattern
for March 2012 (Fig. 4b). Negative SLP anomalies are seen
to extend from western Alaska to central Canada, indicative
of anomalously strong cyclonic flow and warm air advec-
tion across the eastern US. The locations of the negative SLP
anomalies generally coincide where SLP anomalies are cor-
related with LIS temperature anomalies (Fig. 3b), again sug-
gesting that the ridge–trough pattern played an important role
in the March 2012 LIS temperature event.

To better understand LIS water temperature variability, a
ridge–trough dipole index was created based on the pattern
identified in Fig. 3a. The dipole index was constructed by
first locating the grid point for which the correlation between
LIS temperature and 500 hPa geopotential height anomalies
is minimum. This grid point is located at 70◦ N and 157.5◦W
and is marked by a cyan cross in Fig. 3a. Next, the grid
point for which the correlation between LIS temperature and
500 hPa geopotential height anomalies is maximum was lo-
cated. This grid point is located at 42.5◦ N and 75◦W and is
marked with a magenta cross in Fig. 3a. Following Wang
et al. (2014), the dipole index for a given month was de-
fined as the 500 hPa geopotential height anomaly at 42.5◦ N
and 75◦W minus the 500 hPa geopotential height anomaly
at 70◦ N and 157.5◦W. Thus, the dipole index measures the
intensity of the ridge–trough dipole pattern such that positive
phases generally indicate that an anomalously strong ridge
over the eastern US is accompanied by an anomalous trough
over Alaska. Correlating the dipole index with SLP anoma-
lies (not shown) reveals that negative (positive) phases of
the dipole pattern are associated with positive (negative) SLP
anomalies across northwestern Canada and cold (warm) air
advection to the east of the anomaly center (Fig. 5).

The time series for the 3-month running mean of the dipole
index is shown in Fig. 6. The time series is rather noisy, but
notable features can still be identified. The dipole pattern,
as indicated by positive dipole indices, is seen to be in a
persistent positive phase around the 2012 LIS warm event.
The positive dipole event around 2012 is quite intense but
not as intense as the 1882 positive dipole event that persists
for 11 months (Table 2). The most intense negative dipole
event occurs around 1977. A comparison of Tables 1 and 2

Ocean Sci., 15, 161–178, 2019 www.ocean-sci.net/15/161/2019/



J. A. Schulte and S. Lee: Long Island Sound temperature variability 167

Figure 3. Correlation between LIS temperature anomalies and anomalies for (a) DJF 500 hPa geopotential height, (b) SLP, and (c) SST.
Contours enclose regions of 5 % statistical significance. Crosses in (a) mark the grid point locations used to construct the dipole index.

Table 2. A total of 10 dipole events in the 1851–2013 period ranked
by the magnitude of their intensities. Results are based on the raw
monthly dipole index time series.

Intensity Persistence Peak Onset Decay
(m) (months)

847 11 Feb 1882 May 1881 Mar 1882
844 9 Jan 1880 Oct 1879 Jun 1880
805 9 Mar 2012 Jul 2011 Mar 2012
−687 8 Jan 1977 Jul 1976 Feb 1977
−666 9 Jan 2003 Oct 2002 Jun 2003
−638 6 Jan 1978 Dec 1977 May 1978
−616 7 Sep 1876 Jul 1876 Jan 1877
−604 12 Aug 1927 May 1927 Apr 1928

580 6 Jan 1863 Dec 1862 May 1863
572 9 Dec 1889 Nov 1889 Jul 1890

shows that the second most intense negative dipole event cal-
culated using the raw monthly dipole index time series co-
incides with the second most intense LIS cold event that oc-
curred around 2003 (Table 1).

Although a comparison of Tables 1 and 2 shows that the
2012 LIS warm event coincides with the third most intense
positive dipole event, the relationship strength between LIS
temperature anomalies and the dipole pattern cannot be in-
ferred. How strongly related is the dipole index to LIS water
temperature anomalies? To assess the strength of the dipole
index relationship with LIS water temperature anomalies,
seasonally averaged detrended LIS temperature anomalies
were correlated with the seasonally averaged dipole index.
As shown in Fig. 7, the dipole index is strongly correlated
with LIS temperature anomalies for the October–December
(OND), November–January (NDJ), DJF, and January–March
(JFM) seasons. The relationships are generally stronger if the
dipole index leads by 1 month, as indicated by the dotted
line in Fig. 7. The lagged correlation coefficients approach
0.8 for the DJF season, suggesting that DJF LIS temperature
anomalies are strongly influenced by the dipole pattern in
the NDJ season. Lagged correlations are also strong (r>0.6)
for the OND, NDJ, and JFM seasons. The relationships are
generally weaker in the warm seasons, possibly because tele-
connection patterns are generally of the weakest amplitude
in the warm season. Another reason is that LIS temperature
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Figure 4. Anomalies for (a) 500 hPa geopotential height, (b) SLP, and (c) SST corresponding to the March 2012 LIS temperature event.

anomalies in the winter can persist into the summer (Schulte
et al., 2018), weakening the simultaneous relationships be-
tween LIS temperature anomalies and the dipole pattern for
non-winter seasons. However, the weaker relationships be-
tween air temperature and the dipole index in the summer
(not shown) likely contribute to the seasonal cycle in rela-
tionship strength shown in Fig. 7.

The relationship strength found between the dipole in-
dex and LIS temperature anomalies is consistent with results
found in prior work because the dipole index is strongly cor-
related with the EP–NP index for most months (Table 3)
and because the EP–NP index is strongly correlated with
LIS temperature anomalies (Schulte et al., 2018). However,
Schulte et al. (2018) used an ad hoc approach to construct
the December EP–NP index using linear regression. Thus,
one may ask the following: is the EP–NP pattern a winter-
time pattern? To answer the question, it is first noted that
the relationship strength between the EP–NP and dipole in-
dices increases nearly monotonically from August to Novem-
ber, decreases almost monotonically from January to August,

and peaks in January. With a such clear seasonal cycle, it is
natural to infer that the December dipole pattern is largely
the December EP–NP pattern despite how the CPC sug-
gests that the EP–NP pattern is inactive in winter. Because
the 500 hPa geopotential height anomaly structure associated
with the dipole pattern is the same from November to March
(not shown), one can deduce that the December ridge–trough
pattern is largely the December EP–NP pattern given the
strong relationship between EP–NP and dipole indices dur-
ing those months. More specifically, we compared the De-
cember dipole pattern to the January dipole pattern (Fig. 8)
and found them to be similar in terms of 500 hPa geopoten-
tial height anomalies. Thus, because the January dipole and
EP–NP indices are strongly correlated, the December dipole
pattern must also be EP–NP-like. The strong relationships
(r>0.8) between air temperature and the dipole pattern in
winter suggest that the dipole pattern (or EP–NP pattern) is
particularly active in the winter. It also has a strong physical
basis because negative phases are associated with 500 hPa
western North America and Arctic ridging and eastern US
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Table 3. Correlation between the dipole index and indices for five major climate modes of variability for the 1979–2013 period. Bold entries
indicate 5 % statistically significant correlation coefficients.

J F M A M J J A S O N D

EPNP 0.74 0.67 0.67 0.66 0.56 0.52 0.47 0.26 0.43 0.66 0.66 –
WP −0.28 −0.34 −0.19 −0.37 0.21 0.34 0.42 0.33 0.00 −0.31 −0.6 −0.56
PNA 0.29 0.0 0.0 0.0 0.35 0.12 0.12 0.46 0.43 0.30 0.15 0.0
AO −0.6 −0.18 −0.49 −0.21 −0.52 −0.40 −0.45 −0.40 −0.37 −0.65 −0.58 −0.62
NAO −0.59 −0.15 −0.53 −0.13 −0.50 −0.40 −0.18 −0.13 −0.1 −0.55 −0.46 −0.59

Figure 5. (a) Idealized schematic of atmospheric features occur-
ring during negative LIS temperature events and negative phases of
the dipole pattern. (b) Same as (a) but for positive LIS temperature
events and positive phases of the dipole pattern. Thick blue curves
represent the idealized jet stream configuration, while the blue (red)
arrow indicates the general movement of cold (warm) air masses.
High pressure is indicated with an H and low pressure is indicated
with an L.

500 hPa troughing (Fig. 8), all features associated with east-
ern US cold temperature events (Konrad, 1998). Although
Schulte et al. (2018) used the EP–NP index to diagnose his-
torical LIS temperature variability, our dipole index is de-
fined in all months and is easy to calculate, making it more
practical in an operational forecasting setting.

While the December dipole index is well correlated with
December indices for the AO, NAO, and WP, a close ex-
amination of the 500 hPa geopotential height anomaly fields
(not shown) associated with those patterns reveals that those
patterns are quite different from the dipole pattern found in
this study. For example, the NAO and AO indices are cor-
related with 500 hPa geopotential height around the dipole

pattern’s eastern center of action (magenta cross in Fig. 3a)
but are practically uncorrelated with 500 hPa geopotential
height anomalies around the western center of action. The
NAO and AO are also much more strongly correlated with
500 hPa geopotential height anomalies across the North At-
lantic than the dipole pattern. The WP index is only weakly
correlated with 500 hPa geopotential height around both the
dipole patterns’ centers of actions and much more strongly
correlated with 500 hPa geopotential height anomalies across
the western North Pacific Ocean. Our results suggest that the
reason why the wintertime AO, NAO, and WP patterns are
not strongly related with wintertime LIS temperature anoma-
lies as shown by Schulte et al. (2018) is that these patterns are
not related to northern Alaskan jet stream ridging, which is
important to LIS temperature variability (Fig. 3a).

The fact that the dipole index is correlated with multiple
large-scale indices (Table 3) suggests that the dipole pattern
falls on a continuum of teleconnection patterns (Franzke and
Feldstein, 2005) such that the dipole pattern is strongly EP–
NP-like. Although we found by conducting our own EOF
analysis of 500 hPa geopotential height anomalies that the
AO pattern is the leading mode of variability, the EP–NP
pattern appears to be consistently the fifth to seventh lead-
ing mode of variability (Table 4). Thus, although the EP–NP
pattern is not as dominant as the AO pattern, the dipole pat-
tern tends to more closely resemble it than the AO pattern.
Furthermore, the continuum-based extraction of a dipole pat-
tern with a strong relationship to LIS temperature anomalies
supports the idea that the continuum approach is useful for
understanding climate variability across the northeast US, a
finding like that described in previous work focusing on pre-
cipitation in the northeast US (Schulte et al. 2017a, b). In par-
ticular, our results show that the one-point correlation map
approach used by Wallace and Gutzler (1981) is a powerful
but simple tool for understanding regional climate variability.

Given that LIS water temperature is strongly correlated
with air temperature (Schulte et al., 2018), it is hypothesized
that the dipole index is related to air temperature across the
US, especially around the LIS. To confirm a dipole index–
air temperature relationship, the dipole index was corre-
lated with average monthly air temperature anomalies for the
1979–2013 period (Fig. 9). The results for the NDJ season
are only displayed because the strongest correlation found in
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Figure 6. The 3-month running mean of the dipole index.

Figure 7. Lagged and simultaneous correlations between seasonally averaged LIS water temperature anomalies and the seasonally averaged
dipole index. The dotted line represents the correlation between the dipole index of the prior season (dipole leads by 1 month) and water
temperature anomalies for the season specified on the horizonal axis.

Fig. 7 is between the NDJ dipole index and DJF LIS water
temperature anomalies.

As shown in Fig. 9, the dipole index is indeed strongly cor-
related with air temperature anomalies across a large region
of the US. Correlation coefficients exceed 0.8 and approach
0.9 across the northeast US and LIS region. The strong re-
lationships extend to the southern US, and the relationships
generally weaken equatorward. The relationships displayed
in Fig. 9 are generally stronger than those associated with
the AO and NAO (not shown) whose influence on eastern
US temperature has been well studied (Hurrell and van Loon,
1997; Wettstein and Mearns, 2002). Thus, our dipole index
is useful for diagnostic studies of cold outbreaks across the
eastern US. The results for the other seasons are similar, but
the relationships for seasons not comprising November, De-
cember, January, or February (e.g., June–August) are gener-
ally weaker than those identified for the NDJ season. This re-
sult suggests that the dipole pattern is rather dominant in the
winter. The strong relationship between the dipole index and
US air temperature anomalies is consistent with the intense
2012 dipole event coinciding with the record warm March

in 2012 (Dole et al., 2014), which resulted in a so-called false
spring in which plants bloomed prematurely, making them
susceptible to drought and freezes (Ault, 2013). The results
shown in Fig. 9 suggest that the dipole pattern’s impact on
LIS temperature is related to the dipole pattern’s influence
on air temperature.

4.3 Intense LIS events and SST patterns

SST patterns are often used in seasonal forecasting, and
thus identifying an SST pattern precursor to LIS tempera-
ture events has implications for seasonal prediction of LIS
temperature anomalies. To identify SST patterns associated
with LIS temperature events, a lagged SST composite analy-
sis was conducted using detrended LIS warm and cool events
separately. The SST composite plots for the warm events
were constructed using the LIS warm events whose inten-
sities are greater than or equal to the 50th percentile of all
warm event intensities (32 events). Similarly, the SST com-
posite plots for the cold events were constructed using LIS
cold events whose intensities are less than or equal to the
50th percentile of all LIS cold event intensities (32 events).
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Figure 8. Correlation between 500 hPa geopotential height anomalies and indices for the (a) December dipole, (b) January dipole, and
(c) January EP–NP patterns. Contours enclose regions of 5 % statistical significance.

Table 4. The mode number of the EOF pattern that most closely resembles the EP–NP pattern, the explained variance associated with the
EOF pattern, and the correlation coefficient, r , computed between the corresponding principal component time series and the EP–NP index.
The EOF pattern that most closely resembles the EP–NP pattern was determined by finding the EOF pattern whose principal component time
series is most strongly correlated with the EP–NP index. The results are based on NCEP reanalysis for the 1979–2013 period.

Quantity J F M A M J J A S O N D

r 0.66 0.66 0.61 0.62 0.67 0.44 0.51 0.60 0.63 0.69 0.61 –
Variance (%) 14.4 5.5 3.2 5.0 7.0 1.9 4.3 5.2 4.7 6.0 4.4 –
EOF number 2.0 6.0 7.0 6.0 4.0 11.0 5.0 5.0 6.0 5.0 7.0 –

The composite mean SST patterns were computed at the on-
set, mature, and decay phases of the LIS events. Because in-
tense LIS events tend to peak in winter, the composite plots
for mature phases mainly reflect wintertime conditions.

The results for the LIS cold events are shown in Fig. 10.
The composite plot shown in Fig. 10a indicates that the onset
of LIS cold events is associated with positive SST anomalies
across the central equatorial Pacific. The results suggest that
LIS cold events could be initiated by central Pacific El Niño
events (Lee and McPhaden, 2010). A few examples of cen-
tral Pacific El Niño events (based on the December–March
season) are the 1991–1992, 1994–1995, 2002–2003, 2004–

2005, and 2009–2010 events (Table 5), but a more complete
list can be found in Johnson and Kosaka (2016). The 2002–
2003, 2004–2005, and 2009–2010 events all appear to occur
around LIS cold periods (Fig. 2a). Note that there could be
lags between the onset of central Pacific El Niños and LIS
temperature anomalies because of the lagged response of wa-
ter temperature to atmospheric forcing (Schulte et al., 2018).
In addition, preexisting positive water temperature anomalies
may need time to degrade.

The SST anomaly pattern for the mature phases of LIS
cold events features positive SST anomalies across the cen-
tral equatorial Pacific (Fig. 10b). However, the mature-phase
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Figure 9. Correlation between the NDJ dipole index and NDJ tem-
perature anomalies. Shaded climate divisions are those for which
the corresponding correlation coefficients are statistically signifi-
cant at the 5 % significance level.

Table 5. El Niño events partitioned into central (CP) and eastern
(EP) Pacific types based on the categorization method of Yu et
al. (2012). El Niño events are defined based on the DJFM season.
The third column provides the corresponding DJFM LIS tempera-
ture anomaly. A more complete table of El Niño events can be found
in Johnson and Kosoka (2016).

El Niño years Event LIS temperature
type anomaly (◦C)

1982–1983 EP 1.9
1986–1987 EP 0.2
1987–1988 CP −0.2
1991–1992 CP 0.3
1994–1995 CP 0.7
1997–1998 EP 0.9
2002–2003 CP −1.5
2004–2005 CP −0.4
2006–2007 EP 0.7
2009–2010 CP −0.6

composite mean SST anomaly pattern is more pronounced
across the North Pacific Ocean than it is for the onset phase.
A region of positive SST anomalies is seen to be horseshoe-
shaped, with positive SST anomalies extending from the cen-
tral equatorial Pacific to the US west coast. Although Hart-
mann (2015) found an SST pattern resembling that shown in
Fig. 9b to be a contributor to the February 2015 eastern US
cold event, only a single event was considered. In this study,
we show that the pattern is associated with numerous LIS
negative temperature events (and thus eastern US air temper-
ature events), many of which persist for more than 5 months.
Thus, we show here that the SST pattern influences both the
intensity and persistence of events. It is noted that the pattern
shown in Fig. 10b resembles the DJF SST pattern of 1996,
which is consistent with 1996 being a cooler-than-normal pe-

riod for much of the US (Halpert and Bell, 1997) and the LIS
(Table 1).

Unlike the composite mean SST pattern corresponding to
the onset phase, negative SST anomalies are present along
the US east coast and across the Gulf of Mexico during ma-
ture phases. These results are consistent with LIS tempera-
ture anomalies being strongly associated with the dipole pat-
tern that influences air temperature across regions adjacent to
the Gulf of Mexico and US east coast. This relationship be-
tween the dipole index and SST anomalies was confirmed by
correlating the dipole index with SST anomalies for different
seasons (not shown).

The tropical SST pattern associated with the decay phase
of LIS cold events is different from those associated with
the onset and mature phases (Fig. 10c). The composite mean
SST anomaly pattern most closely resembles the first lead-
ing mode of SST variability called the canonical ENSO pat-
tern (Hartmann, 2015), though the most intense positive SST
anomalies are still confined to the central equatorial Pacific.
This result suggests that there may be a tendency for the de-
cay of LIS cold events to coincide with canonical ENSO pat-
terns or an SST pattern that is a mixture of central and eastern
Pacific El Niño flavors lying on a continuum of ENSO flavors
(Johnson, 2013).

The tendency for the decay of LIS cold events to coincide
with canonical ENSO patterns is more evident when con-
structing SST composites using the 10th percentile (Fig. 11)
instead of the 50th percentile used to construct the composite
shown in Fig. 10. However, possibly because of small sam-
ple sizes (seven events), the results generally lack statisti-
cal significance. Nonetheless, the event spectrum depicted in
Fig. 2b indicates that the major cool periods around 1982 and
1997, for example, terminate around the major 1982–1983
(Ramusson and Wallace, 1983; Quiroz, 1983) and 1997–
1998 (McPhaden, 1999) El Niño events. Although Schulte
et al. (2018) showed that LIS temperature anomalies are as-
sociated with a single SST pattern, we show in this study
that predicting the evolution of LIS temperature events may
require knowledge of several ENSO flavors.

The SST pattern across the Atlantic Ocean shown in
Fig. 11 resembles a well-documented North Atlantic tripole
mode (Deser and Blackmon, 1993; Fan and Schneider,
2011), which comprises three anomaly centers, one located
off the southeastern US coast, a second one located east of
Newfoundland, and a third one located in the tropical east
Atlantic. This tripolar SST mode has been shown to be re-
lated to ENSO, the NAO, and local wind forcing (Fan and
Schneider, 2011). The association between the tripole pattern
and the LIS water temperature could reflect weak influences
of the NAO on LIS water temperature. This interpretation is
consistent with the NAO and dipole patterns being related in
the winter (Table 3). However, these Atlantic SST anomalies
generally lack statistical significance, and this finding is con-
sistent with the LIS water temperature anomalies being only
weakly related to the NAO.
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Figure 10. Composite mean SST anomalies corresponding to (a) onset, (b) mature, and (c) decay phases of negative LIS temperature events.
Contours enclose regions of 5 % statistical significance, as determined by a one sample t test.

Figure 11. Same as Fig. 10 but using the criterion that the intensities of the negative LIS temperature events fall below the 10th percentile of
negative LIS temperature event intensities.

The composite analysis was also conducted for LIS warm
events, and the results revealed that LIS warm events are also
associated with SST modes of variability (Fig. 12). The on-
set of LIS warm events appears not to be associated with any
coherent SST pattern. For the mature phase, statistically sig-
nificant negative SST anomalies are seen across the central
equatorial Pacific and positive SST anomalies are seen across
the eastern equatorial Pacific. Like the SST anomaly pattern
associated with mature phases of LIS cold events (Figs. 10b
and 11b), the pattern shown in Fig. 12b generally resembles
the third leading mode of SST variability (Hartman, 2015).
The SST pattern corresponds well to the SST anomaly pat-

tern associated with March 2012 (Fig. 4c), a month in which
record warmth was experienced across the central and east-
ern US (Dole et al., 2014). Mature phases are also associ-
ated with positive SST anomalies along the US east coast and
across the Gulf of Mexico like March 2012 (Fig. 4c). Decay
phases (Fig. 12c) appear to be associated with negative SST
anomalies across the eastern and central equatorial Pacific,
but the results were not found to be statistically significant.

The warm LIS events were found to be sensitive to the
threshold used to construct the composites. For example,
if we only considered the LIS warm events whose intensi-
ties were greater than or equal to the 90th percentile of LIS
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Figure 12. Same as Fig. 10 but for positive LIS temperature events.

warm event intensities, then all phases of LIS warm events
would resemble the pattern shown in Fig. 12b. In general,
the positive SST anomalies across the eastern Pacific were
found to become more intense as the percentile used to es-
tablish the threshold was increased from 50 to 90. Despite
the lack of statistical significance in the composite plots, sta-
tistically significant relationships with SST anomalies were
found when correlating DJF LIS temperature anomalies with
DJF SST anomalies (Fig. 3c). The identified correlation pat-
tern was found to resemble the pattern shown in Figs. 10b
and 11b.

The SST composite analyses were also conducted using
the dipole events for the 1979–2013, 1950–2013, and 1870–
2013 periods. The resulting SST patterns were found to be
like those shown in Figs. 10, 11, and 12, which is not sur-
prising given the strong correlation between the dipole in-
dex and LIS temperature anomalies. Thus, intense long-lived
dipole patterns seem to have a tropical origin, suggesting that
a key to better understanding LIS temperature events rests in
a firmer understanding of tropical processes.

4.4 Decadal variability

The results of the composite analyses suggest that dipole
events may be associated with tropical SST patterns, but the
timescale at which the SST patterns are most strongly as-
sociated with the dipole pattern cannot be inferred from the
analysis. Thus, a wavelet coherence analysis was conducted
to determine if the SST modes fluctuate coherently with the
dipole pattern at a preferred timescale. The wavelet squared
coherence was computed between the dipole index and in-
dices for the Niño 3 and Niño 4 metrics, but the results using
the Niño 4 index were found to be most robust. As such, the
results for the Niño 4 index analysis only are shown.

The results shown in Fig. 13a indicate that the dipole and
Niño 4 indices fluctuate coherently in the 64- to 256-month
period after 1930. The results suggest that stronger decadal-
scale fluctuations in central equatorial Pacific SSTs are as-
sociated with larger decadal fluctuations in the dipole pat-
tern. Given that the decadal-scale fluctuations in the dipole
pattern contribute to the overall variance of the dipole index
around 2012, the decadal-scale fluctuations must contribute
to some extent to the intense dipole event of 2012. The re-
sults from the coherence analysis thus suggest that central
equatorial Pacific SST fluctuations may have contributed to
that intense dipole event.

The strong correlation between the EP–NP and dipole in-
dices (Table 3) suggests that the coherence between the EP–
NP and Niño 4 indices is also strong. The strong coherence
was confirmed by computing the wavelet squared coherence
between the EP–NP and Niño 4 indices for the 1950–2013
period. To perform the analysis, the missing values for the
EP–NP index in December were filled by establishing a lin-
ear relationship between the EP–NP and dipole indices for all
months but December. The linear relationship was obtained
using a least-squares fit of a line, and it was used to fill miss-
ing EP–NP values based on the available December dipole
index values.

As shown in Fig. 14, the EP–NP index does indeed fluc-
tuate coherently with the Niño 4 index. The coherence ap-
pears to be strong, and the global coherence spectrum shows
arc-wise significant global wavelet coherence in the 64–256
month period. As shown by Schulte et al. (2018), the EP–
NP pattern fluctuates strongly on quasi-decadal timescales,
but no possible source of the variability was identified. We
show in Fig. 14 that the EP–NP variability on quasi-decadal
timescales may be related to quasi-decadal fluctuations in
central equatorial Pacific SSTs. Because the EP–NP pat-
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Figure 13. (a) Wavelet coherence between the dipole and Niño 4 indices. Contours enclose regions of 5 % cumulative area-wise significance.
(b) The global coherence spectrum corresponding to (a). Dotted line is the 5 % point-wise significance bound and the red curves indicate 5 %
arc-wise significant coherence values.

Figure 14. Same as Fig. 13 but for the wavelet coherence between the EP–NP and Niño 4 indices.

tern fluctuates coherently with LIS water temperature on
decadal timescales (Schulte et al., 2018), LIS water temper-
ature should also fluctuate coherently with the Niño 4 index,
though the LIS temperature time series is too short to draw
strong conclusions.

5 Conclusions

This paper revealed that LIS events are associated with
modes of tropical Pacific and North Pacific SST variability.
The phases of the LIS events were found to depend on the
spatial characteristics of the SST patterns. The onset of LIS
cold events was shown to be associated with central equato-
rial Pacific SST anomalies, whereas the decay phase of such
events was shown to coincide with canonical ENSO events.
These results suggest that central Pacific El Niño events can

be used to construct outlooks for the onset of major LIS
cold events. Similarly, information regarding the formation
of canonical ENSO events could prove useful as guidance
for assessing how likely it is that an LIS cold event will end.
Conversely, major LIS cold events could be used to anticipate
the formation of El Niño events.

The strong relationships identified between the dipole in-
dex and LIS temperature anomalies suggest that the dipole
index should be incorporated into LIS temperature outlooks
and possibly temperature outlooks for other regions of the
US as well. The forecast skill associated with such outlooks
will depend on the ability to predict the phase and intensity
of the dipole pattern. The association between tropical SST
patterns and the dipole pattern could prove useful in extended
dipole pattern outlooks, contrasting with the AO index whose
predictability is limited (Jung et al., 2011). The coherence be-
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tween the Niño 4 index and indices for the EP–NP and dipole
patterns supports the idea that extended dipole pattern out-
looks based on tropical SST patterns may be possible. More
research, however, is needed to quantify the ability of dy-
namical weather and seasonal forecasting models to predict
the pattern.

Although not the focus of this paper, the dipole pattern
may be an important temperature indicator for other estuar-
ies across the northeast US. The correlation pattern shown in
Fig. 9 suggests that the dipole pattern could be an important
temperature indicator for the Delaware Bay and Chesapeake
Bay estuaries. The strong correlation between air tempera-
ture and the dipole index across Maine also suggests that
the dipole pattern may contribute significantly to the vari-
ability of water temperature across the Gulf of Maine. The
Gulf of Maine has experienced rapid warming during the
past decade (Pershing et al., 2015) and understanding the
causes of the rapid warming has important implications for
fisheries. Future work could therefore include understanding
how the dipole pattern may have contributed to the rapid Gulf
of Maine warming.

The results from the present analysis are consistent with
temperature events that occurred after the study period con-
sidered in this study. For example, the cold period around
February 2015 transitioned into a record warm period for
most of the US. The record warm period lasting from
September 2015 to December 2015 coincided with an ex-
treme El Niño event (Hu and Federov, 2017). In agreement
with our results, the February 2015 SST pattern strongly re-
sembled the SST pattern shown in Fig. 10b, which our results
suggest occurs at the peak of LIS cold events. Furthermore,
the SST pattern and extreme cold across the eastern US oc-
curred before the El Niño formation, which is also in agree-
ment with the results from the present study. These recent
events support the results from our study, which indicate that
extended LIS temperature outlooks may be possible if infor-
mation regarding ENSO flavors is incorporated into such out-
looks.
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