Articles | Volume 15, issue 1
Research article
15 Feb 2019
Research article |  | 15 Feb 2019

The impact of sea-level rise on tidal characteristics around Australia

Alexander Harker, J. A. Mattias Green, Michael Schindelegger, and Sophie-Berenice Wilmes

Related authors

Distribution of coastal high water level during extreme events around the UK and Irish coasts
Julia Rulent, Lucy M. Bricheno, J. A. Mattias Green, Ivan D. Haigh, and Huw Lewis
Nat. Hazards Earth Syst. Sci., 21, 3339–3351,,, 2021
Short summary
Preface: Developments in the science and history of tides
Philip L. Woodworth, J. A. Mattias Green, Richard D. Ray, and John M. Huthnance
Ocean Sci., 17, 809–818,,, 2021
Short summary
Bardsey – an island in a strong tidal stream: underestimating coastal tides due to unresolved topography
J. A. Mattias Green and David T. Pugh
Ocean Sci., 16, 1337–1345,,, 2020
Short summary
Stripping back the modern to reveal the Cenomanian–Turonian climate and temperature gradient underneath
Marie Laugié, Yannick Donnadieu, Jean-Baptiste Ladant, J. A. Mattias Green, Laurent Bopp, and François Raisson
Clim. Past, 16, 953–971,,, 2020
Short summary
Back to the future II: tidal evolution of four supercontinent scenarios
Hannah S. Davies, J. A. Mattias Green, and Joao C. Duarte
Earth Syst. Dynam., 11, 291–299,,, 2020
Short summary

Related subject area

Approach: Numerical Models | Depth range: All Depths | Geographical range: Shelf Seas | Phenomena: Tides
Tidal resonance in the Gulf of Thailand
Xinmei Cui, Guohong Fang, and Di Wu
Ocean Sci., 15, 321–331,,, 2019
Short summary
Ocean forecasting for the German Bight: from regional to coastal scales
Emil V. Stanev, Johannes Schulz-Stellenfleth, Joanna Staneva, Sebastian Grayek, Sebastian Grashorn, Arno Behrens, Wolfgang Koch, and Johannes Pein
Ocean Sci., 12, 1105–1136,,, 2016
Short summary

Cited articles

ABS: Australia (AUST) 2011/2016 Census QuickStats, Australian Bureau of Statistics (ABS), available at: (last access: 9 November 2018), 2016. a
Allen, G. P., Salomon, J. C., Bassoullet, P., Penhoat, Y. D., and de Grandpré, C.: Effects of tides on mixing and suspended sediment transport in macrotidal estuaries, Sediment. Geol., 26, 69–90,, 1980. a
Amante, C. and Eakins, B. W.: ETOPO1 1 arcmin Global Relief Model: Procedures, Data Sources and Analysis, NOAA Technical Memorandum NESDIS NGDC-24, National Geophysical Data Center, NOAA,, 2009. a
Caldwell, P. C., Merrifield, M. A., and Thompson, P. R.: Sea level measured by tide gauges from global oceans – the Joint Archive for Sea Level holdings (NCEI Accession 0019568), NOAA National Centers for Environmental Information, Version 5.5, Dataset,, 2015. a, b
Carless, S., Green, J., Pelling, H., and Wilmes, S.-B.: Effects of future sea-level rise on tidal processes on the Patagonian Shelf, J. Marine Syst., 163, 113–124,, 2016. a, b
Short summary
We used a computer model to help predict how changing sea levels around Australia will affect the ebb and flow of the tide. We found that sea-level rise and coastal flooding affect where energy from the tide is dissipated and how the tide flows around the coastline. We found that we must consider how sea-level rise will affect tides across the rest of the world, as that will have an impact on Australia too. This sort of investigation can help direct coastal management and protection efforts.