Articles | Volume 15, issue 5
https://doi.org/10.5194/os-15-1341-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-15-1341-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Basin-scale sources and pathways of microplastic that ends up in the Galápagos Archipelago
Institute for Marine and Atmospheric research, Utrecht University, Utrecht, the Netherlands
Philippe Delandmeter
Institute for Marine and Atmospheric research, Utrecht University, Utrecht, the Netherlands
John Schofield
Department of Archaeology, University of York, York, UK
Britta Denise Hardesty
Commonwealth Scientific and Industrial Research Organisation, Oceans and Atmosphere, Hobart, TAS, Australia
Jen Jones
Galapagos Conservation Trust, London, UK
College of Life and Environmental Sciences, University of Exeter, Exeter, UK
Andy Donnelly
Galapagos Conservation Trust, London, UK
Related authors
Claudio M. Pierard, Siren Rühs, Laura Gómez-Navarro, Michael C. Denes, Florian Meirer, Thierry Penduff, and Erik van Sebille
EGUsphere, https://doi.org/10.5194/egusphere-2024-3847, https://doi.org/10.5194/egusphere-2024-3847, 2024
This preprint is open for discussion and under review for Nonlinear Processes in Geophysics (NPG).
Short summary
Short summary
Particle-tracking simulations compute how ocean currents transport material. However, initialising these simulations is often ad-hoc. Here, we explore how two different strategies (releasing particles over space or over time) compare. Specifically, we compare the variability in particle trajectories to the variability of particles computed in a 50-member ensemble simulation. We find that releasing the particles over 20 weeks gives variability that is most like that in the ensemble.
Vesna Bertoncelj, Furu Mienis, Paolo Stocchi, and Erik van Sebille
EGUsphere, https://doi.org/10.5194/egusphere-2024-3112, https://doi.org/10.5194/egusphere-2024-3112, 2024
Short summary
Short summary
This study explores ocean currents around Curaçao and how land-derived substances like pollutants and nutrients travel in the water. Most substances move northwest, following the main current, but at times, ocean eddies spread them in other directions. This movement may link polluted areas to pristine coral reefs, impacting marine ecosystems. Understanding these patterns helps inform conservation and pollution management around Curaçao.
Anna Leerink, Mark Bos, Daan Reijnders, and Erik van Sebille
Geosci. Commun., 7, 201–214, https://doi.org/10.5194/gc-7-201-2024, https://doi.org/10.5194/gc-7-201-2024, 2024
Short summary
Short summary
Climate scientists who communicate to a broad audience may be reluctant to write in a more personal style, as they assume that it hurts their credibility. To test this assumption, we asked 100 Dutch people to rate the credibility of a climate scientist. We varied how the author of the article addressed the reader and found that the degree of personalization did not have a measurable impact on the credibility of the author. Thus, we conclude that personalization may not hurt credibility.
Mark Vinz Elbertsen, Erik van Sebille, and Peter Kristian Bijl
EGUsphere, https://doi.org/10.5194/egusphere-2024-1596, https://doi.org/10.5194/egusphere-2024-1596, 2024
Short summary
Short summary
This work verifies the remarkable finds of late Eocene Antarctic-sourced iceberg-rafted debris found on South Orkney. We find that these icebergs must have been on the larger end of the size scale compared to today’s icebergs due to faster melting in the warmer Eocene climate. The study was performed using a high-resolution model in which individual icebergs were followed through time.
Nieske Vergunst, Tugce Varol, and Erik van Sebille
EGUsphere, https://doi.org/10.5194/egusphere-2024-1649, https://doi.org/10.5194/egusphere-2024-1649, 2024
Short summary
Short summary
We developed and evaluated a board game about sea level rise to engage young adults. We found that the game positively influenced participants' perceptions of their impact on sea level rise, regardless of their prior familiarity with science. This study suggests that interactive and relatable activities can effectively engage broader audiences on climate issues, highlighting the potential for similar approaches in public science communication.
Frances Wijnen, Madelijn Strick, Mark Bos, and Erik van Sebille
Geosci. Commun., 7, 91–100, https://doi.org/10.5194/gc-7-91-2024, https://doi.org/10.5194/gc-7-91-2024, 2024
Short summary
Short summary
Climate scientists are urged to communicate climate science; there is very little evidence about what types of communication work well for which audiences. We have performed a systematic literature review to analyze what is known about the efficacy of climate communication by scientists. While we have found more than 60 articles in the last 10 years about climate communication activities by scientists, only 7 of these included some form of evaluation of the impact of the activity.
Siren Rühs, Ton van den Bremer, Emanuela Clementi, Michael C. Denes, Aimie Moulin, and Erik van Sebille
EGUsphere, https://doi.org/10.5194/egusphere-2024-1002, https://doi.org/10.5194/egusphere-2024-1002, 2024
Short summary
Short summary
Simulating the transport of floating particles on the ocean surface is crucial for solving many societal issues. Here, we investigate how the representation of wind-generated surface waves impacts particle transport simulations. We find that different wave-driven processes can alter the transport patterns, and that commonly adopted approximations are not always adequate. This implies that ideally coupled ocean-wave models should be used for surface particle transport simulations.
Philippe F. V. W. Frankemölle, Peter D. Nooteboom, Joe Scutt Phillips, Lauriane Escalle, Simon Nicol, and Erik van Sebille
Ocean Sci., 20, 31–41, https://doi.org/10.5194/os-20-31-2024, https://doi.org/10.5194/os-20-31-2024, 2024
Short summary
Short summary
Tuna fisheries in the Pacific often use drifting fish aggregating devices (dFADs) to attract fish that are advected by subsurface flow through underwater appendages. Using a particle advection model, we find that virtual particles advected by surface flow are displaced farther than virtual dFADs. We find a relation between El Niño–Southern Oscillation and circular motion in some areas, influencing dFAD densities. This information helps us to understand processes that drive dFAD distribution.
Tor Nordam, Ruben Kristiansen, Raymond Nepstad, Erik van Sebille, and Andy M. Booth
Geosci. Model Dev., 16, 5339–5363, https://doi.org/10.5194/gmd-16-5339-2023, https://doi.org/10.5194/gmd-16-5339-2023, 2023
Short summary
Short summary
We describe and compare two common methods, Eulerian and Lagrangian models, used to simulate the vertical transport of material in the ocean. They both solve the same transport problems but use different approaches for representing the underlying equations on the computer. The main focus of our study is on the numerical accuracy of the two approaches. Our results should be useful for other researchers creating or using these types of transport models.
Stefanie L. Ypma, Quinten Bohte, Alexander Forryan, Alberto C. Naveira Garabato, Andy Donnelly, and Erik van Sebille
Ocean Sci., 18, 1477–1490, https://doi.org/10.5194/os-18-1477-2022, https://doi.org/10.5194/os-18-1477-2022, 2022
Short summary
Short summary
In this research we aim to improve cleanup efforts on the Galapagos Islands of marine plastic debris when resources are limited and the distribution of the plastic on shorelines is unknown. Using a network that describes the flow of macroplastic between the islands we have identified the most efficient cleanup locations, quantified the impact of targeting these locations and showed that shorelines where the plastic is unlikely to leave are likely efficient cleanup locations.
Reint Fischer, Delphine Lobelle, Merel Kooi, Albert Koelmans, Victor Onink, Charlotte Laufkötter, Linda Amaral-Zettler, Andrew Yool, and Erik van Sebille
Biogeosciences, 19, 2211–2234, https://doi.org/10.5194/bg-19-2211-2022, https://doi.org/10.5194/bg-19-2211-2022, 2022
Short summary
Short summary
Since current estimates show that only about 1 % of the all plastic that enters the ocean is floating at the surface, we look at subsurface processes that can cause vertical movement of (micro)plastic. We investigate how modelled algal attachment and the ocean's vertical movement can cause particles to sink and oscillate in the open ocean. Particles can sink to depths of > 5000 m in regions with high wind intensity and mainly remain close to the surface with low winds and biological activity.
Victor Onink, Erik van Sebille, and Charlotte Laufkötter
Geosci. Model Dev., 15, 1995–2012, https://doi.org/10.5194/gmd-15-1995-2022, https://doi.org/10.5194/gmd-15-1995-2022, 2022
Short summary
Short summary
Turbulent mixing is a vital process in 3D modeling of particle transport in the ocean. However, since turbulence occurs on very short spatial scales and timescales, large-scale ocean models generally have highly simplified turbulence representations. We have developed parametrizations for the vertical turbulent transport of buoyant particles that can be easily applied in a large-scale particle tracking model. The predicted vertical concentration profiles match microplastic observations well.
Mikael L. A. Kaandorp, Stefanie L. Ypma, Marijke Boonstra, Henk A. Dijkstra, and Erik van Sebille
Ocean Sci., 18, 269–293, https://doi.org/10.5194/os-18-269-2022, https://doi.org/10.5194/os-18-269-2022, 2022
Short summary
Short summary
A large amount of marine litter, such as plastics, is located on or around beaches. Both the total amount of this litter and its transport are poorly understood. We investigate this by training a machine learning model with data of cleanup efforts on Dutch beaches between 2014 and 2019, obtained by about 14 000 volunteers. We find that Dutch beaches contain up to 30 000 kg of litter, largely depending on tides, oceanic transport, and how exposed the beaches are.
Peter D. Nooteboom, Peter K. Bijl, Christian Kehl, Erik van Sebille, Martin Ziegler, Anna S. von der Heydt, and Henk A. Dijkstra
Earth Syst. Dynam., 13, 357–371, https://doi.org/10.5194/esd-13-357-2022, https://doi.org/10.5194/esd-13-357-2022, 2022
Short summary
Short summary
Having descended through the water column, microplankton in ocean sediments represents the ocean surface environment and is used as an archive of past and present surface oceanographic conditions. However, this microplankton is advected by turbulent ocean currents during its sinking journey. We use simulations of sinking particles to define ocean bottom provinces and detect these provinces in datasets of sedimentary microplankton, which has implications for palaeoclimate reconstructions.
C. Kehl, R. P. B. Fischer, and E. van Sebille
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-4-2021, 217–224, https://doi.org/10.5194/isprs-annals-V-4-2021-217-2021, https://doi.org/10.5194/isprs-annals-V-4-2021-217-2021, 2021
Rebeca de la Fuente, Gábor Drótos, Emilio Hernández-García, Cristóbal López, and Erik van Sebille
Ocean Sci., 17, 431–453, https://doi.org/10.5194/os-17-431-2021, https://doi.org/10.5194/os-17-431-2021, 2021
Short summary
Short summary
Plastic pollution is a major environmental issue affecting the oceans. The number of floating and sedimented pieces has been quantified by several studies. But their abundance in the water column remains mostly unknown. To fill this gap we model the dynamics of a particular type of particle, rigid microplastics sinking rapidly in open sea in the Mediterranean. We find they represent a small but appreciable fraction of the total sea plastic and discuss characteristics of their sinking motion.
David Wichmann, Christian Kehl, Henk A. Dijkstra, and Erik van Sebille
Nonlin. Processes Geophys., 28, 43–59, https://doi.org/10.5194/npg-28-43-2021, https://doi.org/10.5194/npg-28-43-2021, 2021
Short summary
Short summary
Fluid parcels transported in complicated flows often contain subsets of particles that stay close over finite time intervals. We propose a new method for detecting finite-time coherent sets based on the density-based clustering technique of ordering points to identify the clustering structure (OPTICS). Unlike previous methods, our method has an intrinsic notion of coherent sets at different spatial scales. OPTICS is readily implemented in the SciPy sklearn package, making it easy to use.
Chris S. M. Turney, Richard T. Jones, Nicholas P. McKay, Erik van Sebille, Zoë A. Thomas, Claus-Dieter Hillenbrand, and Christopher J. Fogwill
Earth Syst. Sci. Data, 12, 3341–3356, https://doi.org/10.5194/essd-12-3341-2020, https://doi.org/10.5194/essd-12-3341-2020, 2020
Short summary
Short summary
The Last Interglacial (129–116 ka) experienced global temperatures and sea levels higher than today. The direct contribution of warmer conditions to global sea level (thermosteric) are uncertain. We report a global network of sea surface temperatures. We find mean global annual temperature anomalies of 0.2 ± 0.1˚C and an early maximum peak of 0.9 ± 0.1˚C. Our reconstruction suggests warmer waters contributed on average 0.08 ± 0.1 m and a peak contribution of 0.39 ± 0.1 m to global sea level.
Linda K. Dämmer, Lennart de Nooijer, Erik van Sebille, Jan G. Haak, and Gert-Jan Reichart
Clim. Past, 16, 2401–2414, https://doi.org/10.5194/cp-16-2401-2020, https://doi.org/10.5194/cp-16-2401-2020, 2020
Short summary
Short summary
The compositions of foraminifera shells often vary with environmental parameters such as temperature or salinity; thus, they can be used as proxies for these environmental variables. Often a single proxy is influenced by more than one parameter. Here, we show that while salinity impacts shell Na / Ca, temperature has no effect. We also show that the combination of different proxies (Mg / Ca and δ18O) to reconstruct salinity does not seem to work as previously thought.
David Wichmann, Christian Kehl, Henk A. Dijkstra, and Erik van Sebille
Nonlin. Processes Geophys., 27, 501–518, https://doi.org/10.5194/npg-27-501-2020, https://doi.org/10.5194/npg-27-501-2020, 2020
Short summary
Short summary
The surface transport of heat, nutrients and plastic in the North Atlantic Ocean is organized into large-scale flow structures. We propose a new and simple method to detect such features in ocean drifter data sets by identifying groups of trajectories with similar dynamical behaviour using network theory. We successfully detect well-known regions such as the Subpolar and Subtropical gyres, the Western Boundary Current region and the Caribbean Sea.
Mirjam van der Mheen, Erik van Sebille, and Charitha Pattiaratchi
Ocean Sci., 16, 1317–1336, https://doi.org/10.5194/os-16-1317-2020, https://doi.org/10.5194/os-16-1317-2020, 2020
Short summary
Short summary
A large percentage of global ocean plastic enters the Indian Ocean through rivers, but the fate of these plastics is generally unknown. In this paper, we use computer simulations to show that floating plastics
beachand end up on coastlines throughout the Indian Ocean. Coastlines where a lot of plastic enters the ocean are heavily affected by beaching plastic, but plastics can also beach far from the source on remote islands and countries that contribute little plastic pollution of their own.
Philippe Delandmeter and Erik van Sebille
Geosci. Model Dev., 12, 3571–3584, https://doi.org/10.5194/gmd-12-3571-2019, https://doi.org/10.5194/gmd-12-3571-2019, 2019
Short summary
Short summary
Parcels is a framework to compute how ocean currents transport
stuffsuch as plankton and plastic around. In the latest version 2.0 of Parcels, we focus on more accurate interpolation schemes and implement methods to seamlessly combine data from different sources (such as winds and currents, possibly in different regions). We show that this framework is very efficient for tracking how microplastic is transported through the North Sea into the Arctic.
Fabrice Ardhuin, Yevgueny Aksenov, Alvise Benetazzo, Laurent Bertino, Peter Brandt, Eric Caubet, Bertrand Chapron, Fabrice Collard, Sophie Cravatte, Jean-Marc Delouis, Frederic Dias, Gérald Dibarboure, Lucile Gaultier, Johnny Johannessen, Anton Korosov, Georgy Manucharyan, Dimitris Menemenlis, Melisa Menendez, Goulven Monnier, Alexis Mouche, Frédéric Nouguier, George Nurser, Pierre Rampal, Ad Reniers, Ernesto Rodriguez, Justin Stopa, Céline Tison, Clément Ubelmann, Erik van Sebille, and Jiping Xie
Ocean Sci., 14, 337–354, https://doi.org/10.5194/os-14-337-2018, https://doi.org/10.5194/os-14-337-2018, 2018
Short summary
Short summary
The Sea surface KInematics Multiscale (SKIM) monitoring mission is a proposal for a future satellite that is designed to measure ocean currents and waves. Using a Doppler radar, the accurate measurement of currents requires the removal of the mean velocity due to ocean wave motions. This paper describes the main processing steps needed to produce currents and wave data from the radar measurements. With this technique, SKIM can provide unprecedented coverage and resolution, over the global ocean.
Michael Lange and Erik van Sebille
Geosci. Model Dev., 10, 4175–4186, https://doi.org/10.5194/gmd-10-4175-2017, https://doi.org/10.5194/gmd-10-4175-2017, 2017
Short summary
Short summary
Here, we present version 0.9 of Parcels (Probably A Really Computationally Efficient Lagrangian Simulator). Parcels is an experimental prototype code aimed at exploring novel approaches for Lagrangian tracking of virtual ocean particles in the petascale age. The modularity, flexibility and scalability will allow the code to be used to track water, nutrients, microbes, plankton, plastic and even fish.
Chris S. M. Turney, Christopher J. Fogwill, Jonathan G. Palmer, Erik van Sebille, Zoë Thomas, Matt McGlone, Sarah Richardson, Janet M. Wilmshurst, Pavla Fenwick, Violette Zunz, Hugues Goosse, Kerry-Jayne Wilson, Lionel Carter, Mathew Lipson, Richard T. Jones, Melanie Harsch, Graeme Clark, Ezequiel Marzinelli, Tracey Rogers, Eleanor Rainsley, Laura Ciasto, Stephanie Waterman, Elizabeth R. Thomas, and Martin Visbeck
Clim. Past, 13, 231–248, https://doi.org/10.5194/cp-13-231-2017, https://doi.org/10.5194/cp-13-231-2017, 2017
Short summary
Short summary
The Southern Ocean plays a fundamental role in global climate but suffers from a dearth of observational data. As the Australasian Antarctic Expedition 2013–2014 we have developed the first annually resolved temperature record using trees from subantarctic southwest Pacific (52–54˚S) to extend the climate record back to 1870. With modelling we show today's high climate variability became established in the ~1940s and likely driven by a Rossby wave response originating from the tropical Pacific.
Christopher J. Fogwill, Erik van Sebille, Eva A. Cougnon, Chris S. M. Turney, Steve R. Rintoul, Benjamin K. Galton-Fenzi, Graeme F. Clark, E. M. Marzinelli, Eleanor B. Rainsley, and Lionel Carter
The Cryosphere, 10, 2603–2609, https://doi.org/10.5194/tc-10-2603-2016, https://doi.org/10.5194/tc-10-2603-2016, 2016
Short summary
Short summary
Here we report new data from in situ oceanographic surveys and high-resolution ocean modelling experiments in the Commonwealth Bay region of East Antarctica, where in 2010 there was a major reconfiguration of the regional icescape due to the collision of the 97 km long iceberg B09B with the Mertz Glacier tongue. Here we compare post-calving observations with high-resolution ocean modelling which suggest that this reconfiguration has led to the development of a new polynya off Commonwealth Bay.
Paulina Cetina-Heredia, Erik van Sebille, Richard Matear, and Moninya Roughan
Biogeosciences Discuss., https://doi.org/10.5194/bg-2016-53, https://doi.org/10.5194/bg-2016-53, 2016
Revised manuscript not accepted
Short summary
Short summary
Characterizing phytoplankton growth influences fisheries and climate. We use a lagrangian approach to identify phytoplankton blooms in the Great Australian Bight (GAB), and associate them with nitrate sources. We find that 88 % of the nitrate utilized in blooms is originated between the GAB and the SubAntarctic Front. Large nitrate concentrations are supplied at depth but do not reach the euphotic zone often. As a result, 55 % of blooms utilize nitrate supplied in the top 100 m.
Claudio M. Pierard, Siren Rühs, Laura Gómez-Navarro, Michael C. Denes, Florian Meirer, Thierry Penduff, and Erik van Sebille
EGUsphere, https://doi.org/10.5194/egusphere-2024-3847, https://doi.org/10.5194/egusphere-2024-3847, 2024
This preprint is open for discussion and under review for Nonlinear Processes in Geophysics (NPG).
Short summary
Short summary
Particle-tracking simulations compute how ocean currents transport material. However, initialising these simulations is often ad-hoc. Here, we explore how two different strategies (releasing particles over space or over time) compare. Specifically, we compare the variability in particle trajectories to the variability of particles computed in a 50-member ensemble simulation. We find that releasing the particles over 20 weeks gives variability that is most like that in the ensemble.
Vesna Bertoncelj, Furu Mienis, Paolo Stocchi, and Erik van Sebille
EGUsphere, https://doi.org/10.5194/egusphere-2024-3112, https://doi.org/10.5194/egusphere-2024-3112, 2024
Short summary
Short summary
This study explores ocean currents around Curaçao and how land-derived substances like pollutants and nutrients travel in the water. Most substances move northwest, following the main current, but at times, ocean eddies spread them in other directions. This movement may link polluted areas to pristine coral reefs, impacting marine ecosystems. Understanding these patterns helps inform conservation and pollution management around Curaçao.
Anna Leerink, Mark Bos, Daan Reijnders, and Erik van Sebille
Geosci. Commun., 7, 201–214, https://doi.org/10.5194/gc-7-201-2024, https://doi.org/10.5194/gc-7-201-2024, 2024
Short summary
Short summary
Climate scientists who communicate to a broad audience may be reluctant to write in a more personal style, as they assume that it hurts their credibility. To test this assumption, we asked 100 Dutch people to rate the credibility of a climate scientist. We varied how the author of the article addressed the reader and found that the degree of personalization did not have a measurable impact on the credibility of the author. Thus, we conclude that personalization may not hurt credibility.
Mark Vinz Elbertsen, Erik van Sebille, and Peter Kristian Bijl
EGUsphere, https://doi.org/10.5194/egusphere-2024-1596, https://doi.org/10.5194/egusphere-2024-1596, 2024
Short summary
Short summary
This work verifies the remarkable finds of late Eocene Antarctic-sourced iceberg-rafted debris found on South Orkney. We find that these icebergs must have been on the larger end of the size scale compared to today’s icebergs due to faster melting in the warmer Eocene climate. The study was performed using a high-resolution model in which individual icebergs were followed through time.
Nieske Vergunst, Tugce Varol, and Erik van Sebille
EGUsphere, https://doi.org/10.5194/egusphere-2024-1649, https://doi.org/10.5194/egusphere-2024-1649, 2024
Short summary
Short summary
We developed and evaluated a board game about sea level rise to engage young adults. We found that the game positively influenced participants' perceptions of their impact on sea level rise, regardless of their prior familiarity with science. This study suggests that interactive and relatable activities can effectively engage broader audiences on climate issues, highlighting the potential for similar approaches in public science communication.
Frances Wijnen, Madelijn Strick, Mark Bos, and Erik van Sebille
Geosci. Commun., 7, 91–100, https://doi.org/10.5194/gc-7-91-2024, https://doi.org/10.5194/gc-7-91-2024, 2024
Short summary
Short summary
Climate scientists are urged to communicate climate science; there is very little evidence about what types of communication work well for which audiences. We have performed a systematic literature review to analyze what is known about the efficacy of climate communication by scientists. While we have found more than 60 articles in the last 10 years about climate communication activities by scientists, only 7 of these included some form of evaluation of the impact of the activity.
Siren Rühs, Ton van den Bremer, Emanuela Clementi, Michael C. Denes, Aimie Moulin, and Erik van Sebille
EGUsphere, https://doi.org/10.5194/egusphere-2024-1002, https://doi.org/10.5194/egusphere-2024-1002, 2024
Short summary
Short summary
Simulating the transport of floating particles on the ocean surface is crucial for solving many societal issues. Here, we investigate how the representation of wind-generated surface waves impacts particle transport simulations. We find that different wave-driven processes can alter the transport patterns, and that commonly adopted approximations are not always adequate. This implies that ideally coupled ocean-wave models should be used for surface particle transport simulations.
Philippe F. V. W. Frankemölle, Peter D. Nooteboom, Joe Scutt Phillips, Lauriane Escalle, Simon Nicol, and Erik van Sebille
Ocean Sci., 20, 31–41, https://doi.org/10.5194/os-20-31-2024, https://doi.org/10.5194/os-20-31-2024, 2024
Short summary
Short summary
Tuna fisheries in the Pacific often use drifting fish aggregating devices (dFADs) to attract fish that are advected by subsurface flow through underwater appendages. Using a particle advection model, we find that virtual particles advected by surface flow are displaced farther than virtual dFADs. We find a relation between El Niño–Southern Oscillation and circular motion in some areas, influencing dFAD densities. This information helps us to understand processes that drive dFAD distribution.
Tor Nordam, Ruben Kristiansen, Raymond Nepstad, Erik van Sebille, and Andy M. Booth
Geosci. Model Dev., 16, 5339–5363, https://doi.org/10.5194/gmd-16-5339-2023, https://doi.org/10.5194/gmd-16-5339-2023, 2023
Short summary
Short summary
We describe and compare two common methods, Eulerian and Lagrangian models, used to simulate the vertical transport of material in the ocean. They both solve the same transport problems but use different approaches for representing the underlying equations on the computer. The main focus of our study is on the numerical accuracy of the two approaches. Our results should be useful for other researchers creating or using these types of transport models.
Stefanie L. Ypma, Quinten Bohte, Alexander Forryan, Alberto C. Naveira Garabato, Andy Donnelly, and Erik van Sebille
Ocean Sci., 18, 1477–1490, https://doi.org/10.5194/os-18-1477-2022, https://doi.org/10.5194/os-18-1477-2022, 2022
Short summary
Short summary
In this research we aim to improve cleanup efforts on the Galapagos Islands of marine plastic debris when resources are limited and the distribution of the plastic on shorelines is unknown. Using a network that describes the flow of macroplastic between the islands we have identified the most efficient cleanup locations, quantified the impact of targeting these locations and showed that shorelines where the plastic is unlikely to leave are likely efficient cleanup locations.
Reint Fischer, Delphine Lobelle, Merel Kooi, Albert Koelmans, Victor Onink, Charlotte Laufkötter, Linda Amaral-Zettler, Andrew Yool, and Erik van Sebille
Biogeosciences, 19, 2211–2234, https://doi.org/10.5194/bg-19-2211-2022, https://doi.org/10.5194/bg-19-2211-2022, 2022
Short summary
Short summary
Since current estimates show that only about 1 % of the all plastic that enters the ocean is floating at the surface, we look at subsurface processes that can cause vertical movement of (micro)plastic. We investigate how modelled algal attachment and the ocean's vertical movement can cause particles to sink and oscillate in the open ocean. Particles can sink to depths of > 5000 m in regions with high wind intensity and mainly remain close to the surface with low winds and biological activity.
Victor Onink, Erik van Sebille, and Charlotte Laufkötter
Geosci. Model Dev., 15, 1995–2012, https://doi.org/10.5194/gmd-15-1995-2022, https://doi.org/10.5194/gmd-15-1995-2022, 2022
Short summary
Short summary
Turbulent mixing is a vital process in 3D modeling of particle transport in the ocean. However, since turbulence occurs on very short spatial scales and timescales, large-scale ocean models generally have highly simplified turbulence representations. We have developed parametrizations for the vertical turbulent transport of buoyant particles that can be easily applied in a large-scale particle tracking model. The predicted vertical concentration profiles match microplastic observations well.
Mikael L. A. Kaandorp, Stefanie L. Ypma, Marijke Boonstra, Henk A. Dijkstra, and Erik van Sebille
Ocean Sci., 18, 269–293, https://doi.org/10.5194/os-18-269-2022, https://doi.org/10.5194/os-18-269-2022, 2022
Short summary
Short summary
A large amount of marine litter, such as plastics, is located on or around beaches. Both the total amount of this litter and its transport are poorly understood. We investigate this by training a machine learning model with data of cleanup efforts on Dutch beaches between 2014 and 2019, obtained by about 14 000 volunteers. We find that Dutch beaches contain up to 30 000 kg of litter, largely depending on tides, oceanic transport, and how exposed the beaches are.
Peter D. Nooteboom, Peter K. Bijl, Christian Kehl, Erik van Sebille, Martin Ziegler, Anna S. von der Heydt, and Henk A. Dijkstra
Earth Syst. Dynam., 13, 357–371, https://doi.org/10.5194/esd-13-357-2022, https://doi.org/10.5194/esd-13-357-2022, 2022
Short summary
Short summary
Having descended through the water column, microplankton in ocean sediments represents the ocean surface environment and is used as an archive of past and present surface oceanographic conditions. However, this microplankton is advected by turbulent ocean currents during its sinking journey. We use simulations of sinking particles to define ocean bottom provinces and detect these provinces in datasets of sedimentary microplankton, which has implications for palaeoclimate reconstructions.
C. Kehl, R. P. B. Fischer, and E. van Sebille
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-4-2021, 217–224, https://doi.org/10.5194/isprs-annals-V-4-2021-217-2021, https://doi.org/10.5194/isprs-annals-V-4-2021-217-2021, 2021
Rebeca de la Fuente, Gábor Drótos, Emilio Hernández-García, Cristóbal López, and Erik van Sebille
Ocean Sci., 17, 431–453, https://doi.org/10.5194/os-17-431-2021, https://doi.org/10.5194/os-17-431-2021, 2021
Short summary
Short summary
Plastic pollution is a major environmental issue affecting the oceans. The number of floating and sedimented pieces has been quantified by several studies. But their abundance in the water column remains mostly unknown. To fill this gap we model the dynamics of a particular type of particle, rigid microplastics sinking rapidly in open sea in the Mediterranean. We find they represent a small but appreciable fraction of the total sea plastic and discuss characteristics of their sinking motion.
David Wichmann, Christian Kehl, Henk A. Dijkstra, and Erik van Sebille
Nonlin. Processes Geophys., 28, 43–59, https://doi.org/10.5194/npg-28-43-2021, https://doi.org/10.5194/npg-28-43-2021, 2021
Short summary
Short summary
Fluid parcels transported in complicated flows often contain subsets of particles that stay close over finite time intervals. We propose a new method for detecting finite-time coherent sets based on the density-based clustering technique of ordering points to identify the clustering structure (OPTICS). Unlike previous methods, our method has an intrinsic notion of coherent sets at different spatial scales. OPTICS is readily implemented in the SciPy sklearn package, making it easy to use.
Chris S. M. Turney, Richard T. Jones, Nicholas P. McKay, Erik van Sebille, Zoë A. Thomas, Claus-Dieter Hillenbrand, and Christopher J. Fogwill
Earth Syst. Sci. Data, 12, 3341–3356, https://doi.org/10.5194/essd-12-3341-2020, https://doi.org/10.5194/essd-12-3341-2020, 2020
Short summary
Short summary
The Last Interglacial (129–116 ka) experienced global temperatures and sea levels higher than today. The direct contribution of warmer conditions to global sea level (thermosteric) are uncertain. We report a global network of sea surface temperatures. We find mean global annual temperature anomalies of 0.2 ± 0.1˚C and an early maximum peak of 0.9 ± 0.1˚C. Our reconstruction suggests warmer waters contributed on average 0.08 ± 0.1 m and a peak contribution of 0.39 ± 0.1 m to global sea level.
Linda K. Dämmer, Lennart de Nooijer, Erik van Sebille, Jan G. Haak, and Gert-Jan Reichart
Clim. Past, 16, 2401–2414, https://doi.org/10.5194/cp-16-2401-2020, https://doi.org/10.5194/cp-16-2401-2020, 2020
Short summary
Short summary
The compositions of foraminifera shells often vary with environmental parameters such as temperature or salinity; thus, they can be used as proxies for these environmental variables. Often a single proxy is influenced by more than one parameter. Here, we show that while salinity impacts shell Na / Ca, temperature has no effect. We also show that the combination of different proxies (Mg / Ca and δ18O) to reconstruct salinity does not seem to work as previously thought.
David Wichmann, Christian Kehl, Henk A. Dijkstra, and Erik van Sebille
Nonlin. Processes Geophys., 27, 501–518, https://doi.org/10.5194/npg-27-501-2020, https://doi.org/10.5194/npg-27-501-2020, 2020
Short summary
Short summary
The surface transport of heat, nutrients and plastic in the North Atlantic Ocean is organized into large-scale flow structures. We propose a new and simple method to detect such features in ocean drifter data sets by identifying groups of trajectories with similar dynamical behaviour using network theory. We successfully detect well-known regions such as the Subpolar and Subtropical gyres, the Western Boundary Current region and the Caribbean Sea.
Mirjam van der Mheen, Erik van Sebille, and Charitha Pattiaratchi
Ocean Sci., 16, 1317–1336, https://doi.org/10.5194/os-16-1317-2020, https://doi.org/10.5194/os-16-1317-2020, 2020
Short summary
Short summary
A large percentage of global ocean plastic enters the Indian Ocean through rivers, but the fate of these plastics is generally unknown. In this paper, we use computer simulations to show that floating plastics
beachand end up on coastlines throughout the Indian Ocean. Coastlines where a lot of plastic enters the ocean are heavily affected by beaching plastic, but plastics can also beach far from the source on remote islands and countries that contribute little plastic pollution of their own.
Philippe Delandmeter and Erik van Sebille
Geosci. Model Dev., 12, 3571–3584, https://doi.org/10.5194/gmd-12-3571-2019, https://doi.org/10.5194/gmd-12-3571-2019, 2019
Short summary
Short summary
Parcels is a framework to compute how ocean currents transport
stuffsuch as plankton and plastic around. In the latest version 2.0 of Parcels, we focus on more accurate interpolation schemes and implement methods to seamlessly combine data from different sources (such as winds and currents, possibly in different regions). We show that this framework is very efficient for tracking how microplastic is transported through the North Sea into the Arctic.
Fabrice Ardhuin, Yevgueny Aksenov, Alvise Benetazzo, Laurent Bertino, Peter Brandt, Eric Caubet, Bertrand Chapron, Fabrice Collard, Sophie Cravatte, Jean-Marc Delouis, Frederic Dias, Gérald Dibarboure, Lucile Gaultier, Johnny Johannessen, Anton Korosov, Georgy Manucharyan, Dimitris Menemenlis, Melisa Menendez, Goulven Monnier, Alexis Mouche, Frédéric Nouguier, George Nurser, Pierre Rampal, Ad Reniers, Ernesto Rodriguez, Justin Stopa, Céline Tison, Clément Ubelmann, Erik van Sebille, and Jiping Xie
Ocean Sci., 14, 337–354, https://doi.org/10.5194/os-14-337-2018, https://doi.org/10.5194/os-14-337-2018, 2018
Short summary
Short summary
The Sea surface KInematics Multiscale (SKIM) monitoring mission is a proposal for a future satellite that is designed to measure ocean currents and waves. Using a Doppler radar, the accurate measurement of currents requires the removal of the mean velocity due to ocean wave motions. This paper describes the main processing steps needed to produce currents and wave data from the radar measurements. With this technique, SKIM can provide unprecedented coverage and resolution, over the global ocean.
Philippe Delandmeter, Jonathan Lambrechts, Vincent Legat, Valentin Vallaeys, Jaya Naithani, Wim Thiery, Jean-François Remacle, and Eric Deleersnijder
Geosci. Model Dev., 11, 1161–1179, https://doi.org/10.5194/gmd-11-1161-2018, https://doi.org/10.5194/gmd-11-1161-2018, 2018
Short summary
Short summary
The discontinuous Galerkin (DG) finite element method is well suited for the modelling of three-dimensional flows exhibiting strong density gradients. Here, a vertical adaptive mesh method is developed for DG finite element methods and implemented into SLIM 3D. This technique increases drastically the accuracy of simulations including strong stratification, without affecting the simulation cost. SLIM 3D is then used to simulate the thermocline oscillations of Lake Tanganyika.
Michael Lange and Erik van Sebille
Geosci. Model Dev., 10, 4175–4186, https://doi.org/10.5194/gmd-10-4175-2017, https://doi.org/10.5194/gmd-10-4175-2017, 2017
Short summary
Short summary
Here, we present version 0.9 of Parcels (Probably A Really Computationally Efficient Lagrangian Simulator). Parcels is an experimental prototype code aimed at exploring novel approaches for Lagrangian tracking of virtual ocean particles in the petascale age. The modularity, flexibility and scalability will allow the code to be used to track water, nutrients, microbes, plankton, plastic and even fish.
Chris S. M. Turney, Christopher J. Fogwill, Jonathan G. Palmer, Erik van Sebille, Zoë Thomas, Matt McGlone, Sarah Richardson, Janet M. Wilmshurst, Pavla Fenwick, Violette Zunz, Hugues Goosse, Kerry-Jayne Wilson, Lionel Carter, Mathew Lipson, Richard T. Jones, Melanie Harsch, Graeme Clark, Ezequiel Marzinelli, Tracey Rogers, Eleanor Rainsley, Laura Ciasto, Stephanie Waterman, Elizabeth R. Thomas, and Martin Visbeck
Clim. Past, 13, 231–248, https://doi.org/10.5194/cp-13-231-2017, https://doi.org/10.5194/cp-13-231-2017, 2017
Short summary
Short summary
The Southern Ocean plays a fundamental role in global climate but suffers from a dearth of observational data. As the Australasian Antarctic Expedition 2013–2014 we have developed the first annually resolved temperature record using trees from subantarctic southwest Pacific (52–54˚S) to extend the climate record back to 1870. With modelling we show today's high climate variability became established in the ~1940s and likely driven by a Rossby wave response originating from the tropical Pacific.
Christopher J. Fogwill, Erik van Sebille, Eva A. Cougnon, Chris S. M. Turney, Steve R. Rintoul, Benjamin K. Galton-Fenzi, Graeme F. Clark, E. M. Marzinelli, Eleanor B. Rainsley, and Lionel Carter
The Cryosphere, 10, 2603–2609, https://doi.org/10.5194/tc-10-2603-2016, https://doi.org/10.5194/tc-10-2603-2016, 2016
Short summary
Short summary
Here we report new data from in situ oceanographic surveys and high-resolution ocean modelling experiments in the Commonwealth Bay region of East Antarctica, where in 2010 there was a major reconfiguration of the regional icescape due to the collision of the 97 km long iceberg B09B with the Mertz Glacier tongue. Here we compare post-calving observations with high-resolution ocean modelling which suggest that this reconfiguration has led to the development of a new polynya off Commonwealth Bay.
Paulina Cetina-Heredia, Erik van Sebille, Richard Matear, and Moninya Roughan
Biogeosciences Discuss., https://doi.org/10.5194/bg-2016-53, https://doi.org/10.5194/bg-2016-53, 2016
Revised manuscript not accepted
Short summary
Short summary
Characterizing phytoplankton growth influences fisheries and climate. We use a lagrangian approach to identify phytoplankton blooms in the Great Australian Bight (GAB), and associate them with nitrate sources. We find that 88 % of the nitrate utilized in blooms is originated between the GAB and the SubAntarctic Front. Large nitrate concentrations are supplied at depth but do not reach the euphotic zone often. As a result, 55 % of blooms utilize nitrate supplied in the top 100 m.
Cited articles
Ardhuin, F., Aksenov, Y., Benetazzo, A., Bertino, L., Brandt, P., Caubet, E., Chapron, B., Collard, F., Cravatte, S., Delouis, J.-M., Dias, F., Dibarboure, G., Gaultier, L., Johannessen, J., Korosov, A., Manucharyan, G., Menemenlis, D., Menendez, M., Monnier, G., Mouche, A., Nouguier, F., Nurser, G., Rampal, P., Reniers, A., Rodriguez, E., Stopa, J., Tison, C., Ubelmann, C., van Sebille, E., and Xie, J.: Measuring currents, ice drift, and waves from space: the Sea surface KInematics Multiscale monitoring (SKIM) concept, Ocean Sci., 14, 337–354, https://doi.org/10.5194/os-14-337-2018, 2018. a
Cózar, A., Echevarría, F., González-Gordillo, J. I., Irigoien, X., Ubeda, B., Hernández-León, S., Palma, A. T., Navarro, S., Garcíí-de Lomas, J., Ruiz, A., Fernández-de Puelles, M. L., and Duarte, C. M.: Plastic debris in the open ocean, P. Natl. Acad. Sci. USA, 111, 10239–10244, https://doi.org/10.1073/pnas.1314705111, 2014. a
Cózar, A., Martí, E., Duarte, C. M., García-de Lomas, J., van Sebille, E., Ballatore, T. J., Eguíluz, V. M., González-Gordillo, J. I., Pedrotti, M. L., Echevarría, F., Troublè, R., and Irigoien, X.: The Arctic Ocean as a dead end for floating plastics in the North Atlantic branch of the Thermohaline Circulation, Science Advances, 3, e1600582, https://doi.org/10.1126/sciadv.1600582, 2017. a
Delandmeter, P. and van Sebille, E.: The Parcels v2.0 Lagrangian framework: new field interpolation schemes, Geosci. Model Dev., 12, 3571–3584, https://doi.org/10.5194/gmd-12-3571-2019, 2019. a, b, c
Elipot, S., Lumpkin, R., Perez, R. C., Lilly, J. M., Early, J. J., and Sykulski, A. M.: A global surface drifter data set at hourly resolution, J. Geophys. Res.-Oceans, 121, 2937–2966, https://doi.org/10.1002/2016JC011716, 2016. a, b, c
Eriksen, M., Maximenko, N. A., Thiel, M., Cummins, A., Lattin, G., Wilson, S., Hafner, J., Zellers, A. F., and Rifman, S.: Plastic pollution in the South Pacific subtropical gyre, Mar. Pollut. Bull., 68, 71–76, https://doi.org/10.1016/j.marpolbul.2012.12.021, 2013. a
Fiedler, P. C., Philbrick, V., and Chavez, F. P.: Oceanic upwelling and productivity in the eastern tropical Pacific, Limnol. Oceanogr., 36, 1834–1850, https://doi.org/10.4319/lo.1991.36.8.1834, 1991. a
Fraser, C. I., Morrison, A. K., Hogg, A. M., Macaya, E. C., van Sebille, E., Ryan, P. G., Padovan, A., Jack, C., Valdivia, N., and Waters, J. M.: Antarctica's ecological isolation will be broken by storm-driven dispersal and warming, Nat. Clim. Change, 8, 704–708, https://doi.org/10.1038/s41558-018-0209-7,
2018. a, b, c
Koelmans, A. A., Kooi, M., Law, K. L., and van Sebille, E.: All is not lost: deriving a top-down mass budget of plastic at sea, Environ. Res. Lett., 12, 114028, https://doi.org/10.1088/1748-9326/aa9500, 2017. a
Kooi, M., Nes, E. H. v., Scheffer, M., and Koelmans, A. A.: Ups and Downs in the Ocean: Effects of Biofouling on Vertical Transport of Microplastics, Environ. Sci. Technol., 51, 7963–7971, https://doi.org/10.1021/acs.est.6b04702, 2017. a
Kroodsma, D. A., Mayorga, J., Hochberg, T., Miller, N. A., Boerder, K., Ferretti, F., Wilson, A., Bergman, B., White, T. D., Block, B. A., Woods, P., Sullivan, B., Costello, C., and Worm, B.: Tracking the global footprint of fisheries, Science, 359, 904–908, https://doi.org/10.1126/science.aao5646, 2018. a, b, c, d
Kubota, M.: A mechanism for the accumulation of floating marine debris north of Hawaii, J. Phys. Oceanogr., 24, 1059–1064, 1994. a
Lange, M. and van Sebille, E.: Parcels v0.9: prototyping a Lagrangian ocean analysis framework for the petascale age, Geosci. Model Dev., 10, 4175–4186, https://doi.org/10.5194/gmd-10-4175-2017, 2017. a, b
Lavers, J. L. and Bond, A. L.: Exceptional and rapid accumulation of anthropogenic debris on one of the world's most remote and pristine islands, P. Natl. Acad. Sci. USA, 114, 6052–6055, https://doi.org/10.1073/pnas.1619818114, 2017. a
Law, K. L.: Plastics in the Marine Environment, Annu. Rev. Mar. Sci., 9, 205–229, https://doi.org/10.1146/annurev-marine-010816-060409, 2017. a
Law, K. L., Morét-Ferguson, S. E., Goodwin, D. S., Zettler, E. R., DeForce, E., Kukulka, T., and Proskurowski, G.: Distribution of Surface Plastic Debris in the Eastern Pacific Ocean from an 11-Year Data Set, Environ. Sci. Technol., 48, 4732–4738, https://doi.org/10.1021/es4053076, 2014. a
Lebreton, L. C. M., Slat, B., Ferrari, F., Sainte-Rose, B., Aitken, J., Marthouse, R., Hajbane, S., Cunsolo, S., Schwarz, A., Levivier, A., Noble, K., Debeljak, P., Maral, H., Schoeneich-Argent, R., Brambini, R., and Reisser, J.: Evidence that the Great Pacific Garbage Patch is rapidly
accumulating plastic, Scientific Reports, 8, 4666, https://doi.org/10.1038/s41598-018-22939-w, 2018. a, b
Maes, C., Grima, N., Blanke, B., Martinez, E., Paviet‐Salomon, T., and Huck, T.: A Surface “Superconvergence” Pathway Connecting the South Indian Ocean to the Subtropical South Pacific Gyre, Geophys. Res. Lett., 45, 1915–1922, https://doi.org/10.1002/2017GL076366, 2018. a
Martinez, E., Maamaatuaiahutapu, K., and Taillandier, V.: Floating marine debris surface drift: Convergence and accumulation toward the South Pacific subtropical gyre, Mar. Pollut. Bull., 58, 1347–1355, https://doi.org/10.1016/j.marpolbul.2009.04.022, 2009. a
Mestanza, C., Botero, C. M., Anfuso, G., Chica-Ruiz, J. A., Pranzini, E., and Mooser, A.: Beach litter in Ecuador and the Galapagos islands_A baseline to enhance environmental conservation and sustainable beach tourism, Mar. Pollut. Bull., 140, 573–578, https://doi.org/10.1016/j.marpolbul.2019.02.003, 2019. a
Qin, X., van Sebille, E., and Sen Gupta, A.: Quantification of errors induced by temporal resolution on Lagrangian particles in an eddy-resolving model, Ocean Model., 76, 20–30, https://doi.org/10.1016/j.ocemod.2014.02.002, 2014. a, b
Rintoul, S. R. and Naveira Garabato, A. C.: Dynamics of the Southern Ocean circulation, in: Ocean Circulation and Climate: A 21st Century Perspective, 2nd edn., edited by: Siedler, G., Griffies, S. M., Gould, J., and Church, J. A., Elsevier, 471–492, 2013. a
Schofield, J.: On the Beach: What archaeology can do for the planet, British Archaeology, 163, 36–41, 2018. a
Schofield, J., Wyles, K., Doherty, S., Donnelly, A., Jones, J., and Porter, A.: Object narratives as a methodology for mitigating marine plastic pollution: a new multidisciplinary approach, and a case study from Galápagos, Antiquity, in press, 2019. a
Stokes, G. G.: On the Theory of Oscillatory Waves, Transactions of the Cambridge Philosophical Society, 8, 441, https://doi.org/10.1017/CBO9780511702242.013,
1847. a
van den Bremer, T. S. and Breivik, Ø.: Stokes drift, Philos. T. Roy. Soc. A, 376, 20170104, https://doi.org/10.1098/rsta.2017.0104, 2018.
a
van der Mheen, M., Pattiaratchi, C., and van Sebille, E.: Role of Indian Ocean Dynamics on Accumulation of Buoyant Debris, J. Geophys. Res. Oceans, 124, 2571–2590, https://doi.org/10.1029/2018JC014806, 2019. a
van Sebille, E., van Leeuwen, P. J., Biastoch, A., Barron, C. N., and de Ruijter, W. P. M.: Lagrangian validation of numerical drifter trajectories using drifting buoys: Application to the Agulhas system, Ocean Model., 29, 269–276, https://doi.org/10.1016/j.ocemod.2009.05.005, 2009. a
van Sebille, E., Sprintall, J., Schwarzkopf, F. U., Sen Gupta, A., Santoso, A., England, M. H., Biastoch, A., and Böning, C. W.: Pacific-to-Indian Ocean connectivity: Tasman leakage, Indonesian Throughflow, and the role of ENSO, J. Geophys. Res.-Oceans, 119, 1365–1382, https://doi.org/10.1002/2013JC009525, 2014. a
van Sebille, E., Wilcox, C., Lebreton, L. C. M., Maximenko, N. A., Hardesty,
B. D., van Franeker, J. A., Eriksen, M., Siegel, D., Galgani, F., and Law,
K. L.: A global inventory of small floating plastic debris, Environ.
Res. Lett., 10, 124006, https://doi.org/10.1088/1748-9326/10/12/124006, 2015. a, b
van Sebille, E., Griffies, S. M., Abernathey, R., Adams, T. P., Berloff, P. S., Biastoch, A., Blanke, B., Chassignet, E. P., Cheng, Y., Cotter, C. J., Deleersnijder, E., Döös, K., Drake, H. F., Drijfhout, S. S., Gary, S. F., Heemink, A. W., Kjellsson, J., Koszalka, I. M., Lange, M., Lique, C., MacGilchrist, G. A., Marsh, R., Adame, C. G. M., McAdam, R., Nencioli, F., Paris, C. B., Piggott, M. D., Polton, J. A., Rühs, S., Shah, S. H. A. M., Thomas, M. D., Wang, J., Wolfram, P. J., Zanna, L., and Zika, J. D.: Lagrangian ocean analysis: Fundamentals and practices, Ocean Model., 121, 49–75, https://doi.org/10.1016/j.ocemod.2017.11.008, 2018. a
van Sebille, E.: Trajectory files, data set, https://doi.org/10.24416/UU01-5JUDNV, 2019.
Waller, C. L., Griffiths, H. J., Waluda, C. M., Thorpe, S. E., Loaiza, I., Moreno, B., Pacherres, C. O., and Hughes, K. A.: Microplastics in the Antarctic marine system: An emerging area of research, Sci. Total Environ., 598, 220–227, https://doi.org/10.1016/j.scitotenv.2017.03.283, 2017. a
Woodall, L. C., Sanchez-Vidal, A., Canals, M., Paterson, G. L. J., Coppock, R., Sleight, V., Calafat, A., Rogers, A. D., Narayanaswamy, B. E., and Thompson, R. C.: The deep sea is a major sink for microplastic debris, Roy. Soc. Open Sci., 1, 140317–140317, https://doi.org/10.1098/rsos.140317, 2014. a
Short summary
The Galápagos Archipelago and Galápagos Marine Reserve are among the world's most iconic wildlife refuges. Yet, plastic litter is now found even in this remote archipelago. It is unclear where this plastic originates from. In this study, we show that remote coastal sources of plastic pollution are fairly localized and limited to South American and Central American coastlines. Identifying how plastic ends up in the Galápagos aids integrated management opportunities to reduce plastic pollution.
The Galápagos Archipelago and Galápagos Marine Reserve are among the world's most iconic...