Articles | Volume 15, issue 5
https://doi.org/10.5194/os-15-1225-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-15-1225-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
pCO2 variability in the surface waters of the eastern Gulf of Cádiz (SW Iberian Peninsula)
Dolores Jiménez-López
CORRESPONDING AUTHOR
Departamento de Química-Física, INMAR, Facultad de Ciencias del Mar
y Ambientales, Universidad de Cádiz, Campus Universitario Río San
Pedro, 11510 – Puerto Real, Cádiz, Andalucía, Spain
Ana Sierra
Departamento de Química-Física, INMAR, Facultad de Ciencias del Mar
y Ambientales, Universidad de Cádiz, Campus Universitario Río San
Pedro, 11510 – Puerto Real, Cádiz, Andalucía, Spain
Teodora Ortega
Departamento de Química-Física, INMAR, Facultad de Ciencias del Mar
y Ambientales, Universidad de Cádiz, Campus Universitario Río San
Pedro, 11510 – Puerto Real, Cádiz, Andalucía, Spain
Soledad Garrido
Instituto Español de Oceanografía, Centro Oceanográfico
de Murcia, Varadero 1, 30740, San Pedro del Pinatar, Murcia, Spain
Nerea Hernández-Puyuelo
Departamento de Química-Física, INMAR, Facultad de Ciencias del Mar
y Ambientales, Universidad de Cádiz, Campus Universitario Río San
Pedro, 11510 – Puerto Real, Cádiz, Andalucía, Spain
Ricardo Sánchez-Leal
Instituto Español de Oceanografía, Centro
Oceanográfico de Cádiz, Puerto Pesquero, Muelle de Levante s/n,
Apdo. 2609, 11006, Cádiz, Spain
Jesús Forja
Departamento de Química-Física, INMAR, Facultad de Ciencias del Mar
y Ambientales, Universidad de Cádiz, Campus Universitario Río San
Pedro, 11510 – Puerto Real, Cádiz, Andalucía, Spain
Related authors
No articles found.
Elizabeth León-Palmero, Alba Contreras-Ruiz, Ana Sierra, Rafael Morales-Baquero, and Isabel Reche
Biogeosciences, 17, 3223–3245, https://doi.org/10.5194/bg-17-3223-2020, https://doi.org/10.5194/bg-17-3223-2020, 2020
Short summary
Short summary
CH4 emissions from reservoirs are responsible for the majority of the climatic forcing of these ecosystems. The origin of the recurrent CH4 supersaturation in oxic waters is still controversial. We found that the dissolved CH4 concentration varied by up to 4 orders of magnitude in the water column of 12 reservoirs and was consistently supersaturated. Our findings suggest that photosynthetic picoeukaryotes can play a significant role in determining CH4 concentration in oxic waters.
David Roque, Ivan Parras-Berrocal, Miguel Bruno, Ricardo Sánchez-Leal, and Francisco Javier Hernández-Molina
Ocean Sci., 15, 1381–1397, https://doi.org/10.5194/os-15-1381-2019, https://doi.org/10.5194/os-15-1381-2019, 2019
Short summary
Short summary
Global circulation of intermediate water masses has been extensively studied; however, its regional and local circulation along continental margins and variability and implications on sea floor morphologies are still not well known. In this study the intermediate water mass variability in the Gulf of Cádiz and adjacent areas has been analysed and its implications discussed. Remarkable seasonal variations of the Antarctic Intermediate Water and the Subarctic Intermediate Water are determined.
Elena Tel, Rosa Balbin, Jose-Manuel Cabanas, Maria-Jesus Garcia, M. Carmen Garcia-Martinez, Cesar Gonzalez-Pola, Alicia Lavin, Jose-Luis Lopez-Jurado, Carmen Rodriguez, Manuel Ruiz-Villarreal, Ricardo F. Sánchez-Leal, Manuel Vargas-Yáñez, and Pedro Vélez-Belchí
Ocean Sci., 12, 345–353, https://doi.org/10.5194/os-12-345-2016, https://doi.org/10.5194/os-12-345-2016, 2016
Short summary
Short summary
The Spanish Institute of Oceanography supports different operational programmes in order to observe and measure ocean characteristics. Their combination allows responses to ocean research activities and marine ecosystem management, as well as official agency requirements and industrial and main society demands. All these networks are linked to international initiatives, framed largely in supranational Earth observation sponsored by the United Nations and the European Union.
M. Ribas-Ribas, E. Anfuso, A. Gómez-Parra, and J. M. Forja
Biogeosciences, 10, 4481–4491, https://doi.org/10.5194/bg-10-4481-2013, https://doi.org/10.5194/bg-10-4481-2013, 2013
E. Prieto, C. González-Pola, A. Lavín, R. F. Sánchez, and M. Ruiz-Villarreal
Ocean Sci., 9, 411–429, https://doi.org/10.5194/os-9-411-2013, https://doi.org/10.5194/os-9-411-2013, 2013
Related subject area
Approach: In situ Observations | Depth range: Surface | Geographical range: Shelf Seas | Phenomena: Air-Sea Fluxes
A 3-year time series of volatile organic iodocarbons in Bedford Basin, Nova Scotia: a northwestern Atlantic fjord
The spatial and interannual dynamics of the surface water carbonate system and air–sea CO2 fluxes in the outer shelf and slope of the Eurasian Arctic Ocean
Spatiotemporal variations of fCO2 in the North Sea
Qiang Shi and Douglas Wallace
Ocean Sci., 14, 1385–1403, https://doi.org/10.5194/os-14-1385-2018, https://doi.org/10.5194/os-14-1385-2018, 2018
Short summary
Short summary
Time series observations can reveal processes and controlling factors underlying the production and loss of iodocarbons in the ocean and provide data for testing hypotheses and models. We report weekly observations from May 2015 to December 2017 at four depths in Bedford Basin, Canada. Iodocarbons in near-surface waters showed strong seasonal variability and similarities and differences in their correlation with temporal variations of potentially related properties and causal factors.
Irina I. Pipko, Svetlana P. Pugach, Igor P. Semiletov, Leif G. Anderson, Natalia E. Shakhova, Örjan Gustafsson, Irina A. Repina, Eduard A. Spivak, Alexander N. Charkin, Anatoly N. Salyuk, Kseniia P. Shcherbakova, Elena V. Panova, and Oleg V. Dudarev
Ocean Sci., 13, 997–1016, https://doi.org/10.5194/os-13-997-2017, https://doi.org/10.5194/os-13-997-2017, 2017
Short summary
Short summary
The study of the outer shelf and the continental slope waters of the Eurasian Arctic seas has revealed a general trend in the surface pCO2 distribution, which manifested as an increase in pCO2 values eastward. It has been shown that the influence of terrestrial discharge on the carbonate system of East Siberian Arctic sea surface waters is not limited to the shallow shelf and that contemporary climate change impacts the carbon cycle of the Eurasian Arctic Ocean and influences air–sea CO2 flux.
A. M. Omar, A. Olsen, T. Johannessen, M. Hoppema, H. Thomas, and A. V. Borges
Ocean Sci., 6, 77–89, https://doi.org/10.5194/os-6-77-2010, https://doi.org/10.5194/os-6-77-2010, 2010
Cited articles
Aït-Ameur, N. and Goyet, C.: Distribution and transport of natural and
anthropogenic CO2 in the Gulf of Cádiz, Deep-Sea Res. Pt II., 53, 1329–1343, https://doi.org/10.1016/j.dsr2.2006.04.003,
2006.
Al Azhar, M., Lachkar, Z., Lévy, M., and Smith, S.: Oxygen minimum zone
contrasts between the Arabian Sea and the Bay of Bengal implied by
differences in remineralization depth, Geophys. Res. Lett., 44, 106–114,
https://doi.org/10.1002/2017GL075157, 2017.
Alvarez, I., Ospina-Alvarez, N., Pazos, Y., deCastro, M., Bernardez, P.,
Campos, M. J., Gomez-Gesteira, J. L., Alvarez-Ossorio, M. T., Varela, M.,
Gomez-Gesteira, M., and Prego, R.: A winter upwelling event in the Northern
Galician Rias: Frequency and oceanographic implications, Estuar. Coast.
Shelf Sci., 82, 573–582, https://doi.org/10.1016/j.ecss.2009.02.023, 2009.
Anfuso, E., Ponce, R., Castro, C. G., and Forja, J. M.: Coupling between the
thermohaline, chemical and biological fields during summer 2006 in the
northeast continental shelf of the Gulf of Cádiz (SW Iberian Peninsula),
47–56, Sci. Mar., https://doi.org/10.3989/scimar.2010.74s1047, 2010.
Arístegui, J., Barton, E. D., Álvarez-Salgado, X. A., Santos,
A. M. P., Figueiras, F. G., Kifani, S., Hernández-León, S., Mason, E.,
Machú, E., and Demarcq, H.: Sub-regional ecosystem variability in the
Canary Current upwelling, Prog. Oceanogr, 83, 33–48,
https://doi.org/10.1016/j.pocean.2009.07.031, 2009.
Armi, L. and Farmer, D. M.: The flow of Mediterranean water through the
Strait of Gibraltar, Prog. Oceanogr., 21, 1–105,
https://doi.org/10.1016/0079-6611(88)90055-9, 1988.
Arnone, V., González-Dávila, M., and Santana-Casiano, J. M.:
CO2 fluxes in the South African coastal region, Mar. Chem., 195,
41–49, https://doi.org/10.1016/j.marchem.2017.07.008, 2017.
Arruda, R., Calil, P. H. R., Bianchi, A. A., Doney, S. C., Gruber, N., Lima, I., and Turi, G.: Air-sea CO2 fluxes and the controls on ocean surface pCO2 seasonal variability in the coastal and open-ocean southwestern Atlantic Ocean: a modeling study, Biogeosciences, 12, 5793–5809, https://doi.org/10.5194/bg-12-5793-2015, 2015.
Astor, Y. M., Scranton, M. I., Muller-Karger, F., Bohrer, R., and Garcia,
J.: CO2 variability at the CARIACO tropical coastal upwelling time
series station, Mar. Chem., 97, 245–261,
https://doi.org/10.1016/j.marchem.2005.04.001, 2005.
Baringer, M. O. N. and Price, J. F.: A review of the physical oceanography
of the Mediterranean outflow, Mar. Geol., 155, 63–82,
https://doi.org/10.1016/S0025-3227(98)00141-8, 1999.
Bates, N. R., Merlivat, L., Beaumont, L., and Pequignet, A. C.:
Intercomparison of shipboard and moored CARIOCA buoy seawater fCO2
measurements in the Sargasso Sea, Mar. Chem., 72, 239–255,
https://doi.org/10.1016/S0304-4203(00)00084-0, 2000.
Bauer, J. E., Cai, W. J., Raymond, P. A., Bianchi, T. S., Hopkinson, C. S.,
and Regnier, P. A.: The changing carbon cycle of the coastal ocean, Nature,
504, 61–70, https://doi.org/10.1038/nature12857, 2013.
Bellanco, M. J. and Sánchez-Leal, R. F.: Spatial distribution and
intra-annual variability of water masses on the Eastern Gulf of Cádiz
seabed, Cont. Shelf Res., 128, 26–35,
https://doi.org/10.1016/j.csr.2016.09.001, 2016.
Borges, A. V. and Frankignoulle, M.: Daily and seasonal variations of the
partial pressure of CO2 in surface seawater along Belgian and southern
Dutch coastal areas, J. Mar. Syst., 19, 251–266,
https://doi.org/10.1016/S0924-7963(98)00093-1, 1999.
Borges, A. V. and Frankignoulle, M.: Distribution of surface carbon dioxide
and air-sea exchange in the upwelling system off the Galician coast, Global
Biogeochem. Cy., 16, 1020, https://doi.org/10.1029/2000GB001385, 2002.
Borges, A. V. and Abril., G.: Treatise on Estuarine and Coastal Science,
Elsevier, Waltham, 328 pp., 2011.
Borges, A. V., Delille, B., and Frankignoulle, M.: Budgeting sinks and
sources of CO2 in the coastal ocean: Diversity of ecosystems counts,
Geophys. Res. Lett., 32, L14601, https://doi.org/10.1029/2005GL023053, 2005.
Borges, A. V., Schiettecatte, L. S., Abril, G., Delille, B., and Gazeau, F.:
Carbon dioxide in European coastal waters, Estuar. Coast. Shelf Sci., 70,
375–387, https://doi.org/10.1016/j.ecss.2006.05.046, 2006.
Burdige, D. J.: Preservation of Organic Matter in Marine Sediments?:
Controls, Mechanisms, and an Imbalance in Sediment Organic Carbon Budgets?,
Chem. Rev., 107, 467–485, https://doi.org/10.1021/cr050347q, 2007.
Burgos, M., Ortega, T., and Forja, J.: Carbon Dioxide and Methane Dynamics
in Three Coastal Systems of Cádiz Bay (SW Spain), Estuar. Coast.,
41, 1069–1088, https://doi.org/10.1007/s12237-017-0330-2, 2018.
Cai, W. J.: Estuarine and coastal ocean carbon paradox: CO2 sinks or
sites of terrestrial carbon incineration?, Ann. Rev. Mar.
Sci., 3, 123–145, https://doi.org/10.1146/annurev-marine-120709-142723,
2011.
Cai, W. J., Wang, Z. A., and Wang, Y.: The role of marsh-dominated
heterotrophic continental margins in transport of CO2 between the
atmosphere, the land-sea interface and the ocean, Geophys. Res. Lett., 30,
1–4, https://doi.org/10.1029/2003GL017633, 2003.
Cai, W. J., Dai, M., and Wang, Y.: Air-sea exchange of carbon dioxide in
ocean margins: A province-based synthesis, Geophys. Res. Lett., 33, 2–5,
https://doi.org/10.1029/2006GL026219, 2006.
Cai, W. J., Hu, X., Huang, W. J., Murrell, M. C., Lehrter, J. C.,
Lohrenz, S. E., Chou, W. C., Zhai, W., Hollibaugh, J. T., Wang, Y., Zhao,
P., Guo, X., Gunderser, K., Dai, M., and Gong, G. C.: Acidification of
subsurface coastal waters enhanced by eutrophication, Nat. Geosci., 4, 766–770,
https://doi.org/10.1038/ngeo1297, 2011.
Carvalho, A. C. O., Marins, R. V., Dias, F. J. S., Rezende, C. E.,
Lefèvre, N., Cavalcante, M. S., and Eschrique, S. A.: Air-sea CO2
fluxes for the Brazilian northeast continental shelf in a climatic
transition region, J. Mar. Syst., 173, 70–80,
https://doi.org/10.1016/j.jmarsys.2017.04.009, 2017.
Chen, C. T. A. and Borges, A. V.: Reconciling opposing views on carbon
cycling in the coastal ocean: Continental shelves as sinks and near-shore
ecosystems as sources of atmospheric CO2, Deep. Res. Part II Top. Stud.
Oceanogr., 56, 578–590, https://doi.org/10.1016/j.dsr2.2009.01.001, 2009.
Chen, C.-T. A., Huang, T.-H., Chen, Y.-C., Bai, Y., He, X., and Kang, Y.: Air–sea exchanges of CO2 in the world's coastal seas, Biogeosciences, 10, 6509–6544, https://doi.org/10.5194/bg-10-6509-2013, 2013.
Clargo, N. M., Salt, L. A., Thomas, H., and de Baar, H. J. W.: Rapid
increase of observed DIC and pCO2 in the surface waters of the North
Sea in the 2001–2011 decade ascribed to climate change superimposed by
biological processes, Mar. Chem., 177, 566–581,
https://doi.org/10.1016/j.marchem.2015.08.010, 2015.
Cohen, J. E., Small, C., Mellinger, A., Gallup, J., and Sachs, J.: Estimates
of coastal populations, Science, 278, 1209–1213,
https://doi.org/10.1126/science.278.5341.1209c, 1997.
Criado-Aldeanueva, F., García-Lafuente, J., Vargas, J. M., Del
Río, J., Vázquez, A., Reul, A., and Sánchez, A.: Distribution
and circulation of water masses in the Gulf of Cádiz from in situ
observations, Deep-Sea Res. Pt II, 53, 1144–1160,
https://doi.org/10.1016/j.dsr2.2006.04.012, 2006.
Dafner, E. V., González-Dávila, M., Santana-Casiano, J. M., and
Sempere, R.: Total organic and inorganic carbon exchange through the Strait
of Gibraltar in September 1997, Deep-Sea Res. Pt I,
48, 1217–1235, https://doi.org/10.1016/S0967-0637(00)00064-9, 2001.
de Haas, H., van Weering, T. C. E., and de Stieger, H.: Organic carbon in
shelf seas: sinks or sources, processes and products, Cont. Shelf Res., 22,
691–717, https://doi.org/10.1016/S0278-4343(01)00093-0, 2002.
de la Paz, M., Gómez-Parra, A., and Forja, J.: Inorganic carbon dynamic
and air-water CO2 exchange in the Guadalquivir Estuary (SW Iberian
Península), J. Mar. Syst., 68, 265–277,
https://doi.org/10.1016/j.jmarsys.2006.11.011, 2007.
de la Paz, M., Debelius, B., Macías, D., Vázquez, A.,
Gómez-Parra, A., and Forja, J. M.: Tidal-induced inorganic carbon
dynamics in the Strait of Gibraltar, Cont. Shelf Res., 28, 1827–1837,
https://doi.org/10.1016/j.csr.2008.04.012, 2008a.
de la Paz, M., Gómez-Parra, A., and Forja, J.: Tidal-to-seasonal
variability in the parameters of the carbonate system in a shallow tidal
creek influenced by anthropogenic inputs, Rio San Pedro (SW Iberian
Península), Cont. Shelf Res., 28, 1394–1404,
https://doi.org/10.1016/j.csr.2008.04.002, 2008b.
de la Paz, M., Gómez-Parra, A., and Forja, J. M.: Seasonal variability
of surface fCO2 in the Strait of Gibraltar, Aquat. Sci., 71, 55–64,
https://doi.org/10.1007/s00027-008-8060-y, 2009.
de la Paz, M., Padín, X. A., Ríos, A.F., and Pérez, F. F.:
Surface fCO2 variability in the Loire plume and adjacent shelf waters:
High spatio-temporal resolution study using ships of opportunity, Mar.
Chem., 118, 108–118, https://doi.org/10.1016/j.marchem.2009.11.004, 2010.
DOE: in: Guide to best practices for ocean CO2 measurement, edited by:
Dickson, A. G., Sabine, C. L. and Christian, J. R.,
North Pacific Marine Science Organization Sidney, British Columbia, 191 pp., 2007.
Echevarría, F., García-Lafuente, J., Bruno, M., Gorsky, G., Goutx,
M., González, N., García, C. M., Gómez, F., Vargas, J. M.,
Picheral, M., Striby, L., Varela, M., Alonso, J. J., Reul, A., Cózar,
A., Prieto, L., Sarhan, T., Plaza, F., and Jiménez-González, F.:
Physical-biological coupling in the Strait of Gibraltar, Deep-Sea Res. Pt.
II, 49, 4115–4130, https://doi.org/10.1016/S0967-0645(02)00145-5, 2002.
Feely, R. A., Boutin, J., Cosca, C. E., Dandonneau, Y., Etcheto, J., Inoue,
H. Y., Ishii, M., Quéré, C. L., Mackey, D. J., McPhaden, M., Metzl,
N., Poisson, A., and Wanninkhof, R.: Seasonal and interannual variability of
CO2 in the equatorial Pacific, Deep-Sea Res. Pt. II,
49, 2443–2469, https://doi.org/10.1016/S0967-0645(02)00044-9, 2002.
Fennel, K. and Wilkin, J.: Quantifying biological carbon export for the
northwest North Atlantic continental shelves, Geophys. Res. Lett., 36, 2–5,
https://doi.org/10.1029/2009GL039818, 2009.
Ferrón, S., Alonso-Pérez, F., Anfuso, E., Murillo, F. J., Ortega,
T., Castro, C. G., and Forja, J. M.: Benthic nutrient recycling on the
northeastern shelf of the Gulf of Cádiz (SW Iberian Península),
Mar. Ecol. Prog. Ser., 390, 79–95, https://doi.org/10.3354/meps08199, 2009.
Fiúza, A. F., de Macedo, M., and Guerreiro, M.: Climatological space and
time variation of the Portuguese coastal upwelling, Oceanol. Acta, 5,
31–40, 1982.
Frankignoulle, M. and Borges, A. V.: European continental shelf as a
significant sink for atmospheric carbon dioxide, Global Biogeochem. Cy.,
15, 569–576, https://doi.org/10.1029/2000GB001307, 2001.
Friederich, G. E., Walz, P. M., Burczynski, M. G., and Chavez, F. P.:
Inorganic carbon in the central California upwelling system during the
1997–1999 El Niño-La Niña event, Prog. Oceanogr., 54, 185–203,
https://doi.org/10.1016/S0079-6611(02)00049-6, 2002.
Friederich, G. E., Ledesma, J., Ulloa, O., and Chavez, F. P.: Air-sea carbon
dioxide fluxes in the coastal southeastern tropical Pacific, Prog.
Oceanogr., 79, 156–166, https://doi.org/10.1016/j.pocean.2008.10.001, 2008.
Friedl, G., Dinkel, C., and Wehrli, B.: Benthic fluxes of nutrients in the
northwestern Black Sea, Mar. Chem., 62, 77–88,
https://doi.org/10.1016/S0304-4203(98)00029-2, 1998.
García Lafuente, J. and Ruiz, J.: The Gulf of Cádiz pelagic
ecosystem: A review, Prog. Oceanogr., 74, 228–251,
https://doi.org/10.1016/j.pocean.2007.04.001, 2007.
García, C. M., Prieto, L., Vargas, M., Echevarría, F.,
García-Lafuente, J., Ruiz, J., and Rubín, J. P.: Hydrodynamics and
the spatial distribution of plankton and TEP in the Gulf of Cádiz (SW
Iberian Península), J. Plankton Res., 24, 817–833,
https://doi.org/10.1093/plankt/24.8.817, 2002.
Garcia-Lafuente, J., Delgado, J., Criado-Aldeanueva, F., Bruno, M., del Rio,
J., and Vargas, J. M.: Water mass circulation on the continental shelf of
the Gulf of Cádiz, Deep-Sea Res. Pt. II, 53,
1182–1197, https://doi.org/10.1016/j.dsr2.2006.04.011, 2006.
González-Dávila, M., Santana-Casiano, J. M., and Dafner, E. V.:
Winter mesoscale variations of carbonate system parameters and estimates of
CO2 fluxes in the Gulf of Cádiz, northeast Atlantic Ocean (February
1998), J. Geophys. Res., 108, 1–11, https://doi.org/10.1029/2001JC001243,
2003.
González-Dávila, M., Santana-Casiano, J. M., and Ucha, I. R.: Seasonal
variability of fCO2 in the Angola-Benguela region, Prog. Oceanogr., 83,
124–133, https://doi.org/10.1016/j.pocean.2009.07.033, 2009.
González-Dávila, M., Santana Casiano, J. M., and Machín, F.: Changes in the partial pressure of carbon dioxide in the Mauritanian–Cap Vert upwelling region between 2005 and 2012, Biogeosciences, 14, 3859–3871, https://doi.org/10.5194/bg-14-3859-2017, 2017.
González-García, C., Forja, J., González-Cabrera, M. C.,
Jiménez, M. P., and Lubián, L. M.: Annual variations of total and
fractionated chlorophyll and phytoplankton groups in the Gulf of Cádiz,
Sci. Total Environ., 613, 1551–1565,
https://doi.org/10.1016/j.scitotenv.2017.08.292, 2018.
Gould, W. J.: Physical oceanography of the Azores Front, Prog. Oceanogr.,
14, 167–190, https://doi.org/10.1016/0079-6611(85)90010-2, 1985.
Grasshoff, K., Erhardt, M., and Kremiling, K.: Methods of Seawater Analysis,
Verlag Chemie, New York, 419 pp., 1983.
Gypens, N., Lacroix, G., Lancelot, C., and Borges, A. V.: Seasonal and
inter-annual variability of air–sea CO2 fluxes and seawater carbonate
chemistry in the Southern North Sea, Prog. Oceanogr., 88, 59–77,
https://doi.org/10.1016/j.pocean.2010.11.004, 2011.
Hales, B., Takahashi, T., and Bandstra, L.: Atmospheric CO2 uptake by a
coastal upwelling system, Global Biogeochem. Cy., 19, 1–11,
https://doi.org/10.1029/2004GB002295, 2005.
Hofmann, E. E., Cahill, B., Fennel, K., Friedrichs, M. A. M., Hyde, K., Lee,
C., Mannino, A., Najjar, R. G., O'Reilly, J. E., Wilkin, J., and
Xue, J.: Modeling the Dynamics of Continental Shelf Carbon, Annu. Rev. Mar.
Sci., 3, 93–122, https://doi.org/10.1146/annurev-marine-120709-142740,
2011.
Huertas, E., Navarro, G., Rodríguez-Gálvez, S., and Prieto, L.: The
influence of phytoplankton biomass on the spatial distribution of carbon
dioxide in surface sea water of a coastal area of the Gulf of Cádiz
(southwestern Spain), Can. J. Bot., 83, 929–940,
https://doi.org/10.1139/b05-082, 2005.
Huertas, I. E., Navarro, G., Rodríguez-Gálvez, S., and Lubián,
L. M.: Temporal patterns of carbon dioxide in relation to hydrological
conditions and primary production in the northeastern shelf of the Gulf of
Cádiz (SW Spain), Deep-Sea Res. Pt II., 53,
1344–1362, https://doi.org/10.1016/j.dsr2.2006.03.010, 2006.
Ito, R. G., Garcia, C. A. E., and Tavano, V. M.: Net sea-air CO2 fluxes
and modelled pCO2 in the southwestern subtropical Atlantic continental
shelf during spring 2010 and summer 2011, Cont. Shelf Res., 119, 68–84,
https://doi.org/10.1016/j.csr.2016.03.013, 2016.
Jahnke, R., Richards, M., Nelson, J., Robertson, C., Rao, A., and Jahnke,
D.: Organic matter remineralization and porewater exchange rates in
permeable South Atlantic Bight continental shelf sediments, Cont. Shelf
Res., 25, 1433–1452, https://doi.org/10.1016/j.csr.2005.04.002, 2005.
Jiang, L. Q., Cai, W. J., Wanninkhof, R., Wang, Y., and Lüger, H.:
Air-sea CO2 fluxes on the U.S. South Atlantic Bight: Spatial and
seasonal variability, J. Geophys. Res., 113, C07019,
https://doi.org/10.1029/2007JC004366, 2008.
Jiang, L.-Q., Cai, W.-J., Wang, Y., and Bauer, J. E.: Influence of terrestrial inputs on continental shelf carbon dioxide, Biogeosciences, 10, 839–849, https://doi.org/10.5194/bg-10-839-2013, 2013.
Johnson, J. and Stevens, I.: A fine resolution model of the eastern North
Atlantic between the Azores, the Canary Islands and the Gibraltar Strait,
Deep-Sea Res. Pt. I, 47, 875–899,
https://doi.org/10.1016/S0967-0637(99)00073-4, 2000.
Kahl, L. C., Bianchi, A. A., Osiroff, A. P., Pino, D. R., and Piola, A. R.:
Distribution of sea-air CO2 fluxes in the Patagonian Sea: seasonal,
biological and thermal effects, Cont. Shelf Res., 143, 18–28,
https://doi.org/10.1016/j.csr.2017.05.011, 2017.
Käse, R. H., Zenk, W., Sanford, T. B., and Hiller, W.: Currents, Fronts
and Eddy Fluxes in the Canary Basin, Progr. Oceanogr., 14, 231–257,
https://doi.org/10.1016/0079-6611(85)90013-8, 1985.
Klein, B. and Siedler, G.: On the origin of the Azores Current, J. Geophys.
Res., 94, 6159–6168, https://doi.org/10.1029/JC094iC05p06159, 1989.
Körtzinger, A., Thomas, H., Schneider, B., Gronau, N., Mintrop, L., and
Duinker, J. C.: At-sea intercomparison of two newly designed underway
pCO2 systems encouraging results, Mar. Chem., 52, 133–145,
https://doi.org/10.1016/0304-4203(95)00083-6, 1996.
Landschützer, P., Gruber, N., Haumann, F. A., Rödenbeck, C., Bakker,
D. c. E., van Heuven, S., Hoppema, M., Metzl, N., Sweeney, C., Tkahashi, T.,
Tilbrook, B., and Wanninkhof, R.: The reinvigration of the Southern Ocean carbon
sink, Science, 349, 1221–1224, https://doi.org/10.1126/science.aab2620,
2015.
Laruelle, G. G., Dürr, H. H., Slomp, C. P., and Borges, A. V.:
Evaluation of sinks and sources of CO2 in the global coastal ocean
using a spatially-explicit typology of estuaries and continental shelves,
Geophys. Res. Lett., 37, L15607, https://doi.org/10.1029/2010GL043691, 2010.
Laruelle, G. G., Lauerwald, R., Pfeil, B., and Regnier, P.: Regionalized
global budget of the CO2 exchange at the air-water interface in
continental shelf seas, Global Biogeochem. Cy., 28, 1199–1214,
https://doi.org/10.1002/2014GB004832, 2014.
Laruelle, G. G., Landschützer, P., Gruber, N., Tison, J.-L., Delille, B., and Regnier, P.: Global high-resolution monthly pCO2 climatology for the coastal ocean derived from neural network interpolation, Biogeosciences, 14, 4545–4561, https://doi.org/10.5194/bg-14-4545-2017, 2017.
Lefèvre, N., da Silva Dias, F. J., de Torres, A. R., Noriega, C.,
Araujo, M., de Castro, A. C. L., Rocha, C., Jiang, S., and Ibánhez, J.
S. P.: A source of CO2 to the atmosphere throughout the year in the
Maranhense continental shelf (2∘30′ S, Brazil), Cont. Shelf Res.,
141, 38–50, https://doi.org/10.1016/j.csr.2017.05.004, 2017.
Lewis, E., Wallace, D., and Allison, L. J.: Program developed for CO2
system calculations. Carbon Dioxide Information Analysis Center, managed by
Lockheed Martin Energy Research Corporation for the US Department of Energy
Tennessee, 1998.
Litt, E. J., Hardman-Mountford, N. J., Blackford, J. C., and
Mitchelson-Jacob, G. A. Y.: Biological control of pCO2 at station L4 in
the Western English Channel over 3 years, J. Plank. Res, 32, 621–629,
https://doi.org/10.1093/plankt/fbp133, 2018.
Liu, S. M., Zhu, B. D., Zhang, J., Wu, Y., Liu, G. S., Deng, B., Zhao, M.
X., Liu, G. Q., Du, J. Z., Ren, J. L., and Zhang, G. L.: Environmental
change in Jiaozhou Bay recorded by nutrient components in sediments, Mar.
Pollut. Bull., 60, 1591–1599,
https://doi.org/10.1016/j.marpolbul.2010.04.003, 2010.
Lueker, T. J., Dickson, A. G., and Keeling, C. D.: Ocean pCO2
calculated from dissolved inorganic carbon alkalinity, and equations
for K1 and K2: validation based on laboratory measurements of
CO2 in gas and seawater at equilibrium, Mar. Chem., 70, 105–119,
https://doi.org/10.1016/S0304-4203(00)00022-0, 2000.
Mackenzie, F. T., Bewers, J. M., Charlson, R. J., Hofmann, E. E., Knauer, G.
A., Kraft, J. C., Nöthig, E. M., Quack, B., Walsh, J. J., Whitfield, M.,
and Wollast, R.: What is the importance of ocean margin processes in global
change?, in: Ocean Margin Processes in Global Change, edited by: Mantoura,
R. F. C., Martin, J. M., Wollast, R., Dahlem workshop reports, J. Wiley &
Sons, Chichester, 433–454, 1991.
Mackenzie, F. T., Lerman, A., and Andersson, A. J.: Past and present of sediment and carbon biogeochemical cycling models, Biogeosciences, 1, 11–32, https://doi.org/10.5194/bg-1-11-2004, 2004.
Michaels, A. F., Karl, D. M., and Capone, D. G.: Element stoichiometry, new
production and nitrogen fixation, Oceanography, 14, 68–77,
https://doi.org/10.5670/oceanog.2001.08, 2001.
Millero, F. J.: Thermodynamics of the carbon dioxide system in the
oceans, Geochi. Cosmo. Acta, 59, 661–677,
https://doi.org/10.1016/0016-7037(94)00354-O, 1995.
Muller-Karger, F. E., Varela, R., Thunell, R., Luerssen, R., Hu, C., and
Walsh, J. J.: The importance of continental margins in the global carbon
cycle, Geophys. Res. Lett, 32, 1–4, https://doi.org/10.1029/2004GL021346,
2005.
Navarro, G. and Ruiz, J.: Spatial and temporal variability of phytoplankton
in the Gulf of Cádiz through remote sensing images, Deep-Sea Res. Pt II., 53, 11–13, https://doi.org/10.1016/j.dsr2.2006.04.014, 2006.
Olsen, A., Brown, K. R., Chierici, M., Johannessen, T., and Neill, C.: Sea-surface CO2 fugacity in the subpolar North Atlantic, Biogeosciences, 5, 535–547, https://doi.org/10.5194/bg-5-535-2008, 2008.
Omar, A. M., Olsen, A., Johannessen, T., Hoppema, M., Thomas, H., and Borges, A. V.: Spatiotemporal variations of fCO2 in the North Sea, Ocean Sci., 6, 77–89, https://doi.org/10.5194/os-6-77-2010, 2010.
Padin, X. A., Navarro, G., Gilcoto, M., Rios, A. F., and Pérez, F. F.:
Estimation of air-sea CO2 fluxes in the Bay of Biscay based on
empirical relationships and remotely sensed observations, J. Mar. Syst., 75,
280–289, https://doi.org/10.1016/j.jmarsys.2008.10.008, 2009.
Padin, X. A., Vázquez-Rodríguez, M., Castaño, M., Velo, A., Alonso-Pérez, F., Gago, J., Gilcoto, M., Álvarez, M., Pardo, P. C., de la Paz, M., Ríos, A. F., and Pérez, F. F.: Air-Sea CO2 fluxes in the Atlantic as measured during boreal spring and autumn, Biogeosciences, 7, 1587–1606, https://doi.org/10.5194/bg-7-1587-2010, 2010.
Parsons, T. R., Maita, Y., and Lalli, C. M.: A Manual Of Chemical And
Biological Methods For Seawater Analysis, Pergamon Press, Oxford, 172 pp.,
1984.
Peliz, A., Dubert, J., Marchesiello, P., and Teles-Machado, A.: Surface
circulation in the Gulf of Cádiz: Model and mean flow structure, J.
Geophys. Res.-Oceans, 112, 1–20, https://doi.org/10.1029/2007JC004159,
2007.
Peliz, A., Marchesiello, P., Santos, A. M. P., Dubert, J., Teles-Machado,
A., Marta-Almeida, M., and Le Cann, B.: Surface circulation in the Gulf of
Cádiz: 2. Inflow-outflow coupling and the Gulf of Cádiz slope
current, J. Geophys. Res.-Oceans, 114, 1–16,
https://doi.org/10.1029/2008JC004771, 2009.
Prieto, L., Garcia, C. M., Corzo, A., Ruiz Segura, J., and Echevarria, F.:
Phytoplankton, bacterioplankton and nitrate reductase activity distribution
in relation to physical structure in the northern Alboran Sea and Gulf of
Cádiz (southern Iberian Península), Bol. Inst. Esp. Oceanogr., 15,
401–411, 1999.
Qin, B. Y., Tao, Z., Li, Z. W., and Yang, X. F.: Seasonal changes and
controlling factors of sea surface pCO2 in the Yellow Sea, in: IOP Conf.
Ser.: Earth Environ. Sci., 17, 012025,
https://doi.org/10.1088/1755-1315/17/1/012025, 2014.
Qu, B., Song, J., Yuan, H., Li, X., and Li, N.: Air-sea CO2 exchange
process in the southern Yellow Sea in April of 2011, and June, July, October
of 2012, Cont. Shelf Res., 80, 8–19,
https://doi.org/10.1016/j.csr.2014.02.001, 2014.
Rabouille, C., Mackenzie, F. T., and Ver, L. M.: Influence of the human
perturbation on carbon, nitrogen, and oxygen biogeochemical cycles in the
global coastal ocean, Geochim. Cosmo. Acta, 65, 3615–3641,
https://doi.org/10.1016/S0016-7037(01)00760-8, 2001.
Redfield, A. C., Ketchum, B. H., and Richards, F. A.: The influence of organisms
on the composition of sea-water, in: , The sea, edited by: Hill, M. N., 2,
Interscience, New York, 26–77, 1963.
Reimer, J. J., Cai, W.-J., Xue, L., Vargas, R., Noakes, S., Hu, X.,
Signorini, S. R., Mathis, J. T., Feely, R. A., Sutton, A. J., Sabine, C.,
Musielewicz, S., Chen, B., and Wanninkhof, R.: Time series of pCO2 at a
coastal mooring: Internat consistency, seasonal cycles, and interannual
variaiblity, Cont. Shelf Res., 145, 95–108,
https://doi.org/10.1016/j.csr.2017.06.022, 2017.
Ribas-Ribas, M., Gómez-Parra, A., and Forja, J. M.: Air-sea CO2
fluxes in the north-eastern shelf of the Gulf of Cádiz (southwest
Iberian Península), Mar. Chem., 123, 56–66,
https://doi.org/10.1016/j.marchem.2010.09.005, 2011.
Ribas-Ribas, M., Sobrino, C., Debelius, B., Lubián, L.M., Ponce, R.,
Gómez-Parra, A., and Forja, J. M.: Picophytoplankton and carbon cycle on
the northeastern shelf of the Gulf of Cádiz (SW Iberian Península),
Sci. Mar., 77, 49–62, https://doi.org/10.3989/scimar.03732.27D, 2013.
Ríos, A. F., Pérez, F. F., Álvarez, M. A., Mintrop, L.,
González-Dávila, M., Santana-Casiano, J. M., Lefèvre, N., and
Watson, A. J.: Seasonal sea-surface carbon dioxide in the Azores area, Mar.
Chem., 96, 35–51, https://doi.org/10.1016/j.marchem.2004.11.001, 2005.
Sala, I., Caldeira, R. M. A., Estrada-Allis, S. N., Froufe, E., and
Couvelard, X.: Lagrangian transport pathways in the northeast Atlantic and
their environmental impact, Limnol. Oceanogr. Fluids Environ., 3, 40–60,
https://doi.org/10.1215/21573689-2152611, 2013.
Sala, I., Navarro, G., Bolado-Penagos, M., Echevarría, F., and
García, C. M.: High-Chlorophyll-Area Assessment Based on Remote Sensing
Observations: The Case Study of Cape Trafalgar, Remote Sensing, 10, 165,
https://doi.org/10.3390/rs10020165, 2018.
Sánchez, R. F. and Relvas, P.: Spring-summer climatological circulation
in the upper layer in the region of Cape St. Vincent, Southwest
Portugal, ICES J. Mar. Sci., 60, 1232–1250,
https://doi.org/10.1016/S1054-3139(03)00137-1, 2003.
Sánchez, R. F., Relvas, P., Martinho, A., and Miller, P.: Physical
description of an upwelling filament west of Cape St. Vincent in late
October 2004, J. Geophys. Res.-Oceans, 113, C07044,
https://doi.org/10.1029/2007JC004430, 2008.
Sánchez-Leal, R. F., Bellanco, M. J., Fernández-Salas, L. M.,
García-Lafuente, J., Gasser-Rubinat, M., González-Pola, C.,
Hernández-Molina, F. J., Pelegrí, J. L., Peliz, A., Relvas, P.,
Roque, D., Ruiz-Villarreal, M., Sammartino, S., and Sánchez-Garrido, J.
C.: The Mediterranean Overflow in the Gulf of Cádiz: A rugged journey,
Sci. Adv., 3, eaao0609, https://doi.org/10.1126/sciadv.aao0609, 2017.
Santana-Casiano, J. M., Gonzalez-Davila, M., and Laglera, L. M.: The carbon
dioxide system in the Strait of Gibraltar, Deep-Sea Res. Pt II., 49, 4145–4161, https://doi.org/10.1016/S0967-0645(02)00147-9,
2002.
Santana-Casiano, J., González-Dávila, M., and Ucha, I.: Carbon
dioxide fluxes in the Benguela upwelling system during winter and spring: A
comparison between 2005 and 2006, Deep-Sea Res. Pt. II, 56,
533–541, https://doi.org/10.1016/j.dsr2.2008.12.010, 2009.
Schiettecatte, L. S., Thomas, H., Bozec, Y., and Borges, A. V.: High
temporal coverage of carbon dioxide measurements in the Southern Bight of
the North Sea, Mar. Chem., 106, 161–173,
https://doi.org/10.1016/j.marchem.2007.01.001, 2007.
Shaw, E. C. and McNeil, B. I.: Seasonal variability in carbonate chemistry
and air-sea CO2 fluxes in the southern Great Barrier Reef, Mar. Chem.,
158, 49–58, https://doi.org/10.1016/j.marchem.2013.11.007, 2014.
Shim, J. H., Kim, D., Kang, Y. C., Lee, J. H., Jang, S. T., and Kim, C. H.:
Seasonal variations in pCO2 and its controlling factors in surface
seawater of the northern East China Sea, Cont. Shelf Res., 27, 2623–2636,
https://doi.org/10.1016/j.csr.2007.07.005, 2007.
Smith, S. V. and Hollibaugh, J. T.: Coastal metabolism and the oceanic
organic carbon balance, Rev. Geophys, 31, 75–89,
https://doi.org/10.1029/92RG02584, 1993.
Takahashi, T., Olafsson, J., Goddard, J. G., Chipman, D. W., and Sutherland,
S. C.: Seasonal variations of CO2 and nutrients in the high-latitude
surface oceans: A comparative study, Global Biogeochem. Cy., 7, 843–878,
https://doi.org/10.1029/93GB02263, 1993.
Takahashi, T., Sutherland, S. C., Sweeney, C., Poisson, A., Metzl, N.,
Tilbrook, B., Bates, N., Wanninkhof, R., Feely, R. A., Sabine, C., Olafsson,
J., and Nojiri, Y.: Global sea-air CO2 flux based on climatological
surface ocean pCO2, and seasonal biological and temperature effects,
Deep-Sea Res. Pt. II, 49, 1601–1622,
https://doi.org/10.1016/S0967-0645(02)00003-6, 2002.
Tseng, C. M., Liu, K. K., Gong, G. C., Shen, P. Y., and Cai, W. J.: CO2
uptake in the East China Sea relying on Changjiang runoff is prone to
change, Geophys. Res. Lett., 38, 1–6, https://doi.org/10.1029/2011GL049774,
2011.
Tsunogai, S., Watanabe, S., Nakamura, J., Ono, T., and Sato, T.: A
preliminary study of carbon system in the East China Sea, J. Oceanogr., 53,
9–17, https://doi.org/10.1007/BF02700744, 1997.
Vandemark, D., Salisbury, J. E., Hunt, C. W., Shellito, S. M., Irish, J. D.,
McGillis, W. R., Sabine, C. L., and Maenner, S. M.: Temporal and spatial
dynamics of CO2 air–sea flux in the Gulf of Maine, J. Geophys. Res.-Oceans, 116, C01012, https://doi.org/10.1029/2010JC006408, 2011.
van Geen, A., Takesue, R. K., Goddard, J., Takahashi, T., Barth, J. A., and
Smith, R. L.: Carbon and nutrient dynamics during coastal upwelling off Cape
Blanco, Oregon, Deep-Sea Res. Pt. II, 47, 975–1002,
https://doi.org/10.1016/S0967-0645(99)00133-2, 2000.
Vargas-Yáñez, M., Viola, T. S., Jorge, F. P., Rubín, J. P., and
García, M. C.: The influence of tide-topography interaction on
low-frequency heat and nutrient fluxes, Application to Cape Trafalgar, Cont.
Shelf Res., 22, 115–139, https://doi.org/10.1016/S0278-4343(01)00063-2,
2002.
Volk, T. and Hoffert, M. I.: Ocean carbon pumps: Analysis of relative
strengths and efficiencies in ocean-driven atmospheric CO2 changes in
The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to
Present, Geophys. Monogr. Ser., 32, 99–110, https://doi.org/10.1029/GM032p0099,
1985.
Walsh, J. J.: On the Nature of Continental Shelves, Academic Press, New
York, 510 pp., 1988
Walsh, J. J.: Importance of continental margins in the marine biogeochemical
cycling of carbon and nitrogen, Nature, 350, 53–55,
https://doi.org/10.1038/350053a0, 1991.
Wang, S. L., Arthur Chen, C. T., Hong, G. H., and Chung, C. S.: Carbon
dioxide and related parameters in the East China Sea, Cont. Shelf Res., 20,
525–544, https://doi.org/10.1016/S0278-4343(99)00084-9, 2000.
Wang, Z. A., Cai, W. J., Wang, Y., and Ji, H.: The southeastern continental
shelf of the United States as an atmospheric CO2 source and an exporter
of inorganic carbon to the ocean, Cont. Shelf Res., 25, 1917–1941,
https://doi.org/10.1016/j.csr.2005.04.004, 2005.
Wanninkhof, R.: Relationship between wind speed and gas exchange, J.
Geophys. Res., 97, 7373–7382, https://doi.org/10.1029/92JC00188, 1992.
Wanninkhof, R.: Relationship between wind speed and gas exchange over the
ocean revisited. Limnol. Oceanogr. Methods, 12, 351–362,
https://doi.org/10.4319/lom.2014.12.351, 2014.
Weiss, R.: Carbon dioxide in water and seawater: the solubility of a
non-ideal gas, Mar. Chem., 2, 203–215,
https://doi.org/10.1016/0304-4203(74)90015-2, 1974.
Wollast, R.: The Coastal Carbon Cycle: Fluxes, Sources and Sinks, in: Ocean Margin Processes in Global Change, edited by: Mantoura, R. F. C., Martin, J. M., and Wollast, R., J.Wiley & Sons
Chichester, 365–382, 1991.
Wollast, R.: Interactions of Carbon and Nitrogen cycles in the Coastal Zone,
in: Interactions of C, N, P, and S biogeochemical cycles and global change,
edited by: Wollast, R., Mackenzie, F. T., and Chou, L., Springer, Berlin,
NATOASI Series, 14, 195–210,
https://doi.org/10.1007/978-3-642-76064-8_7, 1993.
Woolf, D. K., Land, P. E., Shutler, J. D., Goddijn-Murphy, L. M., and
Donlon, C. J.: On the calculation of air-sea fluxes of CO2 in the
presence of temperature and salinity gradients, J. Geophys. Res.-Oceans,
121, 1229–1248, https://doi.org/10.1002/2015JC011427, 2016.
Xue, L., Xue, M., Zhang, L., Sun, T., Guo, Z., and Wang, J.: Surface partial
pressure of CO2 and air-sea exchange in the northern Yellow Sea, J.
Mar. Syst., 105–108, 194–206,
https://doi.org/10.1016/j.jmarsys.2012.08.006, 2012.
Xue, L., Gao, L., Cai, W. J., Yu, W., and Wei, M.: Response of sea surface
fugacity of CO2 to the SAM shift south of Tasmania: Regional
differences, Geophys. Res. Lett., 42, 3973–3979,
https://doi.org/10.1002/2015GL063926, 2015.
Xue, L., Cai, W. J., Hu, X., Sabine, C., Jones, S., Sutton, A. J., Jiang, L.
Q., and Reimer, J. J.: Sea surface carbon dioxide at the Georgia time series
site (2006–2007): Air-sea flux and controlling processes, Prog. Oceanogr.,
140, 14–26, https://doi.org/10.1016/j.pocean.2015.09.008, 2016.
Yentsch, C. S. and Menzel, D. W.: A method for the determination of
phytoplankton chlorophyll and pheophytin by fluorescence, Deep-Sea Res.
Oceanogr. Abstracts, 10, 221–231,
https://doi.org/10.1016/0011-7471(63)90358-9, 1963.
Zeebe, R. E. and Wolf-Gladrow, D. A.: CO2 in seawater: equilibrium,
kinetics, isotopes, Elsevier Oceanography Series, Amsterdam, 347 pp., 2001.
Zhai, W. D., Dai, M., and Cai, W.-J.: Coupling of surface pCO2 and dissolved oxygen in the northern South China Sea: impacts of contrasting coastal processes, Biogeosciences, 6, 2589–2598, https://doi.org/10.5194/bg-6-2589-2009, 2009.
Zhang, L., Xue, L., Song, M., and Jiang, C.: Distribution of the surface
partial pressure of CO2 in the southern Yellow Sea and its controls,
Cont. Shelf Res., 30, 293–304, https://doi.org/10.1016/j.csr.2009.11.009,
2010.
Zhang, L., Xue, M., and Liu, Q.: Distribution and seasonal variation in the
partial pressure of CO2 during autumn and winter in Jiaozhou Bay, a
region of high urbanization, Mar. Pollut. Bull., 64, 56–65,
https://doi.org/10.1016/j.marpolbul.2011.10.023, 2012.
Short summary
The present study describes the surface distribution of the partial pressure of CO2 in the continental shelf of the eastern Gulf of Cádiz. For this, eight oceanographic cruises were carried out between March 2014 and February 2016. This distribution presents a linear dependence with the temperature and it decreases with distance from the coast. The Gulf of Cádiz shows a mean rate of −0.18 ± 1.32 mmol m-2 d-1, with an annual uptake capacity of CO2 of 4.1 Gg C year-1.
The present study describes the surface distribution of the partial pressure of CO2 in the...