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Abstract. Spatio-temporal variations in the partial pressure
of CO2 (pCO2) were studied during eight oceanographic
cruises conducted between March 2014 and February 2016
in surface waters of the eastern shelf of the Gulf of Cádiz
(SW Iberian Peninsula) between the Guadalquivir river and
Cape Trafalgar. pCO2 presents a range of variation between
320.6 and 513.6 µatm with highest values during summer and
autumn and lowest during spring and winter. For the whole
study, pCO2 shows a linear dependence with temperature,
and spatially there is a general decrease from coastal to off-
shore stations associated with continental inputs and an in-
crease in the zones deeper than 400 m related to the influence
of the eastward branch of the Azores Current. The study area
acts as a source of CO2 to the atmosphere during summer
and autumn and as a sink in spring and winter with a mean
value for the study period of−0.18±1.32 mmol m−2 d−1. In
the Guadalquivir and Sancti Petri transects, the CO2 fluxes
decrease towards offshore, whereas in the Trafalgar tran-
sect fluxes increase due to the presence of an upwelling.
The annual uptake capacity of CO2 in the Gulf of Cádiz is
4.1 Gg C yr−1.

1 Introduction

Continental shelves play a key role in the global carbon cycle
as this is where the interactions between terrestrial, marine
and atmospheric systems take place (Mackenzie et al., 1991;
Walsh, 1991; Smith and Hollibaugh, 1993). These zones are
considered to be among the most dynamic in biogeochem-
ical terms (Wollast, 1991; Bauer et al., 2013) as they are
affected by several factors, particularly high rates of pri-
mary production, remineralization and organic carbon burial
(Walsh, 1988; Wollast, 1993; de Haas et al., 2002). Conti-
nental shelves account for about 10 %–15 % of the ocean pri-
mary production, and they contribute approximately 40 % of
the total carbon sequestration through the mechanism of the
biological pump (Muller-Karger et al., 2005).

Generally, waters over the continental shelf account for ∼
15 % of the global ocean CO2 uptake (−2.6± 0.5 Pg C yr−1;
Le Quéré et al., 2018). Using direct surface ocean CO2 mea-
surements from the global Surface Ocean CO2 Atlas (SO-
CAT) database, Laruelle et al. (2014) estimated a sea–air
exchange of CO2 in these zones of −0.19± 0.05 Pg C yr−1,
lower than that estimated in other studies published in the last
decade (e.g. Borges et al., 2005; Cai et al., 2006; Chen and
Borges, 2009; Laruelle et al., 2010; Chen et al., 2013). The
discrepancies with respect to this estimation derive from the
different definitions of the continental shelf domain and the
skewed distribution of local studies (Laruelle et al., 2010).
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In several works, it has been observed that the continental
shelves present different behaviour according to their lati-
tude: they tend to act as a sink of carbon (−0.33 Pg C yr−1)
at high and middle latitudes (30–90◦) and as a weak source
(0.11 Pg C yr−1) at low latitudes (0–30◦) (Cai et al., 2006;
Hofmann et al., 2011; Bauer et al., 2013; Chen et al., 2013;
Laruelle et al., 2014, 2017). Laruelle et al. (2010) found dif-
ferences between the two hemispheres: the continental shelf
seas of the Northern Hemisphere are a net sink of CO2
(−0.24 Pg C yr−1) and those of the Southern Hemisphere are
a weak source of CO2 (0.03 Pg C yr−1).

At the continental shelf, a high spatio-temporal variabil-
ity in the air–sea CO2 fluxes occurs due to various effects,
such as the thermodynamic effects, the biological processes,
the gas exchange, the upwelling zones and the continental
inputs (e.g. Chen and Borges, 2009; Ito et al., 2016). Ther-
modynamic effects are controlled by the inverse relationship
between temperature and solubility (0.0423 ◦C−1; Takahashi
et al., 1993). Biological processes can induce CO2 uptake
or release, deriving respectively from phytoplankton photo-
synthesis that decreases the concentration of inorganic car-
bon and respiration by plankton and all other organisms that
increases the concentration of inorganic carbon (Fennel and
Wilkin, 2009). Both factors (thermodynamic effects and bi-
ological processes) are associated with the sea–air CO2 ex-
change by physical and biological pumps (Volk and Hoffert,
1985). The effects of upwelling systems are not clearly de-
fined (Michaels et al., 2001). Although this process produces
a vertical transport that brings up CO2 and remineralized in-
organic nutrients from deep seawater (Liu et al., 2010), up-
wellings are also responsible for high rates of primary pro-
duction and a reduction of pCO2 under equilibrium with the
atmosphere (e.g. van Geen et al., 2000; Borges and Frankig-
noulle, 2002; Friederich et al., 2002). Several studies indicate
that these systems act as either a source or sink of CO2 de-
pending on their location (Cai et al., 2006; Chen et al., 2013).
Upwelling systems at low latitudes act mainly as a source of
CO2 but as a sink of CO2 at mid-latitudes (Frankignoulle and
Borges, 2001; Feely et al., 2002; Astor et al., 2005; Borges
et al., 2005; Friederich et al., 2008; González-Dávila et al.,
2009; Santana-Casiano et al., 2009). Upwelling systems in
the Pacific Ocean and Indian Ocean act as sources of CO2
to the atmosphere, whereas in the Atlantic Ocean they are
sinks of atmospheric CO2 (Borges et al., 2006; Laruelle et al.,
2010). Additionally, the inner shelf is more affected by river-
ine inputs of nutrients and terrestrial carbon (e.g. Gypens et
al., 2011; Vandemark et al., 2011) and by human impact (Co-
hen et al., 1997) than the outer shelf. The influence of both
factors (riverine inputs and human impact) decreases towards
offshore (Walsh, 1991). Several studies have determined that
the inner shelf tends to act as a source of CO2 and the outer
shelf as a sink (e.g. Rabouille et al., 2001; Cai, 2003; Jiang
et al., 2008, 2013; Arruda et al., 2015). The inner platform
(depth of less than 40 m) also shows greater seasonal vari-
ability in temperature than the outer platform, and conse-

quently the effect of temperature on pCO2 will be greater
in the inner zone (Chen et al., 2013).

The Gulf of Cádiz is strategically located, connecting the
Atlantic Ocean with the Mediterranean Sea through the Strait
of Gibraltar, and in addition it receives continental inputs
from several major rivers, i.e. the Guadalquivir, Rio Tinto,
Odiel and Guadiana. Various studies have been conducted
in this area to evaluate the variability in the sea surface par-
tial pressure of CO2 (pCO2), although they cover smaller ar-
eas and a shorter duration of time than this work (González-
Dávila et al., 2003; Aït-Ameur and Goyet, 2006; Huertas et
al., 2006; Ribas-Ribas et al., 2011) or only a specific area like
the Strait of Gibraltar (Dafner et al., 2001; Santana-Casiano
et al., 2002; de la Paz et al., 2009). All of these studies, how-
ever, have determined that this zone behaves as a sink of CO2
with seasonal variations induced mainly by the combination
of the fluctuations of biomass concentration and temperature.

In this paper we evaluate the spatial and seasonal variation
in the sea-surface pCO2 on the eastern shelf of the Gulf of
Cádiz. In addition, we aim to assess the relative contribution
of the thermal and non-thermal effects to pCO2 distribution
and to determine if the area as a whole acts as a sink or a
source of CO2 to the atmosphere over time. It has also been
possible to estimate the influence that various sea surface
currents have on pCO2 variability since this study considers
deeper areas than previous works. Therefore, we can analyse
the change that has occurred in relation to the CO2 uptake ca-
pacity in the Gulf of Cádiz in the last 10 years in comparison
with other studies that analyse the seasonal variation under-
way by pCO2 in this area (Ribas-Ribas et al., 2011). In this
work we have analysed a surface measurement database of
> 26 000 values of pCO2 obtained during cruises made be-
tween 2014 and 2016 and covering an area of 0.8◦× 1.3◦ of
the Gulf of Cádiz.

2 Material and methods

2.1 Study area

This study was carried out over the eastern shelf of the
Gulf of Cádiz (Fig. 1), which forms a large basin between
the southwest of the Iberian Peninsula and the northwest of
Africa, where the Atlantic Ocean connects with the Mediter-
ranean Sea through the Strait of Gibraltar. In the Strait of
Gibraltar a bilayer flow takes place with an upper Atlantic
layer flowing towards the Mediterranean basin and a deeper
outflow of higher-density Mediterranean waters flowing to
the Atlantic Ocean (e.g. Armi and Farmer, 1988; Baringer
and Price, 1999; Sánchez-Leal et al., 2017). A similar cir-
culation pattern of opposing flows is found in the Gulf of
Cádiz where three main water masses are distributed at well-
defined depth intervals and areas: the Surface Atlantic Wa-
ter (SAW) with coastal and atmospheric influence, inflowing
at the shallowest depths; the Eastern North Atlantic Central
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Figure 1. Map of the eastern shelf of the Gulf of Cádiz showing
the location of the fixed stations located on three transects at right
angles to the coastline: Guadalquivir (GD), Sancti Petri (SP) and
Trafalgar (TF). The location of the principal surface currents, rivers
and capes of the study area are also noted.

Water (ENACW) at an intermediate depth, characterized by
low salinity; and the Mediterranean Outflow Water (MOW)
entering at the deepest level (Criado-Aldeanueva et al., 2006;
Bellanco and Sánchez-Leal, 2016).

The Gulf of Cádiz is part of one of the four major east-
ern boundary upwelling systems of the world: the North At-
lantic upwelling (e.g. Alvarez et al., 2009) that extends from
south of Cap-Vert (Senegal) to Cape Finisterre (northwest
of Spain). For this reason, the Gulf of Cádiz presents char-
acteristics typical of this system: seasonal variability of a
winds system favourable to the coastal upwelling (Fiúza et
al., 1982), high biological productivity (Navarro and Ruiz,
2006), a system of fronts and zonal currents (García Lafuente
and Ruiz, 2007) and a zone of water exchange between the
coastal zone and open ocean (Sánchez et al., 2008). How-
ever, the fact that the coastline of the study area runs more in
a W–E direction than the overall N–S direction, common to
all the eastern boundary upwelling system phenomena, and
the bilayer flow through the Strait of Gibraltar are two fac-
tors that complicate the simple eastern boundary upwelling
system conceptual model (Arístegui et al., 2009; Peliz et al.,
2009).

In addition, the surface circulation in the Gulf of Cádiz
is characterized by several different processes. These are the
presence of an anticyclonic water flow towards the east over
the shelf edge as far south as the Strait of Gibraltar, known as
the Gulf of Cádiz Current (Sánchez and Relvas, 2003; Peliz
et al., 2007); an upwelling process that occurs in the Trafal-
gar area, produced by tidal interaction with the topography
of the zone; and the mixing of surface layers induced by the
wind (Vargas-Yáñez et al., 2002; Peliz et al., 2009; Sala et al.,
2018). The centre of the gulf is also under the influence of the
eastern-end branch of the Azores Current, producing a front
subjected to a mesoscale variability (Johnson and Stevens,

2000; García-Lafuente and Ruiz, 2007; Peliz et al., 2007;
Sala et al., 2013) (Fig. 1).

2.2 Field sampling and analysis

The database for this study has been obtained following two
different sampling strategies. The first consisted of taking
sea surface measurements while underway. The second strat-
egy was to obtain measurements at several discrete surface
stations along three transects at right angles to the coast-
line: the Guadalquivir transect (GD), the Sancti Petri tran-
sect (SP) and the Trafalgar transect (TF) (Fig. 1). Data were
collected during eight cruises carried out with a seasonal fre-
quency (spring: ST1 and ST5; summer: ST2 and ST6; au-
tumn: ST3 and ST7; winter: ST4 and ST8) during 2014,
2015 and 2016 (Table 1). All the cruises were made on the
R/V Ángeles Alvariño, except the summer 2015 cruise (ST6)
that was undertaken on the R/V Ramón Margalef. The study
area is located between 35.4 and 36.7◦ N and 6.0 and 7.2◦W
(52.8× 102 km2).

2.2.1 Underway measurements

Sea surface temperature (SST), sea surface salinity (SSS) and
pCO2 were recorded continuously and were averaged with a
frequency interval of 1 min from the surface seawater supply
of the ship (pump inlet at a depth of 5 m). SST and SSS were
measured using a Sea-Bird thermosalinograph (SBE 21) with
an accuracy of±0.01 ◦C and±0.003 units, respectively. The
equilibrator design for determining the pCO2 is a combina-
tion of a laminar flow system with a bubble type system,
similar to that developed by Körtzinger et al. (1996) and de-
scribed by Padin et al. (2009, 2010).

The surface water CO2 molar fraction (xCO2) and H2O
were determined using a non-dispersive infrared gas anal-
yser (LI-COR®, LI 6262) that has a minimum accuracy of
±0.3 ppm. It was calibrated daily using two standards: a
CO2-free air for the blank and a CO2 substandard gas of
known concentration (413.2 ppm). CO2 concentration of the
substandard gas was determined from the comparison with
standard gases of NOAA with an uncertainty of 0.22 ppm
and measured with a LI-COR 6262 (±1 ppm). The temper-
ature inside the equilibrator was measured continuously by
means of a platinum resistance thermometer (PT100 probe,
±0.1 ◦C). A pressure transducer (Setra Systems, accurate to
0.05 %) was used to measure the pressure inside the equi-
librator. The xCO2 was converted into pCO2 according to
the protocol described in DOE (2007). Corrections between
the equilibrator and SST were made following Takahashi et
al. (1993). The temperature difference between the ship’s sea
inlet and the equilibrator was less than 1.5 ◦C.

2.2.2 Fixed stations

Discrete surface samples were collected at 5 m depth, using
Niskin bottles (10 L) mounted on a rosette sampler coupled
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Table 1. Date, number of measurements (n), range, average values, and standard deviation of underway sea surface temperature (SST),
sea surface salinity (SSS), and pCO2 during the eight cruises undertaken: March 2014 (ST1), June 2014 (ST2), October 2014 (ST3),
December 2014 (ST4), March 2015 (ST5), June 2015 (ST6), September 2015 (ST7) and February 2016 (ST8).

Cruise Date n SST (◦C) SSS pCO2 (µatm)

Range Mean±SD Range Mean±SD Range Mean±SD

ST1 28/03–01/04, 2014 3874 14.3–16.4 15.4± 0.6 35.57–37.06 36.11± 0.18 365.4–513.6 396.5± 19.0
ST2 25/06–01/07, 2014 4118 17.0–22.9 21.1± 0.9 35.90–36.45 36.21± 0.15 368.7–459.5 412.9± 12.6
ST3 01/10–07/10, 2014 4233 16.1–23.4 21.5± 1.3 35.80–36.79 36.26± 0.22 391.6–444.5 413.5± 9.8
ST4 10/12–16/12, 2014 2938 15.6–19.1 18.1± 0.7 34.68–36.72 36.36± 0.21 369.6–444.5 388.7± 12.9
ST5 28/03–01/04, 2015 3180 14.6–16.9 15.6± 0.4 35.54–36.52 36.12± 0.14 320.6–416.5 368.6± 14.9
ST6 19/06–25/06, 2015 3677 17.4–22.1 20.9± 0.8 35.63–36.92 36.40± 0.08 372.1–464.1 410.3± 13.8
ST7 15/09–18/09, 2015 2575 17.0–21.9 20.6± 1.1 35.03–36.79 35.64± 0.08 387.6–457.1 407.6± 11.2
ST8 02/02–03/02, 2016 1812 15.1–17.5 16.8± 0.4 35.83–36.55 36.44± 0.09 346.2–442.6 392.9± 17.9

to a Sea-Bird CTD 911+ (conductivity–temperature–depth
system), to measure pH, dissolved oxygen, chlorophyll a and
nutrient concentrations.

The pH was measured by potentiometer in duplicate us-
ing 100 mL of seawater with a glass-combined electrode
(Metrohm, 905) calibrated on the total pH scale using a TRIS
buffer solution (tris(hydroxymethyl) aminomethane; Zeebe
and Wolf-Gladrow, 2001). Dissolved oxygen values were ob-
tained with the sensor of the rosette (SBE 63) pre-calibrated
using Winkler titration (±0.1 µmol L−1) of samples collected
from several water depths at selected stations (Parsons et al.,
1984). Apparent oxygen utilization (AOU) was determined
as the difference between the solubility calculated applying
the expression proposed by Weiss (1974) and the experi-
mental values of dissolved oxygen. For chlorophyll a de-
termination, 1 L of seawater was filtered (Whatman, GF/F
0.7 µm) and frozen (−20 ◦C) until analysis in the labora-
tory. Total chlorophyll a was extracted with 90 % pure ace-
tone and quantified after 24 h by fluorometry analysis (Hi-
tachi F-2500) (Yentsch and Menzel, 1963). Nutrient samples
for analysis of nitrate and phosphate contents were filtered
through pre-combusted glass-fibre filters (Whatman, GF/F
0.7 µm) and frozen at −20 ◦C. Analyses were performed in
a segmented flow auto-analyser (Skalar, San Plus) based on
classic spectrophotometric methods (Grasshoff et al., 1983).
The accuracies of the determinations obtained are the follow-
ing: ±0.003 for pH, ±0.1µmol L−1 for dissolved oxygen,
±0.1 µg L−1 for chlorophyll a, ±0.10 µmol L−1 for nitrate,
and ±0.02 µmol L−1 for phosphate.

The corresponding data of SST, SSS and pCO2 for
the fixed stations were obtained by the underway mea-
surements, averaging data corresponding to approximately
0.9 km around the location of the fixed stations. SST and SSS
data were compared with the values collected with the CTD
coupled to the rosette sampler, and they do not show differ-
ences greater than 0.04 ◦C and 0.01 units, respectively.

2.3 Thermal and non-thermal effects on pCO2
calculations

To determine the relative importance of the thermal and non-
thermal effects on the changes in pCO2 in seawater (e.g.
Landschützer et al., 2015; Reimer et al., 2017), we follow
the method described by Takahashi et al. (2002). To remove
the thermal effect from the observed pCO2, the data were
normalized to a constant temperature (the mean in situ SST
depending on the focus considered) according to Eq. (1).

pCO2 at SSTmean = (pCO2)obs

· exp[0.0423 · (SSTmean−SSTobs)] , (1)

where the subscripts “mean” and “obs” indicate the average
and observed SST values, respectively.

To analyse the effect of the thermal changes in pCO2 at
the given observed temperatures (SSTobs) the following ex-
pression has been used:

pCO2 at SSTobs = (pCO2)mean

· exp[0.0423 · (SSTobs−SSTmean)] . (2)

When the thermal effect is removed, the remaining variations
in pCO2 are due to the non-thermal influences, such as the
biological utilization of CO2, the vertical and lateral trans-
port, the sea–air exchange of CO2, and terrestrial inputs (e.g.
Qu et al., 2014; Arruda et al., 2015; Ito et al., 2016; Xue
et al., 2016). The non-thermal effects on the surface water
pCO2, (1pCO2)n-T, can be calculated from the seasonal am-
plitude of pCO2 values normalized to the mean SST, (pCO2
at SSTmean), using Eq. (1):

(1pCO2)n-T = (pCO2 at SSTmean)max

− (pCO2 at SSTmean)min. (3)

The seasonal amplitude of pCO2 values normalized to the
observed SST (pCO2 at SSTobs) represents the thermal effect
of changes in the mean annual pCO2 value, (1pCO2)T, and
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it is calculated with the following expression:

(1pCO2)T = (pCO2 at SSTobs)max

− (pCO2 at SSTobs)min. (4)

The ratio between the thermal effects (T ) and non-thermal
effects (B) quantifies the relative importance of each effect
(Takahashi et al., 2002):

T/B = (1pCO2)T/(1pCO2)n-T. (5)

A T/B ratio greater than 1 implies the dominance of ther-
mal effects over non-thermal effects on the pCO2 dynamics.
However, a T/B lower than 1 reveals a greater influence of
non-thermal processes. This method was originally designed
for open ocean systems, but it has been widely used by other
authors in coastal areas (e.g. Schiettecatte et al., 2007; Ribas-
Ribas et al., 2011; Qu et al., 2014; Burgos et al., 2018).

In addition, Olsen et al. (2008) propose a method in which
the seasonal signal of pCO2 data is decomposed into indi-
vidual components due to variations in SST, in air–sea CO2
exchange, in SSS, and in combined mixing and biological
processes, according to Eq. (6).

dpCO2
sw,i
= dSSTpCO2

sw,i
+ dASpCO2

sw,i

+ dSSSpCO2
sw,i
+ dMBpCO2

sw,i, (6)

where the superscript “sw” makes reference to the surface
pCO2 in the seawater and “i” to the mean value between
consecutive cruises for all variables; dpCO2

sw,i is the ob-
served change in pCO2; dSSTpCO2

sw,i is the change due
to SST changes; dASpCO2

sw,i is the change due to air–sea
exchange; dSSSpCO2

sw,i is the change due to salinity vari-
ations; and dMBpCO2

sw,i is the change due to mixing plus
biology. At the same time, each process is calculated with
the following equations (Olsen et al., 2008):

dSSTpCO2
sw,i
= pCO2

sw,i
· e0.0423(1SST)

−pCO2
sw,i, (7)

where 1SST is the SST difference between two cruises.

dASpCO2
sw,i
=−

(
d ·F i

)
/MLDi, (8)

where d is the number of days passed between two cruises
(90 d approximately); F i is the mean flux of CO2; and MLDi

is the mean mixed layer depth.

dSSSpCO2
sw,i
= pCO2

sw,n+1
(

DICn+1,TAn+1,SSSn+1,SSTi
)

−pCO2
sw,n

(
DICn,TAn,SSSn,SSTi

)
, (9)

where the superscript “n” refers to the mean value of each
cruise and the variables DIC (dissolved inorganic carbon)
and TA (total alkalinity) have been estimated from pH and
pCO2 using the K1 and K2 acidity constants proposed by
Lueker et al. (2000) in the total pH scale through the pro-
gram CO2SYS (Lewis et al., 1998). dMBpCO2

sw,i is calcu-
lated as a residual, i.e. as the change in pCO2 that is not ex-
plained by other processes. Additionally, this study includes

both coastal areas and deeper areas (the analysis is divided
into a function of the system depth) between coastal (wa-
ter depth < 50 m) and distal (water depth > 50 m) areas. Thus,
MLDi in distal areas (Table 3) was calculated and derived
from the thermocline position that separates the SAW and the
ENACW (71.3–96.8 m), while the coastal areas correspond
to the depth of these areas (15–50 m).

2.4 Estimation of CO2 fluxes

Fluxes of CO2 across the sea–air interface were estimated
using the following relationship:

FCO2 = α · k · (1pCO2)sea−air, (10)

where k (cm h−1) is the gas transfer velocity; α is the sol-
ubility coefficient of CO2 (Weiss, 1974) and 1pCO2 is the
difference between the sea and air values of pCO2. The at-
mospheric pCO2 (pCO2

atm) values were obtained from the
monthly atmospheric data of xCO2 (xCO2

atm) at the Izaña
Atmospheric Research Center in Spain (Earth System Re-
search Laboratory; https://www.esrl.noaa.gov/gmd/dv/data/
index.php, last access: 9 January 2019). The xCO2

atm was
converted to pCO2

atm as described in DOE (2007).
The gas transfer velocity, k, was calculated using the pa-

rameterization formulated by Wanninkhof (2014):

k = 0.251 · u2(Sc/660)−0.5, (11)

where u (m s−1) is the mean wind speed at 10 m height on
each cruise, obtained from the shipboard weather station; Sc
is the Schmidt number of CO2 in seawater and 660 is the Sc
in seawater at 20 ◦C.

2.5 Statistical analysis

Statistical analyses were performed with IBM SPSS Statis-
tics software (version 20.0; Armonk, New York, USA). The
dataset was analysed using a one-way analysis of variance
test (ANOVA) for analysing significant differences between
cruises for discrete and continuous surface data on hydrolog-
ical and biogeochemical characteristics. The threshold value
for statistical significance was taken as p < 0.05. Moreover,
all reported linear correlations are type I and they are statisti-
cally significant with p values smaller than 0.05 in the entire
article unless indicated otherwise.

3 Results

3.1 Underway variables

Table 1 gives the ranges of variation and the mean and
standard deviation of SST, SSS and pCO2 during the eight
cruises and Fig. 2 shows the underway distribution of SST
and pCO2 in the Gulf of Cádiz. Among all the cruises, the
SST values vary between 14.3 and 23.4 ◦C. During 2014,
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SST values were found to be higher than those in 2015
and 2016 (Table 1). For the whole period, the averaged val-
ues were highest during summer (21.0± 0.8 ◦C) and au-
tumn (21.1± 1.2 ◦C), lowest during spring (15.5± 0.5 ◦C),
and intermediate during winter (17.5± 0.6 ◦C). In general,
SST tended to increase from coastal to offshore areas during
spring and winter, while in summer and autumn this SST gra-
dient was inverse (Fig. 2a). No substantial differences were
found between the three transects studied (GD, SP and TF),
although near the Guadalquivir river mouth and Cape Trafal-
gar (36.19◦ N, 6.03◦W) the lowest values of SST due to
freshwater inputs and the frequent upwelled waters, respec-
tively, were detected.

Since the cruises were carried out at the beginning of
each meteorological season, it is appropriate to analyse how
representative is the range of temperatures that has been
obtained. Figure 3 shows the mean value over the last
10 years of the maximum and minimum temperatures in the
Gulf of Cádiz acquired by an oceanographic buoy (bottom-
mounted at 36.48◦ N, 6.96◦W; Puertos del Estado; http://
www.puertos.es/es-es/oceanografia/Paginas/portus.aspx, last
access: 12 July 2018); the mean values and standard devi-
ations of the eight cruises are superimposed. It can be ob-
served that the mean values for each cruise are within the
range of variation of the typical temperature in the Gulf of
Cádiz, and the mean temperature found (18.8 ◦C) is very
close to the mean value obtained at the oceanographic buoy
(19.2 ◦C, Fig. 3). Sampling during our cruises did not detect
the highest temperatures occurring in the Gulf of Cádiz dur-
ing August, which may indicate that the real range of pCO2
variation is greater than that determined in this study.

Average values of SSS varied significantly among the
cruises, ranging between 35.03 and 37.06. The highest mean
values were recorded during February 2016 (36.44± 0.09)
and lowest during September 2015 (35.64± 0.08) (Table 1).
The lowest salinity value (35.03) and the most notable spa-
tial variation (35.03–36.36) was observed during Decem-
ber 2014 in the area of the Guadalquivir river, associated
with a period of storms with consequent major freshwater
discharges. The area that presented the highest mean salinity
value for the whole study was TF (36.19± 0.25).

During our study period, pCO2 values ranged from 320.6
to 513.6 µatm. The highest values were recorded during sum-
mer and autumn of 2014 and 2015 (Table 1) with similar
mean values, 411.6± 13.2 µatm and 410.6± 10.5 µatm, re-
spectively, found for both seasons; the lowest mean value
was logged during spring (382.5± 16.9 µatm), while winter
presented an intermediate value (390.8± 15.4 µatm). These
mean values are not significantly different and the standard
deviations are high, indicating high spatial and inter-annual
variability. In general, the pCO2 tended to decrease with the
distance to the coast (Fig. 2b). When comparing these val-
ues with pCO2 values in the atmosphere, an undersaturation
of CO2 was observed during spring and winter (15.3± 15.7
and 18.0± 11.4 µatm, respectively) and an oversaturation in

summer and autumn (−20.4± 24.6 and −8.0± 15.3 µatm,
respectively). In Fig. 2 a sharp variation of SST and pCO2
can be observed in some zones that coincides with the sta-
tions where discrete water samples were taken. This may be
due to the different sampling times at these stations, which
varied between 2 and 8 h as a function of the depth of the
system.

The database of this study includes the transition from
coastal zones with depths of the order of 20 m to distal
shelf waters with depths greater than 800 m. Figure 4 shows
the general trend of the mean values of pCO2 and SST
for different intervals of depth of the water column based
on the information obtained in the eight cruises. Although
there is no statistical difference in pCO2 or SST with bot-
tom depth, it can be observed that the highest values of
pCO2 (408.3± 26.7 µatm) correspond to the coastal zone
(< 50 m) and that values decrease down to a depth of 100–
200 m (396.1± 23 µatm). In addition, towards open waters
(> 600 m) there is a progressive increase in pCO2 and SST
(404.3± 16.5 µatm and 20.1± 2.4 ◦C, respectively).

3.2 Discrete surface variables

Table 2 shows the average values and standard deviation
for the underway averaged measurements of SST and SSS
and for the discrete samples of pH, AOU, chlorophyll a, ni-
trate and phosphate at fixed stations along the three transects
during the eight cruises. The pH presented significant dif-
ferences among the cruises with a range of variation from
7.84 to 8.34. Lowest mean values were found during sum-
mer (8.00± 0.04) and autumn (7.96± 0.05) of 2014 and
2015, respectively (Table 2), coinciding with the highest av-
erage values of pCO2 recorded (Table 1). The pH values for
spring and winter were practically equal for 2014 and 2015
(8.08±0.08 and 8.07±0.05, respectively). AOU was signif-
icantly different between all the cruises but a clear seasonal
variability was not observed. Values measured ranged from
−31.9 to 12.3 µmol L−1 with the highest values in Decem-
ber 2014 (7.7±2.1 µmol L−1) and the lowest in March 2015
(−19.1±9.4 µmol L−1) (Table 2). For both years, the lowest
mean value was recorded in spring (−11.3± 8.9 µmol L−1)
and the highest in winter (1.3±2.6 µmol L−1). All mean val-
ues were negative except for those of December 2014; that
exception may have been due to the exceptional mixing of
the water column caused by the storms. No general trend in
the spatial variations in pH and AOU was found.

Chlorophyll a values presented significant differences
among the cruises and between the same seasons of each
year. This variable varied from 0.02 to 2.37 µg L−1 with
the highest mean value measured in March 2015 (0.76±
0.55 µg L−1), which coincides with the lowest (negative)
mean value of AOU (Table 2). The lowest mean value was
in June 2014 (0.18±0.14 µg L−1). With reference to the sea-
sons of both years, the highest value was in spring (0.71±
0.46 µg L−1), followed by winter (0.58± 0.33 µg L−1) and
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Figure 2. Underway distribution of sea surface temperature (SST (◦C), a) and pCO2 (µ atm, b) during the eight cruises in the Gulf of Cádiz:
March 2014 (ST1), June 2014 (ST2), October 2014 (ST3), December 2014 (ST4), March 2015 (ST5), June 2015 (ST6), September 2015
(ST7) and February 2016 (ST8).

Table 2. Number of samples (n), mean values, and standard deviation for the averaged underway measurements of sea surface temperature
(SST), sea surface salinity (SSS), pH, apparent oxygen utilization (AOU), chlorophyll a (data from González-García et al., 2018), and nitrate
and phosphate in surface water samples (at depth of 5 m) at fixed stations during the eight cruises: March 2014 (ST1), June 2014 (ST2),
October 2014 (ST3), December 2014 (ST4), March 2015 (ST5), June 2015 (ST6), September 2015 (ST7) and February 2016 (ST8).

Cruise n SST SSS pH AOU Chlorophyll a Nitrate Phosphate
(◦C) (µmol L−1) (µg L−1)∗ (µmol L−1) (µmol L−1)

ST1 18 15.2± 0.5 36.05± 0.13 8.06± 0.03 −3.6± 8.4 0.65± 0.37 0.96± 1.01 0.14± 0.06
ST2 16 21.0± 1.3 36.11± 0.11 7.97± 0.03 −10.3± 5.7 0.18± 0.14 0.42± 0.60 0.12± 0.04
ST3 17 21.6± 0.7 36.09± 0.28 7.97± 0.06 −4.6± 3.2 0.24± 0.29 0.34± 0.27 0.09± 0.03
ST4 17 17.7± 0.7 36.03± 0.13 8.05± 0.05 7.7± 2.1 0.46± 0.33 1.05± 1.96 0.23± 0.09
ST5 16 15.4± 0.3 36.03± 0.13 8.09± 0.12 −19.1± 9.4 0.76± 0.55 0.68± 1.17 0.17± 0.09
ST6 16 21.1± 1.0 36.37± 0.05 8.01± 0.03 −2.4± 3.2 0.26± 0.34 0.12± 0.14 0.10± 0.05
ST7 17 20.6± 1.2 35.63± 0.03 7.94± 0.03 −2.6± 5.0 0.29± 0.31 0.37± 0.50 0.50± 0.55
ST8 6 16.8± 0.3 36.44± 0.04 8.09± 0.05 −5.1± 3.1 0.69± 0.32 0.41± 0.31 0.14± 0.11

∗ González-García et al. (2018).

autumn (0.26± 0.30 µg L−1), and the lowest value in sum-
mer (0.23±0.25 µg L−1). The SP transect presented the low-
est mean value of the whole study (0.33± 0.31 µg L−1) and
the TF zone the highest (0.49± 0.37 µg L−1).

Nitrate concentration did not show significant differ-
ences among the cruises, ranging between 0.00 and
1.93 µmol L−1. The highest mean value was recorded in
spring (0.82± 1.09 µmol L−1) and the lowest in summer

(0.25± 0.35 µmol L−1) of both years. The TF transect pre-
sented the highest mean concentration for the whole study
(0.77±0.76 µmol L−1). Phosphate concentration showed sig-
nificant differences among all the cruises. By season, the
highest mean value was obtained during autumn (0.31±
0.30 µmol L−1), although the average data in October 2014
(0.09±0.03 µmol L−1) were lower than that of 2015 (0.50±
0.55 µmol L−1) (Table 2). The lowest mean value was ob-
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Figure 3. Maximum and minimum sea surface temperature (SST)
variation during a 10-year period recorded by an oceanographic
buoy located in the Gulf of Cádiz (36.48◦ N, 6.96◦W). The red line
shows maximum SST variation. The green line shows minimum
SST variation. The grey line shows the average temperature for the
10-year period. Blue circles show mean values and standard devi-
ations of underway SST measured during the eight cruises carried
out during this study.

Figure 4. Underway variation in pCO2 and sea surface temperature
(SST) at different bottom-depth ranges of the water column (metres)
during the eight cruises. The mean values and standard deviations of
pCO2 (blue) and SST (red) for each range of depth are represented.
High standard deviations are associated with the seasonal and inter-
annual variability for the whole sampling period.

served during summer (0.10±0.05 µmol L−1). The GD tran-
sect presented the highest mean value of the whole study
(0.28± 0.39 µmol L−1), and the lowest values were found in
the TF and SP transects with similar values in each, 0.15±
0.07 µmol L−1 and 0.14± 0.09 µmol L−1, respectively. The
mean N/P ratio in surface waters for the whole study was
3.5± 2.0, similar to that estimated by Anfuso et al. (2010)
in the northeast continental shelf of the Gulf of Cádiz, which

indicates a relative phosphate deficit with respect to the Red-
field ratio (Redfield et al., 1963).

3.3 Air–sea CO2 exchange

Table 3 summarizes the mean values and standard devia-
tions for atmospheric pCO2, wind speed, gas transfer ve-
locity and the air–sea CO2 fluxes measured in this study.
The mean wind speeds were relatively similar for the whole
study period, ranging between 5.5±2.8 m s−1 (March 2015)
and 7.7± 4.2 m s−1 (December 2014). The gas transfer ve-
locity varied between 6.9± 0.1 cm h−1 in March 2015 and
14.4± 0.3 cm h−1 in June 2015 since it is very sensitive to
changes in wind speed. There was a slight seasonal variation
in the CO2 fluxes similar to pCO2, because they are associ-
ated to the spatio-temporal variability and they present high
standard deviations. The study area acted as a source of CO2
to the atmosphere during summer and autumn (0.7±1.5 and
1.2±0.9 mmol m−2 d−1, respectively) and as a sink in spring
and winter (−1.3± 1.6 and −1.3± 1.6 mmol m−2 d−1, re-
spectively).

4 Discussion

4.1 Thermal influence in pCO2

Numerous research studies have determined that tempera-
ture is one of the most important factors that controls the
variability in pCO2 in the ocean (e.g. Millero, 1995; Bates
et al., 2000; Takahashi et al., 2002; Carvalho et al., 2017)
as a consequence of the dependence of the solubility of
CO2 with the temperature (Weiss, 1974; Woolf et al., 2016).
When pCO2 is affected only by the temperature, Takahashi
et al. (1993) determined a relative variation in pCO2 of
0.0423 ◦C−1, equivalent to 16.9 µatm◦C−1 for experimental
pCO2 of 400 µatm. In our study, all data from all seasons
together exhibited a linear relationship between pCO2 and
SST (r2

= 0.37, Fig. 5a). This relationship becomes even
more significant when it is obtained from the mean values of
pCO2 and SST of each cruise (r2

= 0.71, Fig. 5b). The slope,
4.80 µatm ◦C−1, is lower than the thermal effect on pCO2 de-
scribed by Takahashi et al. (1993) and indicates the influence
of other non-thermal processes on the distribution of pCO2
in this zone of the Gulf of Cádiz.

There are previous studies in which the seasonal vari-
ations in pCO2 in more coastal zones of the Gulf of
Cádiz (depth < 100 m) are described (Table 4). Ribas-Ribas
et al. (2011) found in the north eastern shelf during June 2006
and May 2007 a dependence of pCO2 with temperature
similar to that found in this study (5.03 µatm ◦C−1, r2

=

0.42) and a pCO2 that ranged between 338 and 397 µatm.
In 2003, Huertas et al. (2006) found variations in pCO2
ranging between 196 µatm in March and 400–650 µatm in
August in a zone situated more to the west, between the
rivers Guadalquivir and Guadiana. In addition, de la Paz et
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Table 3. Mean values and standard deviations of mixed layer depth (MLD) in distal areas (depth > 50 m), atmospheric pCO2 (pCO2 µatm),
wind speed, gas transfer velocity (k) and air–sea CO2 fluxes for the underway measurements during the eight cruises: March 2014 (ST1),
June 2014 (ST2), October 2014 (ST3), December 2014 (ST4), March 2015 (ST5), June 2015 (ST6), September 2015 (ST7) and Febru-
ary 2016 (ST8).

Cruise MLD in distal pCO2 atm Wind speed k CO2 fluxes
areas (m) (µatm) (m s−1) (cm h−1) (mmol m−2 d−1)

ST1 71.3± 26.4 398.7± 1.8 7.7± 3.4 13.4± 0.2 −0.3± 2.3
ST2 88.6± 34.4 404.5± 0.5 7.4± 3.4 14.0± 0.3 0.9± 1.4
ST3 90.3± 34.0 397.7± 0.6 6.7± 4.0 11.8± 0.4 1.4± 0.8
ST4 96.8± 34.1 399.4± 2.2 7.7± 4.2 14.3± 0.2 −1.3± 1.7
ST5 91.5± 31.6 405.5± 0.6 5.5± 2.8 6.9± 0.1 −2.3± 0.9
ST6 89.0± 33.0 406.1± 0.8 7.5± 4.1 14.4± 0.3 0.5± 1.5
ST7 90.2± 32.0 398.4± 0.7 7.0± 3.2 12.3± 0.3 0.9± 1.1
ST8 87.0± 40.3 406.4± 0.3 6.8± 3.1 10.6± 0.1 −1.3± 1.6

Figure 5. Dependence of pCO2 with sea surface temperature (SST)
for the complete underway database during all the cruises (a) and
for the mean values of pCO2 and SST for each cruise showing their
standard deviations (b). The solid line shows the linear correlation.

al. (2009) established a variation in pCO2 between 387 µatm
in September 2005 and 329 µatm in March 2006 in the Strait
of Gibraltar, a deeper zone situated at the south eastern limit
of the Gulf of Cádiz. This dependence of pCO2 with temper-
ature has also been determined in other studies of continental
shelves, such as in the East China Sea (Wang et al., 2000), in

the northern East China Sea (Shim et al., 2007) and in the
northern Yellow Sea (Xue et al., 2012).

When comparing the data given in previous studies of
the Gulf of Cádiz with the mean value found in this study
(398.9± 15.5 µatm), it is evident that there has been an in-
crease in pCO2 during the last decade, even when tak-
ing into account the uncertainty associated with the differ-
ent measurement techniques employed. When we compare
this mean value with the value found in the shallower and
deeper zones of the Gulf of Cádiz studied by Ribas-Ribas et
al. (2011) (360.6±18.2 µatm), who used the same methodol-
ogy, there has been an increase in pCO2 of 38.3±16.9 µatm
in the last decade. For the period of time between 2006
and 2016, the rate of growth of pCO2 in the surface waters
of the Gulf of Cádiz (3.8± 1.7 µatm yr−1) exceeds the rate
of increase in pCO2 in the atmosphere (2.3 µatm yr−1 for
the last 10 years in Izaña (Earth System Research Labora-
tory; https://www.esrl.noaa.gov/gmd/dv/data/index.php, last
access: 9 January 2019)). The cause of this increase could
be a greater input of anthropogenic nutrients and inorganic
carbon from land (Mackenzie et al., 2004) since the direc-
tion and magnitude of estuarine and continental shelf CO2
exchange with the atmosphere is highly dependent on the
terrestrial organic budget and nutrient supplies to the coastal
ocean (Borges and Abril, 2011; Cai, 2011). However, we do
not have any additional evidence to confirm this effect in our
area of study currently.

4.2 Non-thermal factors controlling pCO2

In accordance with Olsen et al. (2008), Fig. 6 shows the
decomposition of the variations in pCO2 between cruises
due to changes in SST, in air–sea CO2 exchange, in SSS,
in combined mixing and biology, and in distal and coastal ar-
eas. In general, the variations are greater than those found in
other works (Olsen et al., 2008; Omar et al., 2010) because
this study considers seasonal changes against the monthly
change analysed in previous applications. The average time
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Table 4. Range, mean and standard deviation of pCO2, air–sea CO2 fluxes (FCO2) and T/B ratio found in different areas of the Gulf of
Cádiz.

Site ◦ E ◦ N Date pCO2 FCO2 T/B Reference
(µatm) (mmol m−2 d−1)a

Strait of Gibraltar −5.5 to −5.2 35.6 to 36.0 September 1997 352.8± 2.0 3± 8b – Santana-Casiano et al. (2002)
339–381

Gulf of Cádiz −7.0 to −6.5 36.3 to 36.7 February 1998 360.2± 27.9 −19.5± 3.5b – González-Dávila et al. (2003)
334–416

Gulf of Cádiz −8.3 to −6.0 33.5 to 37.0 July 2002 – 18.6± 4b – Aït-Ameur and Goyet (2006)
300–450

Northeastern shelf of −7.5 to −6.3 36.6 to 37.3 March 2003 to March 2004 – −2.5–1.0b – Huertas et al. (2006)
the Gulf of Cádiz 130–650

Strait of Gibraltar −6.0 to −5.2 35.8 to 36.1 September, December 2005; – −1.9–1.9b 2.4 de la Paz et al. (2009)
March, May 2006 320–387

Northeastern shelf of −6.8 to −6.3 36.4 to 36.9 June, November 2006; 360.6± 18.2 −2.2–3.6b 1.3 Ribas-Ribas et al. (2011)
the Gulf of Cádiz February, May 2007 338–397

Gulf of Cádiz −6.0 to −7.2 35.4 to 36.7 March, June, October, December 2014; 398.9± 15.5 −2.3–1.5c 1.15 This work
March, June, September 2015; 321–514
March 2016

a Gas transfer coefficient (k): b Wanninkhof (1992). c Wanninkhof et al. (2014).

between cruises is 86±8 d, with the exception of the last pe-
riod (between September 2015 and February 2016) that was
140 d. dpCO2

sw presents a similar variation between deep
and coastal areas but with small differences in the mean val-
ues between the distal zones (dpCO2

sw
=−3.4±28.9 µatm)

and the shallower areas (dpCO2
sw
= 0.2± 22.7 µatm). The

high standard deviations associated with this variable are
due to the spatio-temporal variability in the database. In dis-
tal areas (Fig. 6), pCO2 changes are mainly brought about
by SST (−58.4–106.2 µatm) together with mixing and bio-
logical processes (−90.8–36.2 µatm). An inverse coupling is
observed between dSSTpCO2

sw and dMBpCO2
sw since with

the increase in the system SST (increase dSSTpCO2
sw) there

is greater biological uptake of CO2 (decrease dMBpCO2
sw).

As reported in the studies of Olsen et al. (2008) and Omar
et al. (2010), the changes produced by the air–sea CO2 ex-
change are relatively small. Instead, in coastal areas (Fig. 6),
the dominant effects on pCO2 changes are produced by air–
sea CO2 exchange (−196.2 to 103.4 µatm) and mixing plus
biology (−101.1 to 198.5 µatm). In regions with shallower
mixed layers, the effect of air–sea exchange on the pCO2
variation is larger (Olsen et al., 2008). A relative inverse
coupling between the two factors was also observed; out-
gassing is produced (decrease dASpCO2

sw,i) when the sys-
tem receives greater inputs or production of CO2 (increase
dMBpCO2

sw). There is a different behaviour between the
transition from spring to summer of 2014 (ST1 and ST2)
and 2015 (ST5 and ST6) for dMBpCO2

sw, which may be
due to a greater quantity of continental inputs, as reflected in
the Guadalquivir river flow rate in these periods (85.1±75.4
and 25.3±10.2 m3 s−1, respectively). Changes in SSS do not
have a substantial effect on pCO2 during the whole period in
both areas with a range of variation in dSSSpCO2

sw,i between

−11.3 and 11.0 µatm. This behaviour was also described by
Olsen et al. (2008) in the subpolar North Atlantic, except
for an area influenced by continental runoff where pCO2 de-
creases.

In relation to the factors that affect the pCO2 changes
brought about by mixing and biological processes, a de-
pendence between the mean values of pCO2 and pH, AOU
and the concentration of chlorophyll a has been observed
at the fixed stations (n= 126, Fig. 7). AOU and pCO2
show a positive relationship (pCO2 (µatm)= 410+ 1.1 AOU
(µmol L−1), r2

= 0.21) with a slope close to what would be
obtained taking into account the processes of formation or
oxidation of the organic matter phytoplankton considering
a Redfield-type relationship. Inverse relationships between
pCO2 and dissolved oxygen were also found in other stud-
ies of a continental shelf (Zhai et al., 2009; de la Paz et
al., 2010; Xue et al., 2012, 2016). The pCO2 and pH de-
pendence presents an inverse relationship (pCO2 (µatm)=
1710− 162.8 pH, r2

= 0.34) due to the effect of the uptake
or production of CO2 on the pH (Tsunogai et al., 1997;
Shaw et al., 2014). The variation in pCO2 with chloro-
phyll a (pCO2 (µatm)= 413−20.8 [chlorophyll a] (µg L−1),
r2
= 0.14) also shows the influence of the processes of pho-

tosynthesis and respiration (e.g. Cai et al., 2011; Clargo et
al., 2015) with a slope value similar to that obtained in the
study of Huertas et al. (2005) (pCO2 (µatm)= 274− 19.6
[chlorophyll a] (µg L−1), r2

= 0.32; n= 28). Other authors
have also described the interrelationships existing between
pCO2 and chlorophyll a in other coastal areas (Borges and
Frankignoulle, 1999; Tseng et al., 2011; Zhang et al., 2012;
Qin et al., 2014; Litt et al., 2018).

Something that could affect the distribution of pCO2 in the
Gulf of Cádiz (and could be considered to be part of mixing
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Figure 6. Observed changes in pCO2 (first row) and pCO2 changes
broken down due to SST changes (second row), air–sea CO2 ex-
change (third row), SSS changes (fourth row), and biology plus
mixing (last row) in the distal (left column) and coastal areas (right
column) between the periods of each cruise: ST1 (March 2014),
ST2 (June 2014), ST3 (October 2014), ST4 (December 2014), ST5
(March 2015), ST6 (June 2015), ST7 (September 2015) and ST8
(February 2016).

and biology; sensu Olsen et al., 2008) is the vertical and lat-
eral transport. For example, there are two upwelling systems
in our study zone: one more permanent situated in the coastal
zone (depth between 50 and 100 m) of the Trafalgar section
(Prieto et al., 1999; Vargas-Yáñez et al., 2002) and the other
located between the Cape Santa María and the Guadalquivir
river and more sensitive to meteorological forcing (Criado-
Aldeanueva et al., 2006). In our database, experimental evi-
dence of the upwelling was found only in the TF transect. A
local decrease in the mean values of SST (17.4 ◦C) and pCO2
(399.1 µatm) was observed in this coastal area of TF with
respect to the deeper areas (18.8 ◦C and 405.1 µatm, respec-
tively) for the whole period. This input of colder waters could
cause higher or lower concentrations of CO2 (e.g. Liu et al.,

Figure 7. Relationships between the surface values of pCO2 and
apparent oxygen utilization (AOU), pH and chlorophyll a (Chl a) at
the 16 discrete stations during the eight cruises. pCO2 presents the
standard deviation associated with the mean value obtained from
the underway measurements.

2010; Xue et al., 2015; González-Dávila et al., 2017). There
is a progressive increase in SST and pCO2 with increasing
depth of the system measured below 100–200 m (Fig. 4); this
is associated with the presence of a branch of the Azores Cur-
rent that introduces warmer waters in the central part of the
Gulf of Cádiz (Gould, 1985; Käse et al., 1985; Johnson and
Stevens, 2000). The influence of warmer surface currents on
the variability in pCO2 has been observed in other studies,
such as the Gulf Stream in the southeastern continental shelf
of the United States (Wang et al., 2005; Jiang et al., 2008) and
the Kuroshio Current in the northern East China Sea (Shim
et al., 2007).

Additionally, related to the lateral transport on the distri-
bution of pCO2 in surface waters, several authors have de-
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scribed the influence of the continental inputs. In general,
the continental shelf as a whole acts as a sink of atmospheric
CO2 (e.g. Rabouille et al., 2001; Chen and Borges, 2009),
whereas the coastal zone is usually oversaturated with CO2
(Fig. 4). This behaviour has been described in other sys-
tems, including the southern part of the Yellow Sea (Qu et
al., 2014), the southwestern part of the Atlantic Ocean (Ar-
ruda et al., 2015), the North Sea (Clargo et al., 2015) and on
the continental shelf of Maranhense (Lefèvre et al., 2017).

The principal continental inputs in the northeast zone of
the Gulf of Cádiz derive from the estuary of the Guadalquivir
and from the systems associated with the Bay of Cádiz.
De la Paz et al. (2007) found values of pCO2 higher
than 3000 µatm in the internal part of the estuary of the
Guadalquivir, and Ribas-Ribas et al. (2013) established that
this estuary acts as an exporter system of inorganic carbon,
nutrients and water oversaturated with CO2 to the adjoin-
ing coastal zone. The importance of the contributions from
the Guadalquivir on the distribution of pCO2 depends on
the river’s flow rate, as can be appreciated in Fig. 2b. The
highest values of pCO2 (up to 500 µatm) were observed
during March 2014 in the zone close to the Guadalquivir
river mouth, a consequence of the river’s high flow rate
(between 192.7 and 299.2 m3 s−1; Confederación Hidro-
gráfica del Guadalquivir; http://www.chguadalquivir.es/saih/
DatosHistoricos.aspx, last access: 19 July 2018). In contrast,
the lowest values of pCO2 were recorded in spring of 2015
in this zone (as low as 320 µatm) in a period of drought (flow
rate 20 m3 s−1) and subject to intense biological activity as-
sociated with the highest value found for the concentration
of chlorophyll a (2.4 µg L−1). The Bay of Cádiz occupies an
area of 38 km2 and receives urban effluents from a popula-
tion of 640 000 inhabitants. This shallow zone is oversatu-
rated with CO2 (Ribas-Ribas et al., 2011) due largely to the
inputs of inorganic carbon, organic matter and nutrients that
are received from the Guadalete River, Sancti Petri Channel
and the Río San Pedro tidal creeks (de la Paz et al., 2008a, b;
Burgos et al., 2018).

Moreover, in the coastal zone another source of CO2 re-
sults from the net production of inorganic carbon derived
from the processes of remineralization of the organic mat-
ter in the surface sediments originating from the continu-
ous deposition of organic matter through the water column
(de Haas et al., 2002; Jahnke et al., 2005). The intensity
of this effect decreases towards offshore areas since the in-
fluence of primary production and the continental supplies
on the deposition of the particulate organic matter are less
(Friedl et al., 1998; Burdige, 2007; Al Azhar et al., 2017),
which could be related to the greater effect determined by
the mixing and biology processes in the coastal areas using
the Olsen et al. (2008) method. Ferrón et al. (2009) quantified
the release from the sediment of DIC related to the processes
of oxidation of organic matter in the coastal zone (depth
<50 m) of the Gulf of Cádiz, between the Guadalquivir and
the Bay of Cádiz. These authors found a mean benthic flux

of 27± 8 mmol C m−2 d−1 for stations with a mean depth
of 23 m. This flux of DIC is equivalent to a CO2 flux of
198± 80 µmol C m−2 d−1 through the sediment–water inter-
face when considering a well-mixed water column, a pH of
8, the conditions of mean temperature and salinity in the Gulf
of Cádiz (18.8 ◦C and 36.19, respectively), and using the K1
and K2 acidity constants proposed by Lueker et al. (2000) in
the total pH scale through the program CO2SYS (Lewis et
al., 1998). Moreover, this estimated CO2 benthic flux would
produce an increase in pCO2 of 0.25± 0.10 µatm d−1 in the
water column.

4.3 T/B ratio

In this study, the total T/B ratio is 1.15, which indicates that
the thermal effect is an important factor controlling intra-
annual variation in pCO2. This value is similar to that de-
termined by Ribas-Ribas et al. (2011) (see date and study
zone in Table 4) in the northeast zone of the shelf of the Gulf
of Cádiz with a ratio of 1.3. De la Paz et al. (2009) (see date
and study zone in Table 4) propose a T/B ratio of 2.4 in the
Strait of Gibraltar, indicating very significant thermal control
in this relatively deep zone situated to the east of the Gulf of
Cádiz.

Figure 8 presents the values of the T/B ratio grouped in
different bottom-depth intervals of the water column in the
system. The variations found in non-thermal 1pCO2 and
thermal1pCO2 have been superimposed. In the coastal zone
(depth < 50 m), the T/B ratio is below 1 (0.9) and increases
to values of 1.3 in the central zone of the Gulf of Cádiz at
depths ranging from 100 to 400 m. However, in the deep-
est zone (depth > 600 m), a progressive decrease to a value of
1.1 is found. Qu et al. (2014) also reported the variation in the
values of the T/B ratio with the distance from the coast in the
southern Yellow Sea: between 0.4 and 0.6 in the nearshore
area (depth < 50 m) to more than 1 (up to 2.4) in the offshore
area (depth > 50 m).

This variation in the T/B ratio is largely caused by the
variations in 1pCO2 non-thermal effects, which are ob-
served to decrease from the coast to the deeper zone regard-
less of which method is used (Takahashi et al., 2002; Olsen
et al., 2008). High values of non-thermal 1pCO2 close to
the coast were observed (120.2 µatm), affected by continen-
tal inputs, processes of remineralization in the sediment and
biological utilization of CO2. The increase in the T/B ratio
and the decrease in non-thermal 1pCO2 (75 µatm) from the
coastal zone to the central part of the Gulf of Cádiz are as-
sociated with the variations in the chlorophyll a and nutrient
concentrations that diminish exponentially with the depth of
the system. Thus, the mean concentrations of chlorophyll a,
nitrate and phosphate in the distal zone are 66.3 %, 81.9 %
and 44.8 % less, respectively, than the concentrations found
close to the coast. However, the concentrations of chloro-
phyll a and nutrients are relatively constant in waters with
bottom depth greater than 200 m and do not explain the

Ocean Sci., 15, 1225–1245, 2019 www.ocean-sci.net/15/1225/2019/

http://www.chguadalquivir.es/saih/DatosHistoricos.aspx
http://www.chguadalquivir.es/saih/DatosHistoricos.aspx


D. Jiménez-López et al.: pCO2 variability in the surface waters of the eastern Gulf of Cádiz 1237

Figure 8. Variation of the T/B ratio (blue bar), non-thermal
1pCO2 (green point) and thermal 1pCO2 (red point) at differ-
ent bottom-depth ranges of the water column (metres) for the eight
cruises.

Figure 9. Variation of the T/B ratio (blue bar), the T/B ratio at
depths < 100 m (green bar), the T/B ratio at depths > 100 m (red
bar), and 1pCO2 non-thermal effects (green point) and 1pCO2
thermal effects (red point) on the three transects of the study
(Guadalquivir, Sancti Petri and Trafalgar) during the eight cruises.

decrease in the T/B ratio and the increase in non-thermal
1pCO2 (90.7 µatm) in waters with bottom depth greater
than 400 m. These variations have been associated with the
change in the origin of the surface water masses. In the cen-
tral zone of the Gulf of Cádiz, the origin of the surface waters
is a branch of the larger-scale Portuguese-Canaries eastern
boundary current that circulates around a cyclonic eddy off
Cape St. Vincent and veers eastward into the Gulf of Cádiz
(García-Lafuente et al., 2006). The deepest zone is under
the influence of a branch of the Azores Current, which is a
warmer stream that could lead to an increase in primary pro-
duction; in addition it is the northern border of the subtrop-
ical gyre (Klein and Siedler, 1989); these two factors favour
the accumulation of CO2 in this area as a convergence zone
(Ríos et al., 2005).

The T/B ratios have also been calculated for the different
transects at right angles to the coast, as shown in Fig. 9. The
T/B ratio increases with the distance from the coast for the
three transects and the temperature generally has a greater
influence on the distribution of pCO2 than the non-thermal
effects. The T/B ratio varies to the east with values between
1.0 in the zone of the GD and 1.4 in SP and an intermediate
value of 1.2 in the TF zone. These variations are related to
changes in the biological activity and the presence of coastal
upwelling. The Guadalquivir zone receives substantial con-
tinental supplies that lead to high relative concentrations of
chlorophyll a and nutrients; these give rise to high values of
non-thermal 1pCO2. In particular, coastal waters near the
mouth of the Guadalquivir river show the highest primary
production of all waters within the Gulf of Cádiz (Navarro
and Ruiz, 2006). The coastal zone close to Cape Trafalgar
has been characterized as a region with high autotrophic pro-
ductivity and biomass associated mainly with the nutrients
input due to upwelling waters (e.g. Echevarría et al., 2002;
García et al., 2002). The presence of these emerging water
masses could be related to the relatively low values of ther-
mal 1pCO2 found in this zone; in fact, the mean tempera-
ture in this area is 18.4± 2.3 ◦C, about 0.5 ◦C lower than in
the other two zones. The Sancti Petri zone is the one that re-
ceives a smaller supply of nutrients and presents the lowest
concentrations of chlorophyll a in this study. The high values
of thermal 1pCO2 in this part of the Gulf of Cádiz are asso-
ciated with a higher mean temperature (19.0 ◦C) and a wider
range of variation (6.8 ◦C).

4.4 Ocean–atmosphere CO2 exchange

In the Gulf of Cádiz, the air–sea flux of CO2 exhibits a range
of variation from −5.6 to 14.2 mmol m−2 d−1. These values
are within the ranges observed by other authors in differ-
ent areas of the Gulf of Cádiz (Table 4). As can be seen in
Fig. 10, seasonal and spatial variations were observed in the
air–sea fluxes during the period studied. The Gulf of Cádiz
acts as a source of CO2 to the atmosphere during the months
of summer (ST2, ST6) and autumn (ST3, ST7) and as a sink
in spring (ST1, ST5) and winter (ST4, ST8). Previous stud-
ies conducted in the Gulf of Cádiz are consistent with the
behaviour found in this study (González-Dávila et al., 2003;
Aït-Ameur and Goyet, 2006; Ribas-Ribas et al., 2011).

As discussed above for pCO2, temperature change is one
of the principal factors that controls the fluxes of CO2. In
fact, for each cruise, a linear and positive relationship was
found between the mean values of the CO2 fluxes and SST
(r2
= 0.72, Fig. 11). In parallel, there is a linear and nega-

tive relationship between the mean values of the CO2 fluxes
and the concentration of chlorophyll a at the discrete stations
sampled (r2

= 0.74, Fig. 11) as a consequence of the biolog-
ical utilization of the CO2 and the subsequent tendency for
CO2 undersaturation (Qin et al., 2014). Such relationships
have also been found in various studies carried out in zones
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Figure 10. Spatial distribution of mean values of air–sea CO2 fluxes
in the eastern shelf of the Gulf of Cádiz at the 16 discrete stations
during spring (ST1, ST5), summer (ST2, ST6), autumn (ST3, ST7)
and winter (ST4, ST8).

Figure 11. Correlations between the mean values of air–sea
CO2 fluxes and sea surface temperature (SST) for the underway
database (a) and the CO2 fluxes and chlorophyll a (Chl-a) at the 16
discrete surface stations (b) for each cruise and showing the stan-
dard deviations.

similar to the area studied (Zhang et al., 2010; Arnone et al.,
2017; Carvalho et al., 2017).

The air–sea fluxes of CO2 in the Gulf of Cádiz tend to
decrease with the distance from the coast (Fig. 10). The
coastal zone (< 50 m) presents a mean air–sea CO2 flux of
0.8± 1.8 mmol m−2 d−1 that reduces progressively to reach
a value of−0.3±1.6 mmol m−2 d−1 in open waters with bot-
tom depth greater than 600 m. However, these differences are
not statistically significant because of the high standard de-
viations associated with the seasonal variations. This depen-
dence of the air–sea CO2 fluxes with distance from the coast
has also been reported in other systems, such as in the South
Atlantic Bight of the United States (Jiang et al., 2008), in
the southwestern part of the Atlantic Ocean (Arruda et al.,
2015), in the Patagonian Sea (Kahl et al., 2017) and on the
continental shelf of Maranhense (Lefèvre et al., 2017). This
dependence is the consequence of the decrease in influence
of the continental supplies on the CO2 fluxes as one moves

towards the open sea. Ribas-Ribas et al. (2011) also found
that in the Gulf of Cádiz the air–sea CO2 fluxes vary with
the distance from the coast; the zone close to the estuary
of the Guadalquivir and the Bay of Cádiz acts as a source
(1.39 mmol m−2 d−1) and the zone comprising the rest of the
shelf acts as a sink (−0.44 mmol m−2 d−1).

In addition, on both the GD and SP transects a decrease
in the air–sea CO2 flux is found towards the open ocean due
to the continental inputs associated with the estuary of the
Guadalquivir and with the Bay of Cádiz, respectively. On the
TF transect, in contrast, it was observed that the zone close to
the coast acts as a sink of CO2 (−0.4± 1.2 mmol m−2 d−1)
and the deeper zone is a weak source of CO2 to the atmo-
sphere (0.3± 1.3 mmol m−2 d−1), although these variations
are not statistically significant due to the seasonal variability
associated with the values. This finding can be explained by
the presence of an upwelling close to the coast that is likely
to be causing an increase in the production (e.g. Hales et al.,
2005; Borges et al., 2005). With reference to this, on the TF
transect there are significant differences between the mean
surface concentrations of chlorophyll a and nitrate in the
coastal zone (0.63± 0.43 µg L−1 and 1.09± 0.77 µmol L−1,
respectively) and in deeper zones (0.17± 0.12 µg L−1 and
0.32± 0.33 µmol L−1, respectively).

The Gulf of Cádiz carbon flux, during the sampling pe-
riod, shows a mean rate of−0.18±1.32 mmol m−2 d−1 even
though it is necessary to consider the intrinsic variability in
the database that generates a high standard deviation. With
the total surface of the study area (52.8× 102 km2) and the
mean annual flux during the eight cruises, the uptake capac-
ity estimated for the Gulf of Cádiz will be 4.1 Gg C yr−1.
The findings of previous studies carried out in the Gulf of
Cádiz coincide with the behaviour observed in this study
(Santana-Casiano et al., 2002; González-Dávila et al., 2003;
Huertas et al., 2006; de la Paz et al., 2009; Ribas-Ribas et
al., 2011), with the exception of the study by Aït-Ameur
and Goyet (2006) in which it was estimated that the Gulf
of Cádiz acts as a source of CO2 to the atmosphere, although
that study only corresponds to the summer season.

5 Conclusions

A high variability in pCO2 in the Gulf of Cádiz was observed
which is associated with its location as a transition zone be-
tween coastal and shelf areas, superimposed on the usual
seasonal variation due to thermal and biological effects. The
mean value of pCO2 found in this study (398.9±15.5 µatm)
indicates that the Gulf of Cádiz could be slightly under-
saturated in CO2 with respect to the atmosphere (402.1±
3.9 µatm). The spatio-temporal variation in pCO2 found re-
sponds to the influence of different factors that usually affect
its distribution in the littoral oceans. The temporal variability
in pCO2 is principally explained by two factors, considering
the mean values of the eight cruises: SST (pCO2 (µatm)=
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302.0+ 5.16 SST (◦C), r2
= 0.71) and biological activity,

represented by chlorophyll a (pCO2 (µatm)= 425.0−59.15
[chlorophyll a] (µg L−1), r2

= 0.76). Over and above these
general tendencies, there are spatial variations associated
fundamentally with other processes. Firstly, the dominant ef-
fects in the shallower areas are also due to the continental
inputs, the biological activity and the air–sea CO2 exchange.
Then pCO2 values diminish progressively in line with in-
creasing distance from the coast, out as far as an approximate
depth of some 400 m. There is a relative increase in SST and
pCO2 as a consequence of a change in the origin of the sur-
face water, with the arrival of waters in a warm branch of the
Azores Current and the change produced by the biological
activity.

The total T/B ratio (1.15) of the region suggests that the
distribution is principally controlled by temperature changes.
However, the situation is more complicated if the ratio is con-
sidered a function of bottom depth, which is associated with
the existence of non-thermal processes. In the proximity of
the Guadalquivir estuary the ratio takes a value of 0.93 due
to the continental inputs of C and nutrients, and in the zone
around the coastal upwelling off Cape Trafalgar the ratio is
1.09. Furthermore, the actual characteristics of the surface
water mass that originates under the influence of a branch of
the Azores Current also produce a decrease in the T/B ratio
in the deeper zone studied (1.05 for depths > 600 m). In con-
trast, the highest T/B ratio values have been found in the SP
transect, where values of up to 1.54 are obtained for depths
greater than 100 m, probably related to the greater effect of
thermal processes.

The annual uptake capacity of CO2 by the surface waters
in our study area is 4.1 Gg C yr−1. The air–sea CO2 fluxes
present seasonal variation: these waters act as a source of
CO2 to the atmosphere in summer and autumn and as a sink
in winter and spring. Based on the information available in
the zone, there seems to have been a decrease in the capac-
ity for CO2 capture in the zone in recent decades since the
pCO2 has increased from 360.6± 18.2 µatm in a study re-
alized between 2006 and 2007 (Ribas-Ribas et al., 2011) to
398.9±15.5 µatm in actuality and this exceeds the rate of in-
crease in pCO2 in the atmosphere (2.3 µatm yr−1 for the last
10 years).
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