Articles | Volume 14, issue 5
Ocean Sci., 14, 999–1019, 2018
Ocean Sci., 14, 999–1019, 2018

Research article 11 Sep 2018

Research article | 11 Sep 2018

Circulation of the Turkish Straits System under interannual atmospheric forcing

Ali Aydoğdu et al.

Related authors

Data assimilation using adaptive, non-conservative, moving mesh models
Ali Aydoğdu, Alberto Carrassi, Colin T. Guider, Chris K. R. T Jones, and Pierre Rampal
Nonlin. Processes Geophys., 26, 175–193,,, 2019
Short summary
OSSE for a sustainable marine observing network in the Sea of Marmara
Ali Aydoğdu, Timothy J. Hoar, Tomislava Vukicevic, Jeffrey L. Anderson, Nadia Pinardi, Alicia Karspeck, Jonathan Hendricks, Nancy Collins, Francesca Macchia, and Emin Özsoy
Nonlin. Processes Geophys., 25, 537–551,,, 2018
Short summary

Cited articles

Alpar, B., Doğan, E., Yüce, H., and Altıok, H.: Sea level changes along the Turkish coasts of the Black Sea, the Aegean Sea and the Eastern Mediterranean, Mediterr. Mar. Sci., 1, 141–156, 2000. a
Altıok, H., Sur, H. İ., and Yüce, H.: Variation of the cold intermediate water in the Black Sea exit of the Strait of Istanbul (Bosphorus) and its transfer through the strait, Oceanologia, 54, 233–254, 2012. a, b
Aydogdu, A., Hoar, T. J., Vukicevic, T., Anderson, J. L., Pinardi, N., Karspeck, A., Hendricks, J., Collins, N., Macchia, F., and Özsoy, E.: OSSE for a sustainable marine observing network in the Sea of Marmara, Nonlin. Processes Geophys., 25, 537–551,, 2018. a
Beşiktepe, Ş. T., Sur, H. I., Özsoy, E., Latif, M. A., Oğuz, T., and Ünlüata, Ü.: The circulation and hydrography of the Marmara Sea, Prog. Oceanogr., 34, 285–334, 1994. a, b, c, d, e, f, g
Bogdanova, C.: Seasonal fluctuations in the inflow and distribution of the Mediterranean waters in the Black Sea, in: Basic Features of the Geological Structure, of the Hydrologic Regime and Biology of the Mediterranean Sea, Academy of Sciences, USSR, Moskow., 131–139, english translation 1969 Institute of Modem Languages, Washington DC, 1969. a
Short summary
A 6-year simulation of the Turkish Straits System is presented. The simulation is performed by a model using unstructured triangular mesh and realistic atmospheric forcing. The dynamics and circulation of the Marmara Sea are analysed and the mean state of the system is discussed on annual averages. Volume fluxes computed throughout the simulation are presented and the response of the model to severe storms is shown. Finally, it was possible to assess the kinetic energy budget in the Marmara Sea.