Articles | Volume 14, issue 1
https://doi.org/10.5194/os-14-161-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-14-161-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Decorrelation scales for Arctic Ocean hydrography – Part I: Amerasian Basin
Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und
Meeresforschung, Bremerhaven, Germany
Frank Kauker
Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und
Meeresforschung, Bremerhaven, Germany
Ocean Atmosphere Systems, Hamburg, Germany
Michael Karcher
Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und
Meeresforschung, Bremerhaven, Germany
Ocean Atmosphere Systems, Hamburg, Germany
Benjamin Rabe
Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und
Meeresforschung, Bremerhaven, Germany
Mary-Louise Timmermans
Yale University, Department of Geology and Geophysics, New Haven, CT, USA
Axel Behrendt
Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und
Meeresforschung, Bremerhaven, Germany
Rüdiger Gerdes
Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und
Meeresforschung, Bremerhaven, Germany
Jacobs University, Physics and Earth Sciences, Bremen, Germany
Ursula Schauer
Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und
Meeresforschung, Bremerhaven, Germany
Koji Shimada
Tokyo University of Marine Science and Technology, Tokyo, Japan
Kyoung-Ho Cho
Korea Polar Research Institute, Incheon, South Korea
Takashi Kikuchi
Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
Related authors
Xiaoyong Yu, Annette Rinke, Wolfgang Dorn, Gunnar Spreen, Christof Lüpkes, Hiroshi Sumata, and Vladimir M. Gryanik
The Cryosphere, 14, 1727–1746, https://doi.org/10.5194/tc-14-1727-2020, https://doi.org/10.5194/tc-14-1727-2020, 2020
Short summary
Short summary
This study presents an evaluation of Arctic sea ice drift speed for the period 2003–2014 in a state-of-the-art coupled regional model for the Arctic, called HIRHAM–NAOSIM. In particular, the dependency of the drift speed on the near-surface wind speed and sea ice conditions is presented. Effects of sea ice form drag included by an improved parameterization of the transfer coefficients for momentum and heat over sea ice are discussed.
Axel Behrendt, Hiroshi Sumata, Benjamin Rabe, and Ursula Schauer
Earth Syst. Sci. Data, 10, 1119–1138, https://doi.org/10.5194/essd-10-1119-2018, https://doi.org/10.5194/essd-10-1119-2018, 2018
Short summary
Short summary
Oceanographic data have been collected in the Arctic Ocean over many decades. They were measured by a large variety of platforms. Most of these data are publicly available from the World Ocean Database (WOD). This important online archive, however, does not contain all available modern data and has quality problems in the upper water layers. To enable a quick access to nearly all available temperature and salinity profiles, we compiled UDASH, a complete data archive with a higher quality.
F. Kauker, T. Kaminski, R. Ricker, L. Toudal-Pedersen, G. Dybkjaer, C. Melsheimer, S. Eastwood, H. Sumata, M. Karcher, and R. Gerdes
The Cryosphere Discuss., https://doi.org/10.5194/tcd-9-5521-2015, https://doi.org/10.5194/tcd-9-5521-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
The manuscript describes the use of remotely sensed sea ice observations for the initialization of seasonal sea ice predictions. Among other observations, CryoSat-2 ice thickness is, to our knowledge for the first time, utilized. While a direct assimilation with CryoSat ice thickness could improve the predictions only locally, the use an advanced data assimilation system (4dVar) allows to establish a bias correction scheme, which is shown to improve the seasonal predictions Arctic wide.
H. Sumata, F. Kauker, R. Gerdes, C. Köberle, and M. Karcher
Ocean Sci., 9, 609–630, https://doi.org/10.5194/os-9-609-2013, https://doi.org/10.5194/os-9-609-2013, 2013
Ellen M. Buckley, Leela Cañuelas, Mary-Louise Timmermans, and Monica M. Wilhelmus
The Cryosphere, 18, 5031–5043, https://doi.org/10.5194/tc-18-5031-2024, https://doi.org/10.5194/tc-18-5031-2024, 2024
Short summary
Short summary
Arctic sea ice cover evolves seasonally from large plates separated by long, linear leads in the winter to a mosaic of smaller sea ice floes in the summer. Here, we present a new image segmentation algorithm applied to thousands of images and identify over 9 million individual pieces of ice. We observe the characteristics of the floes and how they evolve throughout the summer as the ice breaks up.
Krissy Anne Reeve, Torsten Kanzow, Olaf Boebel, Myriel Vredenborg, Volker Strass, and Rüdiger Gerdes
Ocean Sci., 19, 1083–1106, https://doi.org/10.5194/os-19-1083-2023, https://doi.org/10.5194/os-19-1083-2023, 2023
Short summary
Short summary
The Weddell Gyre is key for bottom water formation. Prior studies show warming of the whole water column, except for the gyre’s heat source, Warm Deep Water (WDW). We use Argo floats to estimate a heat budget within WDW. Heat advects into the southern limb and upwards from below throughout. Turbulent diffusion removes heat through the top and transports heat from the southern limb into the interior and southwards towards Antarctica. Turbulent diffusion imports heat across the northern boundary.
Jinyoung Jung, Yuzo Miyazaki, Jin Hur, Yun Kyung Lee, Mi Hae Jeon, Youngju Lee, Kyoung-Ho Cho, Hyun Young Chung, Kitae Kim, Jung-Ok Choi, Catherine Lalande, Joo-Hong Kim, Taejin Choi, Young Jun Yoon, Eun Jin Yang, and Sung-Ho Kang
Atmos. Chem. Phys., 23, 4663–4684, https://doi.org/10.5194/acp-23-4663-2023, https://doi.org/10.5194/acp-23-4663-2023, 2023
Short summary
Short summary
This study examined the summertime fluorescence properties of water-soluble organic carbon (WSOC) in aerosols over the western Arctic Ocean. We found that the WSOC in fine-mode aerosols in coastal areas showed a higher polycondensation degree and aromaticity than in sea-ice-covered areas. The fluorescence properties of atmospheric WSOC in the summertime marine Arctic boundary can improve our understanding of the WSOC chemical and biological linkages at the ocean–sea-ice–atmosphere interface.
Karina von Schuckmann, Audrey Minière, Flora Gues, Francisco José Cuesta-Valero, Gottfried Kirchengast, Susheel Adusumilli, Fiammetta Straneo, Michaël Ablain, Richard P. Allan, Paul M. Barker, Hugo Beltrami, Alejandro Blazquez, Tim Boyer, Lijing Cheng, John Church, Damien Desbruyeres, Han Dolman, Catia M. Domingues, Almudena García-García, Donata Giglio, John E. Gilson, Maximilian Gorfer, Leopold Haimberger, Maria Z. Hakuba, Stefan Hendricks, Shigeki Hosoda, Gregory C. Johnson, Rachel Killick, Brian King, Nicolas Kolodziejczyk, Anton Korosov, Gerhard Krinner, Mikael Kuusela, Felix W. Landerer, Moritz Langer, Thomas Lavergne, Isobel Lawrence, Yuehua Li, John Lyman, Florence Marti, Ben Marzeion, Michael Mayer, Andrew H. MacDougall, Trevor McDougall, Didier Paolo Monselesan, Jan Nitzbon, Inès Otosaka, Jian Peng, Sarah Purkey, Dean Roemmich, Kanako Sato, Katsunari Sato, Abhishek Savita, Axel Schweiger, Andrew Shepherd, Sonia I. Seneviratne, Leon Simons, Donald A. Slater, Thomas Slater, Andrea K. Steiner, Toshio Suga, Tanguy Szekely, Wim Thiery, Mary-Louise Timmermans, Inne Vanderkelen, Susan E. Wjiffels, Tonghua Wu, and Michael Zemp
Earth Syst. Sci. Data, 15, 1675–1709, https://doi.org/10.5194/essd-15-1675-2023, https://doi.org/10.5194/essd-15-1675-2023, 2023
Short summary
Short summary
Earth's climate is out of energy balance, and this study quantifies how much heat has consequently accumulated over the past decades (ocean: 89 %, land: 6 %, cryosphere: 4 %, atmosphere: 1 %). Since 1971, this accumulated heat reached record values at an increasing pace. The Earth heat inventory provides a comprehensive view on the status and expectation of global warming, and we call for an implementation of this global climate indicator into the Paris Agreement’s Global Stocktake.
Alexis Anne Denton and Mary-Louise Timmermans
The Cryosphere, 16, 1563–1578, https://doi.org/10.5194/tc-16-1563-2022, https://doi.org/10.5194/tc-16-1563-2022, 2022
Short summary
Short summary
Arctic sea ice has a distribution of ice sizes that provides insight into the physics of the ice. We examine this distribution from satellite imagery from 1999 to 2014 in the Canada Basin. We find that it appears as a power law whose power becomes less negative with increasing ice concentrations and has a seasonality tied to that of ice concentration. Results suggest ice concentration be considered in models of this distribution and are important for understanding sea ice in a warming Arctic.
Karina von Schuckmann, Lijing Cheng, Matthew D. Palmer, James Hansen, Caterina Tassone, Valentin Aich, Susheel Adusumilli, Hugo Beltrami, Tim Boyer, Francisco José Cuesta-Valero, Damien Desbruyères, Catia Domingues, Almudena García-García, Pierre Gentine, John Gilson, Maximilian Gorfer, Leopold Haimberger, Masayoshi Ishii, Gregory C. Johnson, Rachel Killick, Brian A. King, Gottfried Kirchengast, Nicolas Kolodziejczyk, John Lyman, Ben Marzeion, Michael Mayer, Maeva Monier, Didier Paolo Monselesan, Sarah Purkey, Dean Roemmich, Axel Schweiger, Sonia I. Seneviratne, Andrew Shepherd, Donald A. Slater, Andrea K. Steiner, Fiammetta Straneo, Mary-Louise Timmermans, and Susan E. Wijffels
Earth Syst. Sci. Data, 12, 2013–2041, https://doi.org/10.5194/essd-12-2013-2020, https://doi.org/10.5194/essd-12-2013-2020, 2020
Short summary
Short summary
Understanding how much and where the heat is distributed in the Earth system is fundamental to understanding how this affects warming oceans, atmosphere and land, rising temperatures and sea level, and loss of grounded and floating ice, which are fundamental concerns for society. This study is a Global Climate Observing System (GCOS) concerted international effort to obtain the Earth heat inventory over the period 1960–2018.
Xiaoyong Yu, Annette Rinke, Wolfgang Dorn, Gunnar Spreen, Christof Lüpkes, Hiroshi Sumata, and Vladimir M. Gryanik
The Cryosphere, 14, 1727–1746, https://doi.org/10.5194/tc-14-1727-2020, https://doi.org/10.5194/tc-14-1727-2020, 2020
Short summary
Short summary
This study presents an evaluation of Arctic sea ice drift speed for the period 2003–2014 in a state-of-the-art coupled regional model for the Arctic, called HIRHAM–NAOSIM. In particular, the dependency of the drift speed on the near-surface wind speed and sea ice conditions is presented. Effects of sea ice form drag included by an improved parameterization of the transfer coefficients for momentum and heat over sea ice are discussed.
Katrin Latarius, Ursula Schauer, and Andreas Wisotzki
Earth Syst. Sci. Data, 11, 895–920, https://doi.org/10.5194/essd-11-895-2019, https://doi.org/10.5194/essd-11-895-2019, 2019
Short summary
Short summary
During summer 2014 and summer 2015 two autonomous underwater vehicles were operated over several months in the western Nordic Seas close to the ice edge. They took measurements of temperature, salinity and water depth (pressure) on the way. The aim of the Seaglider missions was to observe if near-surface freshwater, which flows out of the Arctic Ocean in the direction to the North Atlantic, increased with shrinking ice coverage. The measurements were executed to finally provide validated data.
Axel Behrendt, Hiroshi Sumata, Benjamin Rabe, and Ursula Schauer
Earth Syst. Sci. Data, 10, 1119–1138, https://doi.org/10.5194/essd-10-1119-2018, https://doi.org/10.5194/essd-10-1119-2018, 2018
Short summary
Short summary
Oceanographic data have been collected in the Arctic Ocean over many decades. They were measured by a large variety of platforms. Most of these data are publicly available from the World Ocean Database (WOD). This important online archive, however, does not contain all available modern data and has quality problems in the upper water layers. To enable a quick access to nearly all available temperature and salinity profiles, we compiled UDASH, a complete data archive with a higher quality.
Masanobu Yamamoto, Seung-Il Nam, Leonid Polyak, Daisuke Kobayashi, Kenta Suzuki, Tomohisa Irino, and Koji Shimada
Clim. Past, 13, 1111–1127, https://doi.org/10.5194/cp-13-1111-2017, https://doi.org/10.5194/cp-13-1111-2017, 2017
Short summary
Short summary
Based on mineral records from the northern Chukchi Sea, we report a long-term decline in the Beaufort Gyre (BG) strength during the Holocene, consistent with a decrease in summer insolation. Multi-centennial variability in BG circulation is consistent with fluctuations in solar irradiance. The Bering Strait inflow shows intensification during the middle Holocene, associated with sea-ice retreat and an increase in marine production in the Chukchi Sea, which is attributed to a weaker Aleutian Low.
Amelie Driemel, Eberhard Fahrbach, Gerd Rohardt, Agnieszka Beszczynska-Möller, Antje Boetius, Gereon Budéus, Boris Cisewski, Ralph Engbrodt, Steffen Gauger, Walter Geibert, Patrizia Geprägs, Dieter Gerdes, Rainer Gersonde, Arnold L. Gordon, Hannes Grobe, Hartmut H. Hellmer, Enrique Isla, Stanley S. Jacobs, Markus Janout, Wilfried Jokat, Michael Klages, Gerhard Kuhn, Jens Meincke, Sven Ober, Svein Østerhus, Ray G. Peterson, Benjamin Rabe, Bert Rudels, Ursula Schauer, Michael Schröder, Stefanie Schumacher, Rainer Sieger, Jüri Sildam, Thomas Soltwedel, Elena Stangeew, Manfred Stein, Volker H Strass, Jörn Thiede, Sandra Tippenhauer, Cornelis Veth, Wilken-Jon von Appen, Marie-France Weirig, Andreas Wisotzki, Dieter A. Wolf-Gladrow, and Torsten Kanzow
Earth Syst. Sci. Data, 9, 211–220, https://doi.org/10.5194/essd-9-211-2017, https://doi.org/10.5194/essd-9-211-2017, 2017
Short summary
Short summary
Our oceans are always in motion – huge water masses are circulated by winds and by global seawater density gradients resulting from different water temperatures and salinities. Measuring temperature and salinity of the world's oceans is crucial e.g. to understand our climate. Since 1983, the research icebreaker Polarstern has been the basis of numerous water profile measurements in the Arctic and the Antarctic. We report on a unique collection of 33 years of polar salinity and temperature data.
Michiyo Yamamoto-Kawai, Takahisa Mifune, Takashi Kikuchi, and Shigeto Nishino
Biogeosciences, 13, 6155–6169, https://doi.org/10.5194/bg-13-6155-2016, https://doi.org/10.5194/bg-13-6155-2016, 2016
Short summary
Short summary
Seasonal variation of Ω in bottom water in Hope Valley, a biological hotspot in the southern Chukchi Sea, was reconstructed from 2-year-round mooring data of temperature, salinity and oxygen, with empirical equations derived from ship-based observations.
Masanobu Yamamoto, Seung Il Nam, Leonid Polyak, Daisuke Kobayashi, Kenta Suzuki, Tomohisa Irino, and Koji Shimada
Clim. Past Discuss., https://doi.org/10.5194/cp-2016-105, https://doi.org/10.5194/cp-2016-105, 2016
Manuscript not accepted for further review
Short summary
Short summary
We report mineral records in two sediment cores from the northern Chukchi Sea providing insights into the long-term dynamics of the Arctic currents during the Holocene. We found a long-term decline in the BG strength, consistent with decrease in summer insolation. The millennial to multi-centennial variability is consistent with fluctuations in solar irradiance. The BSI shows intensification during the middle Holocene, which is attributed to a weak Aleutian Low.
Hiroko Sasaki, Kohei Matsuno, Amane Fujiwara, Misaki Onuka, Atsushi Yamaguchi, Hiromichi Ueno, Yutaka Watanuki, and Takashi Kikuchi
Biogeosciences, 13, 4555–4567, https://doi.org/10.5194/bg-13-4555-2016, https://doi.org/10.5194/bg-13-4555-2016, 2016
Short summary
Short summary
We constructed the habitat models explaining the spatial patterns of the large and small Arctic copepods and the Pacific copepods of the northern Bering Sea and Chukchi Sea. The adequate models show the importance of water masses and sea ice retreat timing. This finding also indicates that earlier sea ice retreat has positive effects on the abundance of all copepod groups in the northern Bering and Chukchi seas, suggesting a change from a pelagic–benthic-type ecosystem to a pelagic–pelagic type.
Shigeto Nishino, Takashi Kikuchi, Amane Fujiwara, Toru Hirawake, and Michio Aoyama
Biogeosciences, 13, 2563–2578, https://doi.org/10.5194/bg-13-2563-2016, https://doi.org/10.5194/bg-13-2563-2016, 2016
Short summary
Short summary
We analysed mooring and ship-based data obtained from a biological hotspot in the southern Chukchi Sea. Mooring data were collected for the first time in this site and were captured during spring and autumn blooms with high chlorophyll a concentrations. The data suggest that a dome-like structure of the bottom water and nutrient regeneration at the bottom play important roles in maintaining the autumn bloom of the biological hotspot.
T. Krumpen, R. Gerdes, C. Haas, S. Hendricks, A. Herber, V. Selyuzhenok, L. Smedsrud, and G. Spreen
The Cryosphere, 10, 523–534, https://doi.org/10.5194/tc-10-523-2016, https://doi.org/10.5194/tc-10-523-2016, 2016
Short summary
Short summary
We present an extensive data set of ground-based and airborne electromagnetic ice thickness measurements covering Fram Strait in summer between 2001 and 2012. An investigation of back trajectories of surveyed sea ice using satellite-based sea ice motion data allows us to examine the connection between thickness variability, ice age and source area. In addition, we determine across and along strait gradients in ice thickness and associated volume fluxes.
Naoya Yokoi, Kohei Matsuno, Mutsuo Ichinomiya, Atsushi Yamaguchi, Shigeto Nishino, Jonaotaro Onodera, Jun Inoue, and Takashi Kikuchi
Biogeosciences, 13, 913–923, https://doi.org/10.5194/bg-13-913-2016, https://doi.org/10.5194/bg-13-913-2016, 2016
Short summary
Short summary
We studied short-term changes in the microplankton community in the Chukchi Sea with regards to responses to the strong wind event (SWE) during autumn (September 2013). It is assumed that atmospheric turbulences, such as SWE, may supply sufficient nutrients to the surface layer that subsequently enhance the small bloom under the weak stratification. After the bloom, the dominant diatom community then shifts from centric-dominated to one where centric/pennate are more equal in abundance.
A. Fujiwara, T. Hirawake, K. Suzuki, L. Eisner, I. Imai, S. Nishino, T. Kikuchi, and S.-I. Saitoh
Biogeosciences, 13, 115–131, https://doi.org/10.5194/bg-13-115-2016, https://doi.org/10.5194/bg-13-115-2016, 2016
Short summary
Short summary
This study provides the general relationship between the timing of sea ice retreat and phytoplankton size structure during the marginal ice zone bloom period in the Chukchi and Bering shelves using a satellite remote sensing approach. We also found that not only the length of the ice-free season but also the annual phytoplankton size composition positively correlated with annual net primary production.
A. Ooki, S. Kawasaki, K. Kuma, S. Nishino, and T. Kikuchi
Biogeosciences, 13, 133–145, https://doi.org/10.5194/bg-13-133-2016, https://doi.org/10.5194/bg-13-133-2016, 2016
Short summary
Short summary
We conducted a shipboard observation over the Chukchi Sea and the Canada Basin
in the western Arctic Ocean to obtain vertical distributions of four volatile organic iodine compounds (VOIs) in seawater. High concentrations of four VOIs were found in the bottom layer water over the Chukchi Sea shelf, in which layer the concentration maximum of ammonium occurred simultaneously. We considered that the VOI production is associated with degradation of organic matter in the bottom sediment.
K. Castro-Morales, R. Ricker, and R. Gerdes
The Cryosphere Discuss., https://doi.org/10.5194/tcd-9-5681-2015, https://doi.org/10.5194/tcd-9-5681-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
The snow cover on Arctic sea ice is subject to vast changes due to a warming climate. In this study, we assess last decade changes of Arctic snow depth (SD) on sea-ice simulated by an Arctic general circulation model. North of 76 N, the model SD is on average 3 cm thicker than radar SD measurements. In the last decade, the mean regional SD decreased 21 % mainly in first-year ice areas. Surface snow sublimation and melt are the dominant processes responsible of this decline.
F. Kauker, T. Kaminski, R. Ricker, L. Toudal-Pedersen, G. Dybkjaer, C. Melsheimer, S. Eastwood, H. Sumata, M. Karcher, and R. Gerdes
The Cryosphere Discuss., https://doi.org/10.5194/tcd-9-5521-2015, https://doi.org/10.5194/tcd-9-5521-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
The manuscript describes the use of remotely sensed sea ice observations for the initialization of seasonal sea ice predictions. Among other observations, CryoSat-2 ice thickness is, to our knowledge for the first time, utilized. While a direct assimilation with CryoSat ice thickness could improve the predictions only locally, the use an advanced data assimilation system (4dVar) allows to establish a bias correction scheme, which is shown to improve the seasonal predictions Arctic wide.
K. Matsuno, A. Yamaguchi, S. Nishino, J. Inoue, and T. Kikuchi
Biogeosciences, 12, 4005–4015, https://doi.org/10.5194/bg-12-4005-2015, https://doi.org/10.5194/bg-12-4005-2015, 2015
Short summary
Short summary
We performed high-frequency samplings of zooplankton community and gut pigment of copepods in the Chukchi Sea. Zooplankton showed no changes with a strong wind event and dominant copepods prepared for diapause. Yet, feeding activity of the copepods increased as a result of temporal phytoplankton bloom, enhanced by the wind event. Because of the long generation length of copepods, a smaller effect was detected for their abundance, population, lipid accumulation and gonad maturation.
I. A. Dmitrenko, S. A. Kirillov, N. Serra, N. V. Koldunov, V. V. Ivanov, U. Schauer, I. V. Polyakov, D. Barber, M. Janout, V. S. Lien, M. Makhotin, and Y. Aksenov
Ocean Sci., 10, 719–730, https://doi.org/10.5194/os-10-719-2014, https://doi.org/10.5194/os-10-719-2014, 2014
H. Sumata, F. Kauker, R. Gerdes, C. Köberle, and M. Karcher
Ocean Sci., 9, 609–630, https://doi.org/10.5194/os-9-609-2013, https://doi.org/10.5194/os-9-609-2013, 2013
A. Behrendt, W. Dierking, E. Fahrbach, and H. Witte
Earth Syst. Sci. Data, 5, 209–226, https://doi.org/10.5194/essd-5-209-2013, https://doi.org/10.5194/essd-5-209-2013, 2013
B. Rudels, U. Schauer, G. Björk, M. Korhonen, S. Pisarev, B. Rabe, and A. Wisotzki
Ocean Sci., 9, 147–169, https://doi.org/10.5194/os-9-147-2013, https://doi.org/10.5194/os-9-147-2013, 2013
B. Rabe, P. A. Dodd, E. Hansen, E. Falck, U. Schauer, A. Mackensen, A. Beszczynska-Möller, G. Kattner, E. J. Rohling, and K. Cox
Ocean Sci., 9, 91–109, https://doi.org/10.5194/os-9-91-2013, https://doi.org/10.5194/os-9-91-2013, 2013
Cited articles
Anderson, L. G., Björk, G., Holby, O., Jones, E. P., Kattner,
G., Koltermann, K. P., Liljeblad, B., Lindgren, R., Rudels, B., and Swift, J.:
Water masses and circulation in the Eurasian Basin: Results from the Oden
91 expedition, J. Geophys. Res., 99, 3273–3283, 1994.
Behrendt, A., Sumata, H., Rabe, B., and Schauer, U.: UDASH – Unified Database for Arctic and
Subarctic Hydrography, Earth Syst. Sci. Data Discuss.,
https://doi.org/10.5194/essd-2017-92, in review, 2017.
Bjork, G. and Gothenburg University: Temperature and salinity profile data
from CTD casts from the icebreaker ODEN during the Lomonosov Ridge off
Greenland (LOMROG) expedition in 2007 (NODC Accession 0093533), Version 1.1,
National Oceanographic Data Center, NOAA, Dataset, 2012.
Blayo, É., Bocquet, M., Cosme, E., and Cugliandolo, L. F.: Advanced Data
Assimilation for Geosciences, Oxford University Press, Oxford, UK, 584 pp.,
2015.
Böhme, L. and Send, U.: Objective Analyses of hydrographic data for
referencing profiling float salinities in high variable environments,
Deep-Sea Res. Pt. II, 52, 651–664, https://doi.org/10.1016/j.dsr2.2004.12.014, 2005.
Böhme, L., Meredith, M. P., Thorpe, S. E., Biuw, M., and Fedak, M.:
Antarctic Circumpolar Current frontal system in the South Atlantic:
Monitoring using merged Argo and animal-borne sensor data, J. Geophys.
Res., 113, C09012, https://doi.org/10.1029/2007JC004647, 2008.
Boyer, T. P., Antonov, J. I., Baranova, O. K., Coleman, C., Garcia, H. E.,
Grodsky, A., Johnson, D. R., Locarnini, R. A., Mishonov, A. V., O'Brien, T.
D., Paver, C. R., Reagan, J. R., Seidov, D., Smolyar, I. V., and Zweng, M.
M.: World Ocean Database 2013, NOAA Atlas NESDIS 72, edited by: Levitus, S.
and Mishonov, A., Silver Spring, MD, 209 pp.,
https://doi.org/10.7289/V5NZ85MT, 2013.
Chu, P. C., Wells, S. K., Haeger, S. D., Szczechowski, C., and Carron, M.:
Temporal and spatial scales of the Yellow Sea thermal variability, J.
Geophys. Res., 102, 5655–5667, 1997.
Chu, P. C., Guihua, W., and Chen, Y.: Japan Sea Thermohaline Structure and
Circulation, Part III: Autocorrelation functions, J. Phys. Oceanogr., 32,
3596–3615, 2002.
Carton, J. A., Chepurin, G., and Cao, X.: A Simple Ocean Data Assimilation
Analysis of the Global Upper Ocean 1950–1995, J. Phys. Oceanogr., 30,
294–309, 2000.
Davis, R. E.: Preliminary results from directly measuring middepth
circulation in the tropical and South Pacific, J. Geophys. Res., 103,
24619–24639, 1998.
Davis, R. E., Ohman, M. D., Rudnick, D. L., and Sherman, J. T.: Glider
surveillance of physics and biology in the southern California Current
System, Limnol. Oceanogr., 53, 2151–2168, 2008.
Delcroix, T., McPhaden, M. J., Dessier, A., and Gouriou, Y.: Time and space
scales for sea surface salinity in the tropical oceans, Deep-Sea
Res. Pt. II, 52, 787–813, https://doi.org/10.1016/j.dsr.2004.11.012, 2005.
Deser, C., Alexander, M. A., and Timlin, M. S.: Understanding the Persistence
of Sea Surface Temperature Anomalies in Midlatitudes, J. Climate, 16,
57–72, 2003.
Eden, C.: Eddy length scales in the North Atlantic Ocean, J. Geophys. Res.,
112, C06004, https://doi.org/10.1029/2006JC003901, 2007.
Forget, G. and Wunsch, C.: Estimated Grobal Hydrographic Variability, J.
Phys. Oceanogr., 37, 1997–2008, https://doi.org/10.1175/JPO3072.1, 2007.
Gandin, L. S.: Objective Analysis of Meteorological Fields, Israel Program
for Scientific Translations, Jerusalem, Israel, 242 pp., 1965.
Giles, K. A., Seymour, W., Laxon, A. L., Ridout, Wingham, D. J., and Bacon,
S.: Western Arctic Ocean freshwater storage increased by wind-driven spin-up
of the Beaufort Gyre, Nat. Geosci., 5, 194–197, https://doi.org/10.1038/NGEO1379,
2012.
Good, S. A., Martin, M. J., and Rayner, N. A.: EN4: Quality controlled ocean
temperature and salinity profiles and monthly objective analyses with
uncertainty estimates, J. Geophys. Res., 118, 6704–6716,
https://doi.org/10.1002/2013JC009067, 2013.
Gronell, A. and Wijffels, S. E.: A semiautomated approach for quality
controlling large historical ocean temperature archives, J. Atmos. Ocean. Tech., 25, 990–1003. https://doi.org/doi:10.1175/JTECHO539.1, 2008.
Guéguen, C., Itoh, M., Kikuchi, T., Eert, J., and Williams, W. J.:
Variability in dissolved organic matter optical properties in surface waters in
the Amerasian Basin, Front. Mar. Sci., 2, 78, https://doi.org/10.3389/fmars.2015.00078, 2015.
Haidvogel, D. B. and Beckmann, A.: Numerical Ocean Circulation Modeling,
Imperial College Press, London, UK, 320 pp., 1999.
Hopkins, T. S.: The GIN Sea – A synthesis of its physical oceanography and
literature review 1972–1985, Earth-Sci. Rev., 30, 175–318, 1991.
Hosoda, K. and Kawamura, H.: Global space-time statistics of sea surface
temperature estimated from AMSR-E data, Geophys. Res. Lett., 31, L17202,
https://doi.org/10.1029/2004GL020317, 2004.
Hurrell, J. W.: Decadal trends in the North Atlantic oscillation: Regional
temperatures and precipitation, Science, 269, 676–679, 1995.
Ilıcak, M., Drange, H., Wang, Q., et al.: An assessment of the Arctic Ocean
in a suite of international CORE-II simulations, Part III: Hydrography and
fluxes, Ocean Modell., 100, 141–161, https://doi.org/10.1016/j.ocemod.2016.02.004,
2016.
Ingleby, B. and Huddleston, M.: Quality control of ocean temperature and
salinity profiles – Historical and real-time data, J. Mar. Sys., 65,
158–175, https://doi.org/10.1016/j.jmarsys.2005.11.019, 2007.
Ito, S., Uehara, K., Miyao, T., Miyake, H., Yasuda, I., Watanabe, T., and
Shimizu, Y.: Characteristics of SSH anomaly based on TOPEX/POSEIDON altimetry
and in situ Measured velocity and transport of Oyashio on OICE, J.
Oceanogr., 60, 425–437, 2004.
Itoh, M., Shimada, K., Kmoshida, T., McLaughlin, F., Carmack, E., and Nishino,
S.: Interannual variability of Pacific Winter Water inflow through Barrow
Canyon from 2000 to 2006, J. Oceanogr., 68, 575–592,
https://doi.org/10.1007/s10872-012-0120-1, 2012.
Jackson, J. M., Carmack, E. C., McLaughlin, F. A., Allen, S. E., and Ingram,
R. G.: Identification, characterization, and change of the near-surface
temperature maximum in the Canada Basin, 1993–2008, J. Geophys. Res., 115,
C05021, https://doi.org/10.1029/2009JC005265, 2010.
Jakobsson, M., Mayer, L., Coakley, B., et al.: The International Bathymetric
Chart of the Arctic Ocean (IBCAO) version 3.0, Geophys. Res. Lett., 39,
L12609, https://doi.org/10.1029/2012GL052219, 2012.
Johnson, G. C., Toole, J. M., and Larson, N. G.: Sensor Corrections for
Sea-Bird SBE-41CP and SBE-41 CTDs, J. Atmos. Ocean. Tech., 24,
1117–1130, https://doi.org/10.1175/JTEC2016.1, 2007.
Jones, E. P.: Circulation in the Arctic Ocean, Polar Res., 20, 139–146,
2001.
Kantha, L. H. and Clayson, C. A.: Numerical Models of Ocean and Oceanic
Processes, Academic Press, London, UK, 940 pp., 2000.
Karcher, M., Smith, J. N., Kauker, F., Gerdes, R., and Smethie J. W. M.:
Recent changes in Arctic Ocean circulation revealed by iodine-129
observations and modeling, J. Geophys. Res., 117, C08007,
https://doi.org/10.1029/2011JC007513, 2012.
Kendall, M. G.: A new measure of rank correlation, Biometrika, 30, 81–93,
1938.
Kikuchi, T., Uno, H., Hosono, M., and Hatakeyama, K.: Accurate Ocean Current
Observation near the magnetic dip pole: compass error estimation, J. Jap.
Soc. Mar. Sci. Tech., 16, 19–27, 2004 (in Japanese).
Kim, S. Y. and Kosro, P. M.: Observations of near-inertial surface currents
off Oregon: Decorrelation time and length scales, J. Geophys. Res., 118,
3723–3736, https://doi.org/10.1002/jgrc.20235, 2013.
Kolmogorov, A. N.: The local structure of turbulence in incompressible
viscous fluid for very large Reynolds numbers, Proc. R. Soc. Lond. A, 434,
9–13, 1991.
Korablev, A., Smirnov, A., and Baranova, O. K.: Climatological Atlas of the
Nordic Seas and Northern North Atlantic, edited by: Seidov, D. and Parsons,
A. R., NOAA Atlas NESDIS 77, https://doi.org/10.7289/V54B2Z78, 122 pp., 2014.
Krishfield, R., Toole, J., Proshutinsky, A., and Timmermans, M.-L.: Automated
Ice-Tethered Profilers for Seawater Observations under Pack Ice in All
Seasons, J. Atmos. Ocean. Tech., 25, 2091–2105,
https://doi.org/10.1175/2008JTECHO587.1, 2008a.
Krishfield, R., Toole, J., and Timmermans, M.-L.: ITP Data Pro-cessing Procedures,
Woods Hole Oceanographic Institution, Hoods Hole, MA, 24 pp., 2008b.
Kuragano, T. and Kamachi, M.: Global statistical space-time scales of oceanic
variability estimated from the TOPEX/POSEIDON altimeter data, J. Geophys.
Res., 105, 955–974, 2000.
Lammers, R. B., Shiklomanov, A. I., Vörösmarty, C. J., Fekete, B.
M., and Peterson, B. J.: Assessment of contemporary Arctic river runoff based
on observational discharge records, J. Geophys. Res., 106, 3321–3334,
2001.
Li, J.-G., Killworth, P. D., and Smeed, D. A.: Response of an eddy-permitting
ocean model to the assimilation of sparse in situ data, J. Geophys. Res.,
108, 3111, https://doi.org/10.1029/2001JC001033, 2003.
Marcinko, C. L. J., Martin, A. P., and Allen, J. T.: Characterizing
horizontal variability and energy spectra in the Arctic Ocean halocline, J.
Geophys. Res.-Oceans, 120, 436–450, https://doi.org/10.1002/2014JC010381, 2015.
Martins, M. S., Serra, N., and Stammer, D.: Spatial and temporal scales of
sea surface salinity variability in the Atlantic Ocean, J. Geophys. Res.-Oceans, 120, 4306–4323, https://doi.org/10.1002/2014JC010649, 2015.
McLaughlin, F. A., Carmack, E. C., Macdonald, R. W., Melling, H., Swift, J.
H., Wheeler, P. A., Sherr, B. F., and Sherr, E. B.: The joint roles of Pacific
and Atlantic-origin waters in the Canada Basin, 1997–1998, Deep-Sea
Res. Pt. I, 51, 107–128, https://doi.org/10.1016/j.dsr.2003.09.010, 2004.
McLaughlin, F. A., Carmack, E. C., Williams, W. J., Zimmermann, S., Shimada,
K., and Itoh, M.: Joint effects of boundary currents and thermohaline
intrusions on the warming of Atlantic water in the Canada Basin, 1993–2007,
J. Geophys. Res., 114, C00A12, https://doi.org/10.1029/2008JC005001, 2009.
Mclean, L. M.: The Determination of Ocean Correlation Scales using Argo float
data, University of Southampton, Faculty of Engineering, Science and
Mathematics, School of Ocean and Earth Science, PhD Thesis, 210 pp., 2010.
McPhee, M. G., Stanton, T. P., Morison, J. H., and Martinson, D. G.:
Freshening of the upper ocean in the Arctic: Is perennial sea ice
disappearing?, Geophys. Res. Lett., 25, 1729–1732, 1998.
Meyers, G., Phillips, H., Smith, N., and Sprintall, J.: Space and time scales
for optimal interpolation of temperature – Tropical Pacific Ocean, Prog.
Oceanogr., 28, 189–218, 1991.
Molinari, R. L. and Festa, J. F.: Effect of subjective choices on the
objective analysis of sea surface temperature data in the tropical Atlantic
and Pacific Oceans, Oceanol. Ac., 23, 3–14, 2000.
Morison, J., Steele, M., and Falkner, K.: North Pole Environmental Observatory (NPEO)
Aerial CTD Survey, Version 1.0. UCAR/NCAR – Earth Observing Laboratory, doi:10.5065/D6QJ7FFT, 2011
Nguyen, A. T., Menemenlis, D., and Kwok, R.: Arctic ice-ocean simulation with
optimized model parameters: Approach and assessment, J. Geophys. Res., 116,
C04025, https://doi.org/10.1029/2010JC006573, 2011.
Nurser, A. J. G. and Bacon, S.: The Rossby radius in the Arctic Ocean,
Ocean Sci., 10, 967–975, https://doi.org/10.5194/os-10-967-2014, 2014.
Oke, P. R. and Sakov, P.: Representaion error of oceanic observations for
data assimilation, J. Atmos. Ocean. Tech., 25, 1004–1017,
https://doi.org/10.1175/2007JTECHO558.1, 2008.
Oke, P. R., Brassington, G. B., Griffin, D. A., and Schiller, A.: The
Bluelink ocean data assimilation system (BODAS), Ocean Modell., 21, 46–70,
https://doi.org/10.1016/j.ocemod.2007.11.002, 2008.
Olbers, D., Willebrand, J., and Eden, C.: Ocean Dynamics,
Springer, Heidelberg, Germany, 704 pp., 2012.
Ortiz, J. D., Falkner, K. K., Matrai, A. R., and Woodgate, R. A.: The
Changing Arctic Ocean: An Introduction to the Special Issue on the
International Polar Year (2007–2008), Oceanography, 24, 14–16,
https://doi.org/10.5670/oceanog.2011.49, 2011.
Panteleev, G., Ikeda, M., Grotov, A., Nechaev, D., and Yaremchuk, M.: Mass,
Heat and Salt Blances in the Eastern Barents Sea obtained by Inversion of
Hydrographic Section Data, J. Oceanogr., 60, 613–623, 2004.
Panteleev, G., Proshutinsky, A., Kulakov, M., Nechaev, D. A., and Maslowski,
W.: Investigation of the summer Kara Sea circulation employing a variational
data assimilation technique, J. Geophys. Res., 112, C04S15,
https://doi.org/10.1029/2006JC003728, 2007.
Pedlosky, J.: Geophysical Fluid Dynamics, 2nd edn., Springer,
New York, 710 pp., 1987.
Perlta-Ferriz, C. and Woodgate, R. A.: Seasonal and interannual variability
of pan-Arctic mixed layer properties from 1979 to 2012 from hydrographic
data, and the dominance of stratification for multilyear mixed layer depth
shoaling, Prog. Oceanogr., 134, 19–53, https://doi.org/10.1016/j.pocean.2014.12.005,
2015.
Pickart, R. S., Weingartner, T. J., Pratt, L. J., Zimmermann, S., and Torres,
D. J.: Flow of winter-transformed Pacific water into the Western Arctic,
Deep-Sea Res. Pt. II, 52, 3175–3198, https://doi.org/10.1016/j.dsr2.2005.10.009, 2005.
Proshutinsky, A., Krishfield, R., Timmermans, M.-L., Toole, J., Carmack, E.,
McLaughlin, F., Williams, W. J., Zimmermann, S., Itoh, M., and Shimada, K.:
Beaufort Gyre freshwater reservoir: State and variability from
observations, J. Geophys. Res., 114, C00A10, https://doi.org/10.1029/2008JC005104,
2009.
Rabe, B., Karcher, M., Schauer, U., Toole, J. M., Krischfield, R. A.,
Pisarev, S., Kauker, F., Gerdes, R., and Kikuchi, T.: An assessment of Arctic
Ocean freshwater content changes from the 1990s to the 2006–2008 period,
Deep-Sea Res. Pt. I, 58185, https://doi.org/10.1016/j.dsr.2010.12.002, 2011.
Rabe, B., Karcher, M., Kauker, F., Schauer, U., Toole, J. M., Krishfield, R.
A., Pisarev, S., Kikuchi, T., and Su, J.: Arctic Ocean basin liquid
freshwater storage trend 1992–2012, Geophys. Res. Lett., 41, 961–968,
https://doi.org/10.1002/2013GL058121, 2014.
Reeve, K. A., Boebel, O., Kanzow, T., Strass, V., Rohardt, G., and Fahrbach,
E.: A gridded data set of upper-ocean hydrographic properties in the Weddell
Gyre obtained by objective mapping of Argo float measurements, Earth Syst.
Sci. Data, 8, 15–40, https://doi.org/10.5194/essd-8-15-2016, 2016.
Reynolds, R. W. and Smith, T. M.: Improved Global Sea Surface Temperature
Analyses using Optimum Interpolation, J. Climate, 7, 929–948, 1994.
Rudels, B., Schauer, U., Björk, G., Korhonen, M., Pisarev, S., Rabe, B., and Wisotzki, A.:
Observations of water masses and circulation with focus on the Eurasian Basin
of the Arctic Ocean from the 1990s to the late 2000s, Ocean Sci., 9, 147–169,
https://doi.org/10.5194/os-9-147-2013, 2013.
Sakov, P., Counillon, F., Bertino, L., Lisæter, K. A., Oke, P. R., and
Korablev, A.: TOPAZ4: an ocean-sea ice data assimilation system for the North
Atlantic and Arctic, Ocean Sci., 8, 633–656,
https://doi.org/10.5194/os-8-633-2012, 2012.
Schlitzer, R.: Ocean Data View, Ver. 4.7.10. available at: http://odv.awi.de, 2015.
SCICEX Science Advisory Committee: SCICEX: Science Ice Exercise Data
Collection, Boulder, Colorado USA: National Snow and Ice Data
Center, https://doi.org/10.7265/N5930R3Z, 2009 (updated 2014).
Shi, J.: CTD data of the 2nd Chinese National Arctic Research Expedition
in 2003, Data-sharing Platform of Polar Science, Chinese Antarctic and
Arctic Data Centre, China, 2009a.
Shi, J.: CTD data of the 3rd Chinese National Arctic Research Expedition
in 2008, Data-sharing Platform of Polar Science, Chinese Antarctic and
Arctic Data Center, China, 2009b.
Shimada, K., Itoh, M., Nishino, S., McLaughlin, F., Carmack, E., and
Proshutinsky, A.: Halocline structure in the Canada Basin of the Arctic
Ocean, Geophys. Res. Lett., 32, L03605, https://doi.org/10.1029/2004GL021358, 2005.
Smith, G. C. and Haines, K.: Evaluation of the S(T) assimilation method
with the Argo dataset, Q. J. Roy. Meteor. Soc., 135, 739–756, 2009.
Somavilla, R., Schauer, U., and Budéus, G.: Increasing amount of Arctic
Ocean deep waters in the Greenland Sea, Geophys. Res. Lett., 40,
4361–4366, https://doi.org/10.1002/grl.50775, 2013.
Sprintall, J. and Meyers, G.: An Optimal XBT Sampling Network for the Eastern
Pacific Ocean, J. Geophys. Res., 96, 10539–10552, 1991.
Stammer, D.: Global Characteristics of Ocean Variability Estimated from
Regional TOPEX/POSEIDON Altimeter Measurements, J. Phys. Oceanogr., 27,
1743–1769, 1997.
Steele, M., Morley, R., and Ermold, W.: PHC: A global Ocean Hydrography with
a High-Quality Arctic Ocean, J. Climate, 14, 2079–2087, 2001.
Steele, M., Morison, J., Ermold, W., Rigor, I., Ortmeyer, M., and Shimada,
K.: Circulation of summer Pacific halocline water in the Arctic Ocean, J.
Geophys. Res., 109, C02027, https://doi.org/10.1029/2003JC002009, 2004.
Thompson, D. W. J. and Wallace, J. M.: The Arctic Oscillation signature in
the wintertime geopotential height and temperature fields, Geophys. Res.,
Rett., 25, 1297–1300, 1998.
Timmermans, M.-L. and Winsor, P.: Scales of horizontal density structure in
the Chukchi Sea surface layer, Cont. Shelf Res., 52, 39–45,
https://doi.org/10.1016/j.csr.2012.10.015, 2013.
Timmermans, M.-L., Proshutinsky, A., Golubeva, E., Jackson, J. M.,
Krishfield, R., McCall, M., Platov, G., Toole, J., Williams, W., Kikuchi, T.,
and Nishino, S.: Mechanisms of Pacific Summer Water variability in the
Arctic's Central Canada Basin, J. Geophys. Res.-Oceans, 119, 7523–7548,
https://doi.org/10.1002/2014JC010273, 2014.
Todd, R. E., Gawarkiewicz, G. G., and Owens, W. B.: Horizontal Scales of
Variability over the Middle Atlantic Bight Shelf Break and Continental Rise
from Finescale Observations, J. Phys. Oceanogr., 43, 222–230,
https://doi.org/10.1175/JPO-D-12-099.1, 2013.
Toole, J. M., Krishfield, R. A., Timmermans, M.-L., and Proshutinsky, A.:
The Ice-Tethered Profiler: Argo of the Arctic, Oceanography,
24, 126–135, https://doi.org/10.5670/oceanog.2011.64, 2011.
Troupin, C., Machin, F., Ouberdous, M., Sirjacobs, D., Barth, A., and Beckers,
J.-M.: High-resolution climatology of the northeast Atlantic using
Data-Interpolating Variational Analysis (Diva), J. Geophys. Res., 115,
C08005, https://doi.org/10.1029/2009JC005512, 2010.
Troupin, C., Barth, A., Sirjacobs, D., Ouberdous, M., Mrankart, J.-M.,
Brasseur, P., Rixen, M., Alvera-Azcárate, A., Belounis, M., Capet, A.,
Lenartz, F., Toussaint, M.-E., and Beckers, J.-M.: Generation of analysis and
consistent error fields using the Data Interpolating Variational Analysis
(DIVA), Ocean Modell., 52–53, https://doi.org/10.1016/j.ocemod.2012.05.002, 2012.
Tzortzi, E., Srokosz, M., Gommenginger, C., and Josey, S. A.: Spatial and
temporal scales of variability in Tropical Atlantic sea surface salinity from
the SMOS and Aquarius satellite missions, Remote Sens. Environ., 180,
418–430, 2016.
van Leeuwen, P. J.: Representation errors and retrievals in linear and nonlinear
data assimilation, Q. J. Roy. Meteor. Soc., 141, 1612–1623, doi: 10.1002/qj2464, 2015.
Wallace, J. M.: North Atlantic Oscillation/annular mode: Two paradigms-one
phenomenon, Q. J. Roy. Meteor. Soc., 126, 791–805, 2000.
Walsh, J. E. and Chapman, W. L.: Short-Term Climate Variability of the
Arctic, J. Climate, 3, 237–250, 1990.
White, W. B. and Meyers, G.: Space/Time Statistics of Short-Term Climate
Variability in the Western North Pacific, J. Geophys. Res., 87, 1979–1989,
1982.
White, W. B.: Design of a global observing system for gyre-scale upper ocean
temperature variability, Prog. Oceanogr., 36, 169–217, 1995.
Wong, A. P. S., Johnson, G. C., and Owens, W. B.: Delayed-Mode Calibration of
Autonomous CTD Profiling Float Salinity Data by θ−S Climatology, J.
Atmos. Ocean. Tech., 20, 308–318, 2003.
Woodgate, R. A., Aagaard, K., Swift, J. H., Falkner, K. K., and Smethie Jr., W.
M.: Pacific ventilation of the Arctic Ocean's lower halocline by upwelling
and diapycnal mixing over the continental margin, Geophys. Res. Lett., 32,
L18609, https://doi.org/10.1029/2005GL023999, 2005.
Wunsch, C.: Discrete Inverse and State Estimation Problems, Cambridge
University Press, Cambridge, UK, 371 pp., 2006.
Yoshizawa, E., Shimada, K., Ha, H. K., Kim, T. W., Kang, S. H., and Chung, K.
H.: Delayed responses of the oceanic Beaufort Gyre to wind and sea ice
motions: incluences on variations of sea ice cover in the Pacific sector of
the Arctic Ocean, J. Oceanogr., 71, 187–197,
https://doi.org/10.1007/s10872-015-0276-6, 2015.
Zhao, M., Timmermans, M.-L., Cole, S., Krishfield, R., Proshutinsky, A., and
Toole, J.: Characterizing the eddy field in the Arctic Ocean halocline, J.
Geophys. Res.-Oceans, 119, 8800–8817, https://doi.org/10.1002/2014JC010488, 2014.
Zhong, W. and Zhao, J.: Deepening of the Atlantic Water Core in the Canada
Basin in 2013–11, J. Phys. Oceanogr., 44, 2353–2369,
https://doi.org/10.1175/JPO-D-13-084.1, 2014.
Zuo, H., Mugford, R. I., Haines, K., and Smith, G. C.: Assimilation impacts
on Arctic Ocean circulation, heat and freshwater budgets, Ocean Modell.,
40, 147–163, https://doi.org/10.1016/j.ocemod.2011.08.008, 2011.
Short summary
We estimated spatial and temporal decorrelation scales of temperature and salinity in the Amerasian Basin in the Arctic Ocean. The estimated scales can be applied to representation error assessment in the ocean data assimilation system for the Arctic Ocean.
We estimated spatial and temporal decorrelation scales of temperature and salinity in the...