Articles | Volume 14, issue 6
https://doi.org/10.5194/os-14-1581-2018
https://doi.org/10.5194/os-14-1581-2018
Research article
 | 
21 Dec 2018
Research article |  | 21 Dec 2018

The effect of vertical mixing on the horizontal drift of oil spills

Johannes Röhrs, Knut-Frode Dagestad, Helene Asbjørnsen, Tor Nordam, Jørgen Skancke, Cathleen E. Jones, and Camilla Brekke

Related authors

Persistence and Robustness of Lagrangian Coherent Structures
Mateusz Matuszak, Johannes Röhrs, Pål Erik Isachsen, and Martina Idžanović
EGUsphere, https://doi.org/10.5194/egusphere-2024-1171,https://doi.org/10.5194/egusphere-2024-1171, 2024
Short summary
Barents-2.5km v2.0: an operational data-assimilative coupled ocean and sea ice ensemble prediction model for the Barents Sea and Svalbard
Johannes Röhrs, Yvonne Gusdal, Edel S. U. Rikardsen, Marina Durán Moro, Jostein Brændshøi, Nils Melsom Kristensen, Sindre Fritzner, Keguang Wang, Ann Kristin Sperrevik, Martina Idžanović, Thomas Lavergne, Jens Boldingh Debernard, and Kai H. Christensen
Geosci. Model Dev., 16, 5401–5426, https://doi.org/10.5194/gmd-16-5401-2023,https://doi.org/10.5194/gmd-16-5401-2023, 2023
Short summary
Revisiting the DeepWater Horizon spill: High resolution model simulations of effects of oil droplet size distribution and river fronts
Lars R. Hole, Knut-Frode Dagestad, Johannes Röhrs, Cecilie Wettre, Vassiliki H. Kourafalou, Ioannis Androulidakis, Matthieu Le Hénaff, Heesook Kang, and Oscar Garcia-Pineda
Ocean Sci. Discuss., https://doi.org/10.5194/os-2018-130,https://doi.org/10.5194/os-2018-130, 2018
Revised manuscript not accepted
Short summary
OpenDrift v1.0: a generic framework for trajectory modelling
Knut-Frode Dagestad, Johannes Röhrs, Øyvind Breivik, and Bjørn Ådlandsvik
Geosci. Model Dev., 11, 1405–1420, https://doi.org/10.5194/gmd-11-1405-2018,https://doi.org/10.5194/gmd-11-1405-2018, 2018
Short summary
Constraining energetic slope currents through assimilation of high-frequency radar observations
A. K. Sperrevik, K. H. Christensen, and J. Röhrs
Ocean Sci., 11, 237–249, https://doi.org/10.5194/os-11-237-2015,https://doi.org/10.5194/os-11-237-2015, 2015

Cited articles

Breivik, O., Janssen, P. E. A. M., and Bidlot, J.-R.: Approximate Stokes Drift profiles in deep water, J. Phys. Oceanogr., 44, 2433–2445, https://doi.org/10.1175/JPO-D-14-0020.1, 2014. a, b
Broström, G., Drivdal, M., Carrasco, A., Christensen, K., and Mattsson, J.: The Golden Trader oil spill; evaluation of operational oil spill models, in: EGU General Assembly, 16, p. 15518, http://adsabs.harvard.edu/abs/2014EGUGA..1615518B (last access: 19 December 2018), 2014. a
Callaghan, A., de Leeuw, G., Cohen, L., and O'Dowd, C. D.: Relationship of oceanic whitecap coverage to wind speed and wind history, Geophys. Res. Lett., 35, L23609, https://doi.org/10.1029/2008GL036165, 2008. a, b
Callaghan, A. H.: On the Relationship between the Energy Dissipation Rate of Surface-Breaking Waves and Oceanic Whitecap Coverage, J. Phys. Oceanogr., 48, 2609–2626, https://doi.org/10.1175/JPO-D-17-0124.1, 2018. a
Christensen, K. H. and Terrile, E.: Drift and deformation of oil slicks due to surface waves, J. Fluid Mech., 620, 313, https://doi.org/10.1017/S0022112008004606, 2009. a
Download

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
Simulations of hypothetical oil spills are presented to investigate how the vertical mixing of oil affects transport towards various directions. It is shown that the horizontal transport of oil greatly varies for different oil types and weather conditions. These differences are a consequence of the entrainment of oil from the surface into the ocean. While oil spills often get entrained into the water by waves, we show that submerged oil typically resurfaces after a few hours or days.