Articles | Volume 14, issue 6
https://doi.org/10.5194/os-14-1523-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-14-1523-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Parameterization of phytoplankton spectral absorption coefficients in the Baltic Sea: general, monthly and two-component variants of approximation formulas
Institute of Oceanology, Polish Academy of Sciences,
Powstańców Warszawy 55, 81-712 Sopot, Poland
Sławomir B. Woźniak
Institute of Oceanology, Polish Academy of Sciences,
Powstańców Warszawy 55, 81-712 Sopot, Poland
Joanna Stoń-Egiert
Institute of Oceanology, Polish Academy of Sciences,
Powstańców Warszawy 55, 81-712 Sopot, Poland
Bogdan Woźniak
Institute of Oceanology, Polish Academy of Sciences,
Powstańców Warszawy 55, 81-712 Sopot, Poland
Related authors
Justyna Meler, Dagmara Litwicka, and Monika Zabłocka
Biogeosciences, 20, 2525–2551, https://doi.org/10.5194/bg-20-2525-2023, https://doi.org/10.5194/bg-20-2525-2023, 2023
Short summary
Short summary
We present a variability of absorption properties by different size fractions of particles suspended in the Baltic Sea waters. The light absorption coefficient by all suspended particles (ap), detritus (ad) and phytoplankton (aph) was determined for four size fractions: pico-particles, ultra-particles, nano-particles and micro-particles. We have shown the proportions of particles from the size classes (micro-, nano-, ultra- and pico-particles) in the total ap, ad and aph.
Justyna Meler, Piotr Kowalczuk, Mirosława Ostrowska, Dariusz Ficek, Monika Zabłocka, and Agnieszka Zdun
Ocean Sci., 12, 1013–1032, https://doi.org/10.5194/os-12-1013-2016, https://doi.org/10.5194/os-12-1013-2016, 2016
Short summary
Short summary
Three alternative models for estimation of absorption of chromophoric dissolved organic matter (CDOM) have been formulated. The models were based on empirical database containing measurements from different regions of the Baltic Sea and three Pomeranian lakes in Poland. An assumption regarding continuum of inherent optical properties in marine and estuarine waters and freshwater has been proved and enabled the accurate estimation of CDOM absorption in various environments.
Justyna Meler, Dagmara Litwicka, and Monika Zabłocka
Biogeosciences, 20, 2525–2551, https://doi.org/10.5194/bg-20-2525-2023, https://doi.org/10.5194/bg-20-2525-2023, 2023
Short summary
Short summary
We present a variability of absorption properties by different size fractions of particles suspended in the Baltic Sea waters. The light absorption coefficient by all suspended particles (ap), detritus (ad) and phytoplankton (aph) was determined for four size fractions: pico-particles, ultra-particles, nano-particles and micro-particles. We have shown the proportions of particles from the size classes (micro-, nano-, ultra- and pico-particles) in the total ap, ad and aph.
Justyna Meler, Piotr Kowalczuk, Mirosława Ostrowska, Dariusz Ficek, Monika Zabłocka, and Agnieszka Zdun
Ocean Sci., 12, 1013–1032, https://doi.org/10.5194/os-12-1013-2016, https://doi.org/10.5194/os-12-1013-2016, 2016
Short summary
Short summary
Three alternative models for estimation of absorption of chromophoric dissolved organic matter (CDOM) have been formulated. The models were based on empirical database containing measurements from different regions of the Baltic Sea and three Pomeranian lakes in Poland. An assumption regarding continuum of inherent optical properties in marine and estuarine waters and freshwater has been proved and enabled the accurate estimation of CDOM absorption in various environments.
Cited articles
Babin, M. and Stramski, D.: Light absorption by aquatic particles in the
near-infrared spectral region, Limnol. Oceanogr., 47, 911–915, 2002.
Babin, M., Stramski, D., Ferrari, G. M., Claustre, H., Bricaud, A.,
Obolensky, G., and Hoepffner, N.: Variations in the light absorption
coefficient of phytoplankton, nonalgal particles, and dissolved organic
matter in coastal waters around Europe, J. Geophys. Res., 108, 3211,
https://doi.org/10.1029/2001JC000882, 2003.
Bidigare, R., Ondrusek, M. E., Morrow, J. H., and Kiefer, D. A.: “In vivo”
absorption properties of algal pigments, Ocean. Opt., 10, 290–302, 1990.
Bricaud, A., Babin, M., Morel, A., and Claustre, H.: Variability in the
chlorophyll-specific absorption coefficients of natural phytoplankton:
Analysis and parameterization, J. Geophys. Res., 100, 13321–13332, 1995.
Bricaud, A., Morel, A., Babin, M., Allali, K., and Claustre, H.: Variations
of light absorption by suspended particles with chlorophyll a concentration
in oceanic (case 1) waters: analysis and implications for bio-optical models,
J. Geophys. Res., 103, 31033–31044, 1998.
Bricaud, A., Claustre, H., Ras, J., and Oubelkheir, K.: Natural variability
of phytoplankton absorption in oceanic waters: influence of the size
structure of algal populations, J. Geophys. Res., 109, C11010,
https://doi.org/10.1029/2004JC002419, 2004.
Churilova, T., Suslin, V., Krivenko, O., Efimova, T., Moiseeva, N., Mukhanov,
V., and Smirnova, L.: Light absorption by phytoplankton in the upper mixed
layer of the Black Sea: seasonality and parameterization, Front. Mar. Sci.,
4, 90, https://doi.org/10.3389/fmars.2017.00090, 2017.
Dmitriev, E. V., Khomenko, G., Chami, M., Sokolov, A. A., Churilova, T., and
Korotaev, G. K.: Parameterization of light absorption by components of
seawater in optically complex coastal waters of the Crimea Penisula (Black
Sea), Appl. Opt., 48, 1249–1261, 2009.
Ficek, D., Meler, J., Zapadka, T., Woźniak, B., and Dera, J.: Inherent
optical properties and remote sensing reflectance of Pomeranian lakes
(Poland), Oceanologia, 54, 611–630, 2012a.
Ficek, D., Meler, J., Zapadka, T., and Stoń-Egiert, J.: Modelling the
light absorption coefficients of phytoplankton in Pomeranian lakes (Northern
Poland), Fund. Appl. Hydrophys., 5, 54–63, 2012b.
Ficek, D., Kaczmarek, S., Stoń-Egiert, J., Woźniak, B., Majchrowski,
R., and Dera, J.: Spectra of Light absorption by phytoplankton pigments in
the Baltic; conclusions to be drawn from a Gaussian analysis of empirical
data, Oceanologia, 46, 533–555, 2004.
Kirk, J. T. O.: Light and Photosynthesis in Aquatic Ecosystems, Cambridge
University Press, London-New York, 509, 1994.
Koblentz-Mishke, O. I., Woźniak, B., Kaczmarek, S., and Konovalov, B. V.:
The assimilation of light energy by marine phytoplankton, Part 1, The light
absorption capacity of the Baltic and Black Sea phytoplankton (methods;
relation to chlorophyll concentration), Oceanologia, 37, 145–169, 1995.
Kowalczuk, P.: Seasonal variability of yellow substance absorption in the
surface layer of the Baltic Sea, J. Geophys. Res., 104, 30047–30058, 1999.
Majchrowski, R., Woźniak, B., Dera, J., Ficek, D., Kaczmarek, S.,
Ostrowska, M., and Koblentz-Mishke, O. I.: Model of the in vivo spectral
absorption of algal pigments, Part 2, Practical applications of the model,
Oceanologia, 42, 191–202, 2000.
Mascarenhas, V. J. and Zielinski, O.: Parameterization of spectral
particulate and phytoplankton absorption coefficients in Sognefjord and
Trondheimsfjord, two contrasting Norwegian Fjord ecossytems, Remote Sens.,
10, 977, https://doi.org/10.3390/rs10060977, 2018.
Matsuoka, A., Hout, Y., Shimada, K., Saitoh, S., and Babin, M.: Bio-optical
characteristics of the western Artic Ocean: implications for ocean color
algorithms, Can. J. Remote Sensing, 33, 503–518, 2007.
Meler, J., Kowalczuk, P., Ostrowska, M., Ficek, D., Zablocka, M., and Zdun,
A.: Parameterization of the light absorption properties of chromophoric
dissolved organic matter in the Baltic Sea and Pomeranian lakes, Ocean Sci.,
12, 1013–1032, https://doi.org/10.5194/os-12-1013-2016, 2016a.
Meler, J., Ostrowska, M., and Stoń-Egiert, J.: Seasonal and spatial
variability of phytoplankton and non-algal absorption in the surface layer of
the Baltic, Estuar. Coast. Shelf S., 180, 123–135,
https://doi.org/10.1016/j.ecss.2016.06.012, 2016b.
Meler, J., Ostrowska, M., Ficek, D., and Zdun, A.: Light absorption by
phytoplankton in the southern Baltic and Pomeranian lakes: mathematical
expressions for remote sensing applications, Oceanologia, 59, 195–212,
https://doi.org/10.1016/j.oceano.2017.03.010, 2017a.
Meler, J., Ostrowska, M., Stoń-Egiert, J., and Zabłocka, M.: Seasonal
and spatial variability of light absorption by suspended particles in the
southern Baltic: a mathematical description, J. Mar. Sys., 170, 68–87,
https://doi.org/10.1016/j.jmarsys.2016.10.011, 2017b.
Mitchell, B. G.: Algorithm for determining the absorption coefficient of
aquatic particulates using the quantitative filter technique, Proc. SPIE.,
1302, 137–148, 1990.
Mitchell, B. G., Kahru, M., Wieland, J., and Stramska, M.: Determination of
spectral absorption coefficients of particles, dissolved material and
phytoplankton for discrete water samples, in: Ocean Optics Protocols For
Satellite Ocean Color Sensor Validation, edited by: Fargion, G. S. and
Mueller, J. L., Revision 3, Vol. 2, NASA Technical Memorandum 2002-210004/Rev
3-Vol 2, 15, 231–257, 2002.
Mobley, B. D.: Light and Water, Radiative Transfer in Natural Waters, Acad.
Press, San Diego, 592 pp., 1994.
Morel, A. and Bricaud, A.: Theoretical results concerning light absorption in
a discrete medium, and application to specific absorption of phytoplankton,
Deep-Sea-Res., 28, 1375–1393, https://doi.org/10.1016/0198-0149(81)90039-X, 1981.
Morel, A. and Bricaud, A.: Inherent optical properties of algal cells
including picoplankton: theoretical and experimental results, in:
Photosynthetic picoplankton, edited by: Platt, T. and Li, W. K. W., Can. Bull.
Fish. Aquat. Sci., 214, 521–559, 1986.
Nima, C., Frette, Ø., Hamre, B., Erga, S., Chen, Y., Zhao, L.,
Sørensen, K., Norli, M., Stamnes, K., and Stamnes, J.: Absorption
properties of high-latitude Norwegian coastal water: The impact of CDOM and
particulate matter, Estuar. Coast. Shelf S., 178, 158–167,
https://doi.org/10.1016/j.ecss.2016.05.012, 2016.
Paavel, B., Kangro, K., Arst, H., Reinart, A., Kutser, T., and Noges, T.:
Parameterization of chlorophyll-specific phytoplankton absorption
coefficients for productive lake waters, J. Limnol., 75, 423–438, 2016.
Reinart, A., Paavel, B., Pierson, D., and Strömbeck, N.: Inherent and
apparent optical properties of Lake Peipsi, Estonia, Boreal Environ. Res., 9,
429–445, 2004.
Staehr, P. A. and Markager, S.: Parameterization of the chlorophyll a-specific
in vivo light absorption coefficient covering estuarine, coastal and oceanic
waters, Int. J. Remote Sens., 25, 5117–5130, 2004.
Stoń, J. and Kosakowska, A.: Phytoplankton pigments designation – an
application of RP-HPLC in qualitative and quantitative analysis, J. Appl.
Phycol., 14, 205–210, 2002.
Stoń-Egiert, J. and Kosakowska, A.: RP-HPLC determination of
phytoplankton pigments comparison of calibration results for two columns,
Mar. Biol., 147, 251–260, 2005.
Stoń-Egiert, J., Łotocka, M., Ostrowska, M., and Kosakowska, A.: The
influence of biotic factors on phytoplankton pigment composition and
resources in Baltic ecosystems: new analytical results, Oceanologia, 52,
101–125, 2010.
Stramska, M., Stramski, D., Hapter, R., Kaczmarek, S., and Stoń, J.:
Bio-optical relationships and ocean color algorithms for the north polar
region of the Atlantic, J. Geophys. Res., 108, 3143,
https://doi.org/10.1029/2001JC001195, 2003.
Stramski, D., Reynolds, R. I., Kaczmarek, S., Uitz, J., and Zheng, G.:
Correction of pathlength amplification in the filter-pad technique for
measurements of particulate absorption coefficient in the visible spectral
region, Appl. Opt., 54, 6763–6782, 2015.
Tassan, S. and Ferrari, G. M.: An Alternative Approach to Absorption
Measurements of Aquatic Particles Retained on Filters, Limnol. Oceanogr.,
40, 1358–1368, 1995.
Tassan, S. and Ferrari, G. M.: A sensitivity analysis of the
“Transmittance-Reflectance” method for measuring light absorption by aquatic
particles, J. Plankton Res., 24, 757–774, https://doi.org/10.1093/plankt/24.8.757,
2002.
Thamm, R., Schernewski, G., Wasmond, N., and Neumann, T.: Spatial
phytoplankton in the Baltic Sea, in: Baltic Sea typology, edited by: Schernewski, G.
and Wielgat, M., Costline Reports, 4, 85–109, 2004.
Trees, C., Clark, D., Bidigare, R., Ondrusek, E., and Mueller, J.: Accessory
pigments versus chlorophyll a concentrations within the euphotic zone: A
ubiquitous relationship, Limnol. Oceanogr., 45, 1130–1143, 2000.
Wasmund, N. and Uhlig, S.: Phytoplankton in large river plumes in the Baltic
Sea, ICES J. Mar. Sci., 56, 23–32, 2003.
Wasmund, N., Breuel, G., Edler, L., Kuosa, H., Olsonen, R., Schultz, H.,
Pys-Wolska, M., and Wrzołek, L.: Pelagic biology, in: Third Periodic
Assessment of the State of Marine Environment of the Baltic Sea, 199–93;
Background document, Baltic Sea Environment Proceedings No. 64B, Helsinki
Commission, 89–93, 1996.
Wasmund, N., Andrushaitis, A., Łysiak-Pastuszak, E., Müller-Karulis,
B., Nausch, G., Neumann, T., Ojaveer, H., Olenina, I., Postel, L., and Witek,
Z.: Trophic status of the south-eastern Baltic Sea: a comparison of coastal
and open areas, Estuar. Coast. Shelf Sci., 53, 849–864, 2001.
Witek, B. and Pliński, M.: Occurrence of blue-green algae in the
phytoplankton of the Gulf of Gdańsk in the years 1994–1997, Oceanological
Stud., 3, 77–82, 1998.
Woźniak, B. and Ostrowska, M.: Composition and resources of
photosynthetic pigments of the sea phytoplankton, Oceanologia, 29, 91–115,
1990a.
Woźniak, B. and Ostrowska, M.: Optical absorption properties of
phytoplankton in various seas, Oceanologia, 29, 147–174, 1990b.
Woźniak, B. and Dera, J.: Light Absorption in Sea Water, Springer, New
York, 2007.
Woźniak, B., Dera, J., Ficek, D., Majchrowski, R., Kaczmarek, S.,
Ostrowska, M., and Koblentz-Mishke, O. I.: Modelling the influence of
acclimation on the absorption properties of marine phytoplankton,
Oceanologia, 41, 187–210, 1999.
Woźniak, B., Dera, J., Ficek, D., Majchrowski, R., Kaczmarek, S.,
Ostrowska, M., and Koblentz-Mishke, O. I.: Model of the “in vivo” spectral
absorption of algal pigments, Part 1, Mathematical apparatus, Oceanologia,
42, 177–190, 2000a.
Woźniak, B., Dera, J., Ficek, D., Majchrowski, R., Kaczmarek, S.,
Ostrowska, M., and Koblentz-Mishke, O. I.: Model of the “in vivo” spectral
absorption of algal pigments, Part 2, Practical applications of the model,
Oceanologia, 42, 191–202, 2000b.
Ylöstalo, P., Kallio, K., and Seppälä, J.: Absorption properties
of in-water constituents and their variation among various lake types in the
boreal region, Remote Sens. Environ., 148, 190–205, 2014.
Short summary
In our paper, new versions of a simplified mathematical description (parameterization) of light absorption coefficients by phytoplankton suspended in the surface layer of the Baltic Sea in relation to chlorophyll a concentration and the concentration of accessory pigments are presented. The practical value of the simple parameterizations presented in this work should be seen in the opportunities for applying them to the development of remote-sensing methods.
In our paper, new versions of a simplified mathematical description (parameterization) of light...