Articles | Volume 14, issue 6
https://doi.org/10.5194/os-14-1405-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-14-1405-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Contribution of future wide-swath altimetry missions to ocean analysis and forecasting
Antonio Bonaduce
CORRESPONDING AUTHOR
Mercator Ocean, Toulouse, France
now at: Helmholtz-Zentrum Geesthacht Centre for Materials and Coastal Research, Geesthacht, Germany
Mounir Benkiran
Mercator Ocean, Toulouse, France
Elisabeth Remy
Mercator Ocean, Toulouse, France
Pierre Yves Le Traon
Mercator Ocean, Toulouse, France
Ifremer, Plouzané, France
Gilles Garric
Mercator Ocean, Toulouse, France
Related authors
Giovanni Coppini, Palmalisa Marra, Rita Lecci, Nadia Pinardi, Sergio Cretì, Mario Scalas, Luca Tedesco, Alessandro D'Anca, Leopoldo Fazioli, Antonio Olita, Giuseppe Turrisi, Cosimo Palazzo, Giovanni Aloisio, Sandro Fiore, Antonio Bonaduce, Yogesh Vittal Kumkar, Stefania Angela Ciliberti, Ivan Federico, Gianandrea Mannarini, Paola Agostini, Roberto Bonarelli, Sara Martinelli, Giorgia Verri, Letizia Lusito, Davide Rollo, Arturo Cavallo, Antonio Tumolo, Tony Monacizzo, Marco Spagnulo, Rorberto Sorgente, Andrea Cucco, Giovanni Quattrocchi, Marina Tonani, Massimiliano Drudi, Paola Nassisi, Laura Conte, Laura Panzera, Antonio Navarra, and Giancarlo Negro
Nat. Hazards Earth Syst. Sci., 17, 533–547, https://doi.org/10.5194/nhess-17-533-2017, https://doi.org/10.5194/nhess-17-533-2017, 2017
Short summary
Short summary
SeaConditions aims to support the users by providing the environmental information in due time and with adequate accuracy in the marine and coastal environments, enforcing users' sea situational awareness. SeaConditions consists of a web and mobile application for the provision of meteorological and oceanographic observation and forecasting products. The iOS/Android apps were downloaded by more than 105 000 users and more than 100 000 users have visited the web version (www.sea-conditions.com).
P. Oddo, A. Bonaduce, N. Pinardi, and A. Guarnieri
Geosci. Model Dev., 7, 3001–3015, https://doi.org/10.5194/gmd-7-3001-2014, https://doi.org/10.5194/gmd-7-3001-2014, 2014
Mounir Benkiran, Pierre-Yves Le Traon, Elisabeth Rémy, and Yann Drillet
EGUsphere, https://doi.org/10.5194/egusphere-2024-420, https://doi.org/10.5194/egusphere-2024-420, 2024
Preprint archived
Short summary
Short summary
The assimilation of altimetry data corrects and improves the forecast of a global ocean forecasting system. Until now, the use of altimetry observations from nadir altimeters has had a major impact on the quality of ocean forecasts. Our study shows that the use of observations from swath altimeters will have a greater impact than the quality of these forecasts and will better constrain mesoscale structures.
Karina von Schuckmann, Lorena Moreira, and Pierre-Yves Le Traon
State Planet, 1-osr7, 1, https://doi.org/10.5194/sp-1-osr7-1-2023, https://doi.org/10.5194/sp-1-osr7-1-2023, 2023
Stefania A. Ciliberti, Enrique Alvarez Fanjul, Jay Pearlman, Kirsten Wilmer-Becker, Pierre Bahurel, Fabrice Ardhuin, Alain Arnaud, Mike Bell, Segolene Berthou, Laurent Bertino, Arthur Capet, Eric Chassignet, Stefano Ciavatta, Mauro Cirano, Emanuela Clementi, Gianpiero Cossarini, Gianpaolo Coro, Stuart Corney, Fraser Davidson, Marie Drevillon, Yann Drillet, Renaud Dussurget, Ghada El Serafy, Katja Fennel, Marcos Garcia Sotillo, Patrick Heimbach, Fabrice Hernandez, Patrick Hogan, Ibrahim Hoteit, Sudheer Joseph, Simon Josey, Pierre-Yves Le Traon, Simone Libralato, Marco Mancini, Pascal Matte, Angelique Melet, Yasumasa Miyazawa, Andrew M. Moore, Antonio Novellino, Andrew Porter, Heather Regan, Laia Romero, Andreas Schiller, John Siddorn, Joanna Staneva, Cecile Thomas-Courcoux, Marina Tonani, Jose Maria Garcia-Valdecasas, Jennifer Veitch, Karina von Schuckmann, Liying Wan, John Wilkin, and Romane Zufic
State Planet, 1-osr7, 2, https://doi.org/10.5194/sp-1-osr7-2-2023, https://doi.org/10.5194/sp-1-osr7-2-2023, 2023
Joris Pianezze, Jonathan Beuvier, Cindy Lebeaupin Brossier, Guillaume Samson, Ghislain Faure, and Gilles Garric
Nat. Hazards Earth Syst. Sci., 22, 1301–1324, https://doi.org/10.5194/nhess-22-1301-2022, https://doi.org/10.5194/nhess-22-1301-2022, 2022
Short summary
Short summary
Most numerical weather and oceanic prediction systems do not consider ocean–atmosphere feedback during forecast, and this can lead to significant forecast errors, notably in cases of severe situations. A new high-resolution coupled ocean–atmosphere system is presented in this paper. This forecast-oriented system, based on current regional operational systems and evaluated using satellite and in situ observations, shows that the coupling improves both atmospheric and oceanic forecasts.
Florent Garnier, Sara Fleury, Gilles Garric, Jérôme Bouffard, Michel Tsamados, Antoine Laforge, Marion Bocquet, Renée Mie Fredensborg Hansen, and Frédérique Remy
The Cryosphere, 15, 5483–5512, https://doi.org/10.5194/tc-15-5483-2021, https://doi.org/10.5194/tc-15-5483-2021, 2021
Short summary
Short summary
Snow depth data are essential to monitor the impacts of climate change on sea ice volume variations and their impacts on the climate system. For that purpose, we present and assess the altimetric snow depth product, computed in both hemispheres from CryoSat-2 and SARAL satellite data. The use of these data instead of the common climatology reduces the sea ice thickness by about 30 cm over the 2013–2019 period. These data are also crucial to argue for the launch of the CRISTAL satellite mission.
Gregory C. Smith, Yimin Liu, Mounir Benkiran, Kamel Chikhar, Dorina Surcel Colan, Audrey-Anne Gauthier, Charles-Emmanuel Testut, Frederic Dupont, Ji Lei, François Roy, Jean-François Lemieux, and Fraser Davidson
Geosci. Model Dev., 14, 1445–1467, https://doi.org/10.5194/gmd-14-1445-2021, https://doi.org/10.5194/gmd-14-1445-2021, 2021
Short summary
Short summary
Canada's coastlines include diverse ocean environments. In response to the strong need to support marine activities and security, we present the first pan-Canadian operational regional ocean analysis system. A novel online tidal harmonic analysis method is introduced that uses a sliding-window approach. Innovations are compared to those from the Canadian global analysis system. Particular improvements are found near the Gulf Stream due to the higher model grid resolution.
Benoît Tranchant, Elisabeth Remy, Eric Greiner, and Olivier Legalloudec
Ocean Sci., 15, 543–563, https://doi.org/10.5194/os-15-543-2019, https://doi.org/10.5194/os-15-543-2019, 2019
Short summary
Short summary
This work deals with the use of sea surface salinity measurements from space in the context of operational oceanography. The salinity plays an important role in the ocean–atmosphere coupling, especially when an El Niño event occurs in the tropical Pacific. However, it is still difficult to use such data in ocean models due to a large extent to large-scales biases. This study shows that from recent data with a suitable bias correction scheme, it is possible to improve our forecast skill.
Jean-Michel Lellouche, Eric Greiner, Olivier Le Galloudec, Gilles Garric, Charly Regnier, Marie Drevillon, Mounir Benkiran, Charles-Emmanuel Testut, Romain Bourdalle-Badie, Florent Gasparin, Olga Hernandez, Bruno Levier, Yann Drillet, Elisabeth Remy, and Pierre-Yves Le Traon
Ocean Sci., 14, 1093–1126, https://doi.org/10.5194/os-14-1093-2018, https://doi.org/10.5194/os-14-1093-2018, 2018
Short summary
Short summary
In the coming decades, a strong growth of the ocean economy is expected. Scientific advances in operational oceanography will play a crucial role in addressing many environmental challenges and in the development of ocean-related economic activities. In this context, remarkable improvements have been achieved with the current Mercator Ocean system. 3-D water masses, sea level, sea ice and currents have been improved, and thus major oceanic variables are hard to distinguish from the data.
Simon Verrier, Pierre-Yves Le Traon, and Elisabeth Remy
Ocean Sci., 13, 1077–1092, https://doi.org/10.5194/os-13-1077-2017, https://doi.org/10.5194/os-13-1077-2017, 2017
Giovanni Coppini, Palmalisa Marra, Rita Lecci, Nadia Pinardi, Sergio Cretì, Mario Scalas, Luca Tedesco, Alessandro D'Anca, Leopoldo Fazioli, Antonio Olita, Giuseppe Turrisi, Cosimo Palazzo, Giovanni Aloisio, Sandro Fiore, Antonio Bonaduce, Yogesh Vittal Kumkar, Stefania Angela Ciliberti, Ivan Federico, Gianandrea Mannarini, Paola Agostini, Roberto Bonarelli, Sara Martinelli, Giorgia Verri, Letizia Lusito, Davide Rollo, Arturo Cavallo, Antonio Tumolo, Tony Monacizzo, Marco Spagnulo, Rorberto Sorgente, Andrea Cucco, Giovanni Quattrocchi, Marina Tonani, Massimiliano Drudi, Paola Nassisi, Laura Conte, Laura Panzera, Antonio Navarra, and Giancarlo Negro
Nat. Hazards Earth Syst. Sci., 17, 533–547, https://doi.org/10.5194/nhess-17-533-2017, https://doi.org/10.5194/nhess-17-533-2017, 2017
Short summary
Short summary
SeaConditions aims to support the users by providing the environmental information in due time and with adequate accuracy in the marine and coastal environments, enforcing users' sea situational awareness. SeaConditions consists of a web and mobile application for the provision of meteorological and oceanographic observation and forecasting products. The iOS/Android apps were downloaded by more than 105 000 users and more than 100 000 users have visited the web version (www.sea-conditions.com).
V. Turpin, E. Remy, and P. Y. Le Traon
Ocean Sci., 12, 257–274, https://doi.org/10.5194/os-12-257-2016, https://doi.org/10.5194/os-12-257-2016, 2016
Short summary
Short summary
Argo profiling floats are continuously sampling the world ocean, providing temperature and salinity profiles of up to 2000 m depths. This article addresses the impact of the current Argo array on real-time ocean analyses and forecasts. One-year observing system experiments were carried out with the 0.25° global Mercator Ocean monitoring and forecasting system. The improvement due to the assimilation of the Argo profiles is estimated globally and regionally, showing a significant positive impact.
F. Ninove, P.-Y. Le Traon, E. Remy, and S. Guinehut
Ocean Sci., 12, 1–7, https://doi.org/10.5194/os-12-1-2016, https://doi.org/10.5194/os-12-1-2016, 2016
Short summary
Short summary
Argo floats are one of the main components of the in situ observation network in the ocean. Nowadays, more than 3500 profiling floats are sampling the world ocean. In this study, they are used to characterize spatial scales of temperature and salinity variations from the surface down to 1500m. The scales appear to be anisotropic and vary from about 100km at high latitudes to 700km in the Indian and Pacific equatorial and tropical regions.
F. Dupont, S. Higginson, R. Bourdallé-Badie, Y. Lu, F. Roy, G. C. Smith, J.-F. Lemieux, G. Garric, and F. Davidson
Geosci. Model Dev., 8, 1577–1594, https://doi.org/10.5194/gmd-8-1577-2015, https://doi.org/10.5194/gmd-8-1577-2015, 2015
Short summary
Short summary
1/12th degree resolution runs of Arctic--Atlantic were compared for the period 2003-2009. We found good representation of sea surface height and of its statistics; model temperature and salinity in general agreement with in situ measurements, but upper ocean properties in Beaufort Sea are challenging; distribution of concentration and volume of sea ice is improved when slowing down the ice and further improvements require better initial conditions and modifications to mixing.
P. Oddo, A. Bonaduce, N. Pinardi, and A. Guarnieri
Geosci. Model Dev., 7, 3001–3015, https://doi.org/10.5194/gmd-7-3001-2014, https://doi.org/10.5194/gmd-7-3001-2014, 2014
K. von Schuckmann, J.-B. Sallée, D. Chambers, P.-Y. Le Traon, C. Cabanes, F. Gaillard, S. Speich, and M. Hamon
Ocean Sci., 10, 547–557, https://doi.org/10.5194/os-10-547-2014, https://doi.org/10.5194/os-10-547-2014, 2014
P. Y. Le Traon
Ocean Sci., 9, 901–915, https://doi.org/10.5194/os-9-901-2013, https://doi.org/10.5194/os-9-901-2013, 2013
Related subject area
Approach: Remote Sensing | Depth range: Surface | Geographical range: Deep Seas: North Atlantic | Phenomena: Sea Level
Occurrence and characteristics of mesoscale eddies in the tropical northeastern Atlantic Ocean
Florian Schütte, Peter Brandt, and Johannes Karstensen
Ocean Sci., 12, 663–685, https://doi.org/10.5194/os-12-663-2016, https://doi.org/10.5194/os-12-663-2016, 2016
Short summary
Short summary
We want to examine the characteristics of mesoscale eddies in the tropical northeastern Atlantic. They serve as transport agents, exporting water from the coast into the open ocean. Traditionally eddies are categorized with respect to their rotation: cyclonic and anticyclonic. But we could identify, with a combination of different satellite products, a third type called "anticyclonic mode-water eddy" transporting much larger anomalies. We propose a distinction into three classes for further studies.
Cited articles
Atlas, R., Hoffman, R. N., Ma, Z., Emmitt, G. D., Wood Jr., S. A., Greco, S.,
Tucker, S., Bucci, L., Annane, B., Hardesty, R. M., and Murillo, S.: Observing
System Simulation Experiments (OSSEs) to Evaluate the Potential Impact of an
Optical Autocovariance Wind Lidar (OAWL) on Numerical Weather Prediction, J.
Atmos. Ocean. Tech., 32, 1593–1613, https://doi.org/10.1175/JTECH-D-15-0038.1, 2015. a
Barnier, B., Madec, G., Penduff, T., Molines, J.-M., Treguier, A.-M., Le Sommer,
J., Beckmann, A., Biastoch, A., Böning, C., Dengg, J., Derval, C., Durand,
E., Gulev, S., Remy, E., Talandier, C., Theetten, S., Maltrud, M., McClean, J.,
and De Cuevas, B.: Impact of partial steps and momentum advection schemes in a
global ocean circulation model at eddy-permitting resolution, Ocean Dynam., 56,
543–567, https://doi.org/10.1007/s10236-006-0082-1,, 2006. a
Bell, M., Schiller, A., Traon, P.-Y. L., Smith, N., Dombrowsky, E., and
Wilmer-Becker, K.: An introduction to GODAE OceanView, J. Oper. Oceanogr., 8,
s2–s11, https://doi.org/10.1080/1755876X.2015.1022041, 2015. a, b, c
Benkiran, M. and Greiner, E.: Impact of the Incremental Analysis Updates on a
Real-Time System of the North Atlantic Ocean, J. Atmos. Ocean. Tech., 25,
2055–2073, https://doi.org/10.1175/2008JTECHO537.1, 2008. a
Bloom, S. C., Takacs, L. L., da Silva, A. M., and Ledvina, D.: Data Assimilation
Using Incremental Analysis Updates, Mon. Weather Rev., 124, 1256–1271,
https://doi.org/10.1175/1520-0493(1996)124<1256:DAUIAU>2.0.CO;2, 1996. a
Cabanes, C., Grouazel, A., von Schuckmann, K., Hamon, M., Turpin, V., Coatanoan,
C., Paris, F., Guinehut, S., Boone, C., Ferry, N., de Boyer Montégut, C.,
Carval, T., Reverdin, G., Pouliquen, S., and Le Traon, P.-Y.: The CORA dataset:
validation and diagnostics of in-situ ocean temperature and salinity measurements,
Ocean. Sci., 9, 1–18, https://doi.org/10.5194/os-9-1-2013, 2013. a
Dee, D., Uppala, S., Simmons, A., Berrisford, P., Poli, P., Kobayashi, S.,
Andrae, U., Balmaseda, M., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A.
C., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes,
M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V.,
Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P.,
Monge-Sanz, B. M., Morcrette, J., Park, B., Peubey, C., de Rosnay, P., Tavolato,
C., Thépaut, J., and Vitart, F.: The ERA-Interim reanalysis: Configuration
and performance of the data assimilation system, Q. J. Roy. Meteorol. Soc.,
137, 553–597, 2011. a, b
Dibarboure, G. and Ubelmann, C.: Investigating the Performance of Four Empirical
Cross-Calibration Methods for the Proposed SWOT Mission, Remote Sensing, 6,
4831–4869, https://doi.org/10.3390/rs6064831, 2014. a
Dibarboure, G., Pujol, M.-I., Briol, F., Le Traon, P. Y., Larnicol, G., Picot,
N., Mertz, F., and Ablain, M.: Jason-2 in DUACS: Updated System Description,
First Tandem Results and Impact on Processing and Products, Mar. Geodesy, 34,
214–241, https://doi.org/10.1080/01490419.2011.584826, 2011. a
Donlon, C., Berruti, B., Buongiorno, A., Ferreira, M.-H., Féménias, P.,
Frerick, J., Goryl, P., Klein, U., Laur, H., Mavrocordatos, C., Nieke, J.,
Rebhan, H., Seitz, B., Stroede, J., and Sciarra, R.: The Global Monitoring for
Environment and Security (GMES) Sentinel-3 mission, Remote Sens. Environ., 120,
37–57, https://doi.org/10.1016/j.rse.2011.07.024, 2012. a
Ducet, N., Le Traon, P. Y., and Reverdin, G.: Global high-resolution mapping
of ocean circulation from TOPEX/Poseidon and ERS-1 and -2, J. Geophys. Res.,
105, 19477–19498, https://doi.org/10.1029/2000JC900063, 2000. a
Dufau, C., Orsztynowicz, M., Dibarboure, G., Morrow, R., and Le Traon, P.-Y.:
Mesoscale resolution capability of altimetry: Present and future, J. Geophys.
Res.-Oceans, 121, 4910–4927, https://doi.org/10.1002/2015JC010904, 2016. a, b, c, d
Durand, M., Fu, L.-L., Lettenmaier, D. P., Alsdorf, D. E., Rodriguez, E., and
Esteban-Fernandez, D.: The surface water and ocean topography mission: Observing
terrestrial surface water and oceanic submesoscale eddies, Proc. IEEE, 98, 766–779, 2010. a
Egbert, G. D. and Erofeeva, S. Y.: Efficient Inverse Modeling of Barotropic
Ocean Tides, J. Atmos. Ocean. Tech., 19, 183–204, https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2, 2002. a
Errico, R. M., Yang, R., Privé, N. C., Tai, K.-S., Todling, R., Sienkiewicz,
M. E., and Guo, J.: Development and validation of observing-system simulation
experiments at NASA's Global Modeling and Assimilation Office, Q. J. Roy.
Meteorol. Soc., 139, 1162–1178, https://doi.org/10.1002/qj.2027, 2013. a, b
Fu, L.-L. and Chelton, D. B.: Chapter 2 Large-Scale Ocean Circulation,
in: International Geophysics, Vol. 69, edited by: Fu, L.-L. and Cazenave, A.,
Academic Press, https://doi.org/10.1016/S0074-6142(01)80147-9, 2001. a
Fu, L.-L. and Ferrari, R.: Observing Oceanic Submesoscale Processes From Space,
Eos Trans. Am. Geophys. Union, 89, 488–488, https://doi.org/10.1029/2008EO480003, 2008. a
Fu, L.-L., Alsdorf, D., Rodriguez, E., Morrow, R., Mognard, N., Lambin, J.,
Vaze, P., and Lafon, T.: The SWOT (Surface Water and Ocean Topography) mission:
spaceborne radar interferometry for oceanographic and hydrological applications,
in: OCEANOBS'09 Conference, 21–25 September 2009, Venice, Italy, 2009. a, b
Garçon, V. C., Oschlies, A., Doney, S. C., McGillicuddy, D., and Waniek, J.:
The role of mesoscale variability on plankton dynamics in the North Atlantic,
Deep-Sea Res. Pt. II, 48, 2199–2226, https://doi.org/10.1016/S0967-0645(00)00183-1, 2001. a
Garric, G., Parent, L., Greiner, E., Drévillon, M., Hamon, M., Lellouche,
J., Régnier, C., Desportes, C., Le Galloudec, O., Bricaud, C., Drillet, Y.,
Hernandez, F., Dubois, C., and Le Traon, P. Y.: Performance and quality
assessment of the global ocean eddy-permitting physical reanalysis GLORYS2V4,
Operational Oceanography serving Sustainable Marine Development, in: Proceedings
of the Eight EuroGOOS International Conference, EuroGOOS, 3–5 October 2017,
Bergen, Norway, 516 pp., 2018. a, b
Gaultier, L., Ubelmann, C., and Fu, L.-L.: The Challenge of Using Future SWOT
Data for Oceanic Field Reconstruction, J. Atmos. Ocean. Tech., 33, 119–126,
https://doi.org/10.1175/JTECH-D-15-0160.1, 2016. a, b, c
Hallberg, R.: Using a resolution function to regulate parameterizations of
oceanic mesoscale eddy effects, Ocean Model., 72, 92–103, https://doi.org/10.1016/j.ocemod.2013.08.007, 2013. a, b
Halliwell, G. R., Srinivasan, A., Kourafalou, V., Yang, H., Willey, D.,
Hénaff, M. L., and Atlas, R.: Rigorous Evaluation of a Fraternal Twin Ocean
OSSE System for the Open Gulf of Mexico, J. Atmos. Ocean. Tech., 31, 105–130,
https://doi.org/10.1175/JTECH-D-13-00011.1, 2014. a, b, c
Halliwell, G. R., Mehari, M. F., Hénaff, M. L., Kourafalou, V. H.,
Androulidakis, I. S., Kang, H. S., and Atlas, R.: North Atlantic Ocean OSSE
system: Evaluation of operational ocean observing system components and
supplemental seasonal observations for potentially improving tropical cyclone
prediction in coupled systems, J. Oper. Oceanogr., 10, 154–175,
https://doi.org/10.1080/1755876X.2017.1322770, 2017. a, b
Hénaff, M. L., Mey, P. D., Mourre, B., and Traon, P.-Y. L.: Contribution
of a Wide-Swath Altimeter in a Shelf Seas Assimilation System: Impact of the
Satellite Roll Errors, J. Atmos. Ocean. Tech., 25, 2133–2144, https://doi.org/10.1175/2008JTECHO576.1, 2008. a
Ide, K., Courtier, P., Ghil, M., and Lorenc, A. C.: Unified Notation for Data
Assimilation: Operational, Sequential and Variational (gtSpecial IssueltData
Assimilation in Meteology and Oceanography: Theory and Practice), J. Meteorol.
Soc. Jpn. Ser. II, 75, 181–189, 1997. a
Klein, P., Lapeyre, G., and Large, W. G.: Wind ringing of the ocean in presence
of mesoscale eddies, Geophys. Res. Lett., 31, l15306, https://doi.org/10.1029/2004GL020274, 2004. a
Kourafalou, V. H., Androulidakis, Y. S., Halliwell, G. R., Kang, H., Mehari,
M. M., Hénaff, M. L., Atlas, R., and Lumpkin, R.: North Atlantic Ocean OSSE
system development: Nature Run evaluation and application to hurricane interaction
with the Gulf Stream, Prog. Oceanogr., 148, 1–25, https://doi.org/10.1016/j.pocean.2016.09.001, 2016. a
Lellouche, J.-M., Le Galloudec, O., Drévillon, M., Régnier, C., Greiner,
E., Garric, G., Ferry, N., Desportes, C., Testut, C.-E., Bricaud, C.,
Bourdallé-Badie, R., Tranchant, B., Benkiran, M., Drillet, Y., Daudin, A.,
and De Nicola, C.: Evaluation of global monitoring and forecasting systems at
Mercator Océan, Ocean Sci., 9, 57–81, https://doi.org/10.5194/os-9-57-2013, 2013. a, b, c
Le Traon, P. Y.: From satellite altimetry to Argo and operational oceanography:
three revolutions in oceanography, Ocean Sci., 9, 901–915, https://doi.org/10.5194/os-9-901-2013, 2013. a
Le Traon, P. Y. and Dibarboure, G.: Mesoscale Mapping Capabilities of
Multiple-Satellite Altimeter Missions, J. Atmos. Ocean. Tech., 16, 1208–1223,
https://doi.org/10.1175/1520-0426(1999)016<1208:MMCOMS>2.0.CO;2, 1999. a
Le Traon, P. Y. and Morrow, R.: Chapter 3 Ocean Currents and Eddies, in:
International Geophysics, Vol. 69, edited by: Fu, L.-L. and Cazenave, A.,
Academic Press, https://doi.org/10.1016/S0074-6142(01)80148-0, 2001. a
Le Traon, P. Y., Antoine, D., Bentamy, A., Bonekamp, H., Breivik, L., Chapron,
B., Corlett, G., Dibarboure, G., DiGiacomo, P., Donlon, C., Faugère, Y.,
Font, J., Girard-Ardhuin, F., Gohin, F., Johannessen, J., Kamachi, M., Lagerloef,
G., Lambin, J., Larnicol, G., Borgne, P. L., Leuliette, E., Lindstrom, E.,
Martin, M., Maturi, E., Miller, L., Mingsen, L., Morrow, R., Reul, N., Rio, M.,
Roquet, H., Santoleri, R., and Wilkin, J.: Use of satellite observations for
operational oceanography: recent achievements and future prospects, J. Oper.
Oceanogr., 8, s12–s27, https://doi.org/10.1080/1755876X.2015.1022050, 2015. a
Le Traon, P. Y., Ali, A., Alvarez Fanjul, E., Aouf, L., Axell, L., Aznar, R.,
Ballarotta, M., Behrens, A., Mounir, B., Bentamy, A., Bertino, L., Bowyer, P.,
Brando, V. A., Breivik, L., Buongiorno Nardelli, B., Cailleau, S., Ciliberti,
S., Clementi, E., Colella, S., and Zuo, H.: The Copernicus Marine Environmental
Monitoring Service: Main Scientific Achievements and Future Prospects, The
Copernicus Marine Environmental Monitoring Service: Main Scientific Achievements
and Future Prospects, Mercator Ocean J., 56, 2017a. a
Lyard, F., Lefevre, F., Letellier, T., and Francis, O.: Modelling the global
ocean tides: modern insights from FES2004, Ocean Dynam., 56, 394–415,
https://doi.org/10.1007/s10236-006-0086-x, 2006. a
Maraldi, C., Chanut, J., Levier, B., Ayoub, N., De Mey, P., Reffray, G., Lyard,
F., Cailleau, S., Drévillon, M., Fanjul, E. A., Sotillo, M. G., Marsaleix,
P., and Team, M.: NEMO on the shelf: assessment of the Iberia-Biscay-Ireland
configuration, Ocean Sci., 9, 745–771, https://doi.org/10.5194/os-9-745-2013, 2013. a, b, c
Morrow, R. and Le Traon, P.-Y.: Recent advances in observing mesoscale ocean
dynamics with satellite altimetry, Adv. Space Res., 50, 1062–1076,
https://doi.org/10.1016/j.asr.2011.09.033, 2012. a
Oddo, P., Bonaduce, A., Pinardi, N., and Guarnieri, A.: Sensitivity of the
Mediterranean sea level to atmospheric pressure and free surface elevation
numerical formulation in NEMO, Geosci. Model Dev., 7, 3001–3015, https://doi.org/10.5194/gmd-7-3001-2014, 2014. a
Oke, P. R., Larnicol, G., Fujii, Y., Smith, G., Lea, D., Guinehut, S., Remy, E.,
Balmaseda, M. A., Rykova, T., Surcel-Colan, D., Martin, M., Sellar, A., Mulet,
S., and Turpin, V.: Assessing the impact of observations on ocean forecasts and
reanalyses: Part 1, Global studies, J. Oper. Oceanogr., 8, s49–s62,
https://doi.org/10.1080/1755876X.2015.1022067, 2015a. a
Oke, P. R., Larnicol, G., Jones, E., Kourafalou, V., Sperrevik, A., Carse, F.,
Tanajura, C., Mourre, B., Tonani, M., Brassington, G. B., Le Henaff, M.,
Halliwell Jr., G. R., Atlas, R., Moore, A., Edwards, C., Martin, M., Sellar, A.,
Alvarez, A., Mey, P. D., and Iskandarani, M.: Assessing the impact of observations
on ocean forecasts and reanalyses: Part 2, Regional applications, J. Oper.
Oceanogr., 8, s63–s79, https://doi.org/10.1080/1755876X.2015.1022080, 2015b. a
Oke, P. R. and Schiller, A.: Impact of Argo, SST, and altimeter data on an
eddy-resolving ocean reanalysis, Geophys. Res. Lett., 34, l19601, https://doi.org/10.1029/2007GL031549, 2007. a
Oke, P. R., Brassington, G. B., Griffin, D. A., and Schiller, A.: The Bluelink
ocean data assimilation system (BODAS), Ocean Model., 21, 46–70, https://doi.org/10.1016/j.ocemod.2007.11.002, 2008. a
Pascual, A., Faugère, Y., Larnicol, G., and Le Traon, P.-Y.: Improved
description of the ocean mesoscale variability by combining four satellite
altimeters, Geophys. Res. Lett., 33, l02611, https://doi.org/10.1029/2005GL024633, 2006. a
Ponte, A. L. and Klein, P.: Reconstruction of the upper ocean 3D dynamics from
high-resolution sea surface height, Ocean Dynam., 63, 777–791, https://doi.org/10.1007/s10236-013-0611-7, 2013. a
Pujol, M.-I., Dibarboure, G., Traon, P.-Y. L., and Klein, P.: Using High-Resolution
Altimetry to Observe Mesoscale Signals, J. Atmos. Ocean. Tech., 29, 1409–1416,
https://doi.org/10.1175/JTECH-D-12-00032.1, 2012. a
Roblou, L., Lamouroux, J., Bouffard, J., Lyard, F., Le Hénaff, M., Lombard,
A., Marsaleix, P., De Mey, P., and Birol, F.: Post-processing Altimeter Data
Towards Coastal Applications and Integration into Coastal Models, Springer,
Berlin, Heidelberg, 217–246, https://doi.org/10.1007/978-3-642-12796-0_9, 2011. a
Ruggiero, G. A., Cosme, E., Brankart, J.-M., Sommer, J. L., and Ubelmann, C.:
An efficient way to account for observation error correlations in the
assimilation of data from the future SWOT High-Resolution altimeter mission,
J. Atmos. Ocean. Tech., 33, 2755–2768, https://doi.org/10.1175/JTECH-D-16-0048.1, 2016. a
Schiller, A., Bell, M., Brassington, G., Brasseur, P., Barciela, R., Mey, P. D.,
Dombrowsky, E., Gehlen, M., Hernandez, F., Kourafalou, V., Larnicol, G., Traon,
P.-Y. L., Martin, M., Oke, P., Smith, G. C., Smith, N., Tolman, H., and
Wilmer-Becker, K.: Synthesis of new scientific challenges for GODAE OceanView,
J. Oper. Oceanogr., 8, s259–s271, https://doi.org/10.1080/1755876X.2015.1049901, 2015. a
Sotillo, M. G., Cailleau, S., Lorente, P., Levier, B., Aznar, R., Reffray, G.,
Amo-Baladrón, A., Chanut, J., Benkiran, M., and Alvarez-Fanjul, E.: The
MyOcean IBI Ocean Forecast and Reanalysis Systems: operational products and
roadmap to the future Copernicus Service, J. Oper. Oceanogr., 8, 63–79,
https://doi.org/10.1080/1755876X.2015.1014663, 2015. a, b, c
Thomson, R. E. and Emery, W. J.: Chapter 5 – Time Series Analysis Methods, in:
Data Analysis Methods in Physical Oceanography, 3rd Edn., edited by: Thomson,
R. E. and Emery, W. J., Elsevier, Boston, 425–591, https://doi.org/10.1016/B978-0-12-387782-6.00005-3, 2014. a, b, c
Ubelmann, C., Klein, P., and Fu, L.-L.: Dynamic Interpolation of Sea Surface
Height and Potential Applications for Future High-Resolution Altimetry Mapping,
J. Atmos. Ocean. Tech., 32, 177–184, https://doi.org/10.1175/JTECH-D-14-00152.1, 2015. a, b, c
Ubelmann, C., Dibarboure, G., and Dubois, P.: A cross-spectral approach to
measure the error budget of the SWOT altimetry mission over the Ocean,
J. Atmos. Ocean. Tech., 35, 845–857, https://doi.org/10.1175/JTECH-D-17-0061.1, 2017. a, b
Verrier, S., Le Traon, P.-Y., and Remy, E.: Assessing the impact of multiple
altimeter missions and Argo in a global eddy-permitting data assimilation
system, Ocean Sci., 13, 1077–1092, https://doi.org/10.5194/os-13-1077-2017, 2017. a
Wunsch, C. and Stammer, D.: Atmospheric loading and the oceanic “inverted
barometer” effect, Rev. Geophys., 35, 79–107, https://doi.org/10.1029/96RG03037, 1997. a