Articles | Volume 14, issue 1
https://doi.org/10.5194/os-14-139-2018
https://doi.org/10.5194/os-14-139-2018
Research article
 | 
28 Feb 2018
Research article |  | 28 Feb 2018

Effect of winds and waves on salt intrusion in the Pearl River estuary

Wenping Gong, Zhongyuan Lin, Yunzhen Chen, Zhaoyun Chen, and Heng Zhang

Related authors

Salt intrusion dynamics in a well-mixed sub-estuary connected to a partially to well-mixed main estuary
Zhongyuan Lin, Guang Zhang, Huazhi Zou, and Wenping Gong
Ocean Sci., 20, 181–199, https://doi.org/10.5194/os-20-181-2024,https://doi.org/10.5194/os-20-181-2024, 2024
Short summary
Responses of estuarine circulation to the morphological evolution in a convergent, microtidal estuary
Rui Zhang, Bo Hong, Lei Zhu, Wenping Gong, and Heng Zhang
Ocean Sci., 18, 213–231, https://doi.org/10.5194/os-18-213-2022,https://doi.org/10.5194/os-18-213-2022, 2022
Short summary

Related subject area

Approach: Numerical Models | Depth range: All Depths | Geographical range: Shelf Seas | Phenomena: Temperature, Salinity and Density Fields
The impact of meltwater discharge from the Greenland ice sheet on the Atlantic nutrient supply to the northwest European shelf
Moritz Mathis and Uwe Mikolajewicz
Ocean Sci., 16, 167–193, https://doi.org/10.5194/os-16-167-2020,https://doi.org/10.5194/os-16-167-2020, 2020
Short summary
A hydrodynamic model for Galveston Bay and the shelf in the northern Gulf of Mexico
Jiabi Du, Kyeong Park, Jian Shen, Yinglong J. Zhang, Xin Yu, Fei Ye, Zhengui Wang, and Nancy N. Rabalais
Ocean Sci., 15, 951–966, https://doi.org/10.5194/os-15-951-2019,https://doi.org/10.5194/os-15-951-2019, 2019
Short summary
Mean circulation in the coastal ocean off northeastern North America from a regional-scale ocean model
K. Chen and R. He
Ocean Sci., 11, 503–517, https://doi.org/10.5194/os-11-503-2015,https://doi.org/10.5194/os-11-503-2015, 2015
Modelling temperature and salinity in Liverpool Bay and the Irish Sea: sensitivity to model type and surface forcing
C. K. O'Neill, J. A. Polton, J. T. Holt, and E. J. O'Dea
Ocean Sci., 8, 903–913, https://doi.org/10.5194/os-8-903-2012,https://doi.org/10.5194/os-8-903-2012, 2012
Numerical simulations of spreading of the Persian Gulf outflow into the Oman Sea
M. Ezam, A. A. Bidokhti, and A. H. Javid
Ocean Sci., 6, 887–900, https://doi.org/10.5194/os-6-887-2010,https://doi.org/10.5194/os-6-887-2010, 2010

Cited articles

Allen, J. S. and Newberger, P. A.: Downwelling circulation on the Oregon continental shelf: Part I. Response to idealized forcing, J. Phys. Oceanogr., 26, 2011–2035, 1996. 
Booij, N., Ris, R., and Holthuijsen, L.: A third generation wave model for coastal regions. I- model description and validation, J. Geophys. Res., 104, 7649–7666, 1999. 
Bowen, M. M. and Geyer, W. R.: Salt transport and the time-dependent salt balance of a partially stratified estuary, J. Geophys. Res., 108, 3158, https://doi.org/10.1029/2001JC001231, 2003. 
Buschman, F. A., Hoitink, A. J. F., van eer Vegt, M., and Hoekstra, P.: Subtidal water level variation controlled by river flow and tides, Water Resour. Res., 45, W10420, https://doi.org/10.1029/2009WR008167, 2009. 
Chapman, D. C.: Numerical treatment of cross-shelf open boundaries in a barotropic coastal ocean model, J. Phys. Oceanogr., 15, 1060–1075, 1985. 
Download
Short summary
Salt intrusion in the Pearl River Estuary is a dynamic process that is influenced by a range of factors, and few studies have examined the effects of winds and waves. Therefore, we investigate these effects using the Coupled Ocean-Atmosphere-Wave-Sediment Transport modeling system in this region. It was found that enhancement of the salt intrusion is comparable between the remote and local winds. Waves decrease the salt intrusion by increasing the water mixing.