Articles | Volume 13, issue 6
https://doi.org/10.5194/os-13-997-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/os-13-997-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
The spatial and interannual dynamics of the surface water carbonate system and air–sea CO2 fluxes in the outer shelf and slope of the Eurasian Arctic Ocean
Irina I. Pipko
CORRESPONDING AUTHOR
V. I. Il'ichev Pacific Oceanological Institute, Russian Academy of
Sciences, Vladivostok, Russia
National Research Tomsk Polytechnic University, Tomsk, Russia
Svetlana P. Pugach
V. I. Il'ichev Pacific Oceanological Institute, Russian Academy of
Sciences, Vladivostok, Russia
National Research Tomsk Polytechnic University, Tomsk, Russia
Igor P. Semiletov
V. I. Il'ichev Pacific Oceanological Institute, Russian Academy of
Sciences, Vladivostok, Russia
National Research Tomsk Polytechnic University, Tomsk, Russia
International Arctic Research Center, University of Alaska Fairbanks,
Fairbanks, AK, USA
Leif G. Anderson
Department of Marine Sciences, University of Gothenburg, Gothenburg,
Sweden
Natalia E. Shakhova
National Research Tomsk Polytechnic University, Tomsk, Russia
International Arctic Research Center, University of Alaska Fairbanks,
Fairbanks, AK, USA
Örjan Gustafsson
Department of Environmental Science and Analytical Chemistry,
Stockholm University, Stockholm, Sweden
Bolin Centre for Climate Research, Stockholm University, Stockholm,
Sweden
Irina A. Repina
A. M. Obukhov Institute of Atmospheric Physics, Russian Academy of
Sciences, Moscow, Russia
Eduard A. Spivak
V. I. Il'ichev Pacific Oceanological Institute, Russian Academy of
Sciences, Vladivostok, Russia
Alexander N. Charkin
V. I. Il'ichev Pacific Oceanological Institute, Russian Academy of
Sciences, Vladivostok, Russia
National Research Tomsk Polytechnic University, Tomsk, Russia
Anatoly N. Salyuk
V. I. Il'ichev Pacific Oceanological Institute, Russian Academy of
Sciences, Vladivostok, Russia
National Research Tomsk Polytechnic University, Tomsk, Russia
Kseniia P. Shcherbakova
V. I. Il'ichev Pacific Oceanological Institute, Russian Academy of
Sciences, Vladivostok, Russia
National Research Tomsk Polytechnic University, Tomsk, Russia
Elena V. Panova
National Research Tomsk Polytechnic University, Tomsk, Russia
Oleg V. Dudarev
V. I. Il'ichev Pacific Oceanological Institute, Russian Academy of
Sciences, Vladivostok, Russia
National Research Tomsk Polytechnic University, Tomsk, Russia
Related authors
Peter Edward Land, Helen S. Findlay, Jamie D. Shutler, Jean-Francois Piolle, Richard Sims, Hannah Green, Vassilis Kitidis, Alexander Polukhin, and Irina I. Pipko
Earth Syst. Sci. Data, 15, 921–947, https://doi.org/10.5194/essd-15-921-2023, https://doi.org/10.5194/essd-15-921-2023, 2023
Short summary
Short summary
Measurements of the ocean’s carbonate system (e.g. CO2 and pH) have increased greatly in recent years, resulting in a need to combine these data with satellite measurements and model results, so they can be used to test predictions of how the ocean reacts to changes such as absorption of the CO2 emitted by humans. We show a method of combining data into regions of interest (100 km circles over a 10 d period) and apply it globally to produce a harmonised and easy-to-use data archive.
Svetlana P. Pugach, Irina I. Pipko, Natalia E. Shakhova, Evgeny A. Shirshin, Irina V. Perminova, Örjan Gustafsson, Valery G. Bondur, Alexey S. Ruban, and Igor P. Semiletov
Ocean Sci., 14, 87–103, https://doi.org/10.5194/os-14-87-2018, https://doi.org/10.5194/os-14-87-2018, 2018
Short summary
Short summary
This paper explores the possibility of using CDOM and its spectral parameters to identify the different biogeochemical regimes on the ESAS. The strong correlation between DOC and CDOM values in the surface shelf waters influenced by terrigenous discharge indicates that it is feasible to estimate DOC content from CDOM fluorescence assessed in situ. The direct estimation of DOM optical parameters in the surface ESAS waters provided by this study will be useful for validating remote sensing data.
I. P. Semiletov, N. E. Shakhova, I. I. Pipko, S. P. Pugach, A. N. Charkin, O. V. Dudarev, D. A. Kosmach, and S. Nishino
Biogeosciences, 10, 5977–5996, https://doi.org/10.5194/bg-10-5977-2013, https://doi.org/10.5194/bg-10-5977-2013, 2013
Krishnakant Budhavant, Mohanan Remani Manoj, Hari Ram Chandrika Rajendran Nair, Samuel Mwaniki Gaita, Henry Holmstrand, Abdus Salam, Ahmed Muslim, Sreedharan Krishnakumari Satheesh, and Örjan Gustafsson
Atmos. Chem. Phys., 24, 11911–11925, https://doi.org/10.5194/acp-24-11911-2024, https://doi.org/10.5194/acp-24-11911-2024, 2024
Short summary
Short summary
The South Asian Pollution Experiment 2018 used access to three strategically located receptor observatories. Observational constraints revealed opposing trends in the mass absorption cross sections of black carbon (BC MAC) and brown carbon (BrC MAC) during long-range transport. Models estimating the climate effects of BC aerosols may have underestimated the ambient BC MAC over distant receptor areas, leading to discrepancies in aerosol absorption predicted by observation-constrained models.
Leonard Kirago, Örjan Gustafsson, Samuel Mwaniki Gaita, Sophie L. Haslett, Michael J. Gatari, Maria Elena Popa, Thomas Röckmann, Christoph Zellweger, Martin Steinbacher, Jörg Klausen, Christian Félix, David Njiru, and August Andersson
Atmos. Chem. Phys., 23, 14349–14357, https://doi.org/10.5194/acp-23-14349-2023, https://doi.org/10.5194/acp-23-14349-2023, 2023
Short summary
Short summary
This study provides ground-observational evidence that supports earlier suggestions that savanna fires are the main emitters and modulators of carbon monoxide gas in Africa. Using isotope-based techniques, the study has shown that about two-thirds of this gas is emitted from savanna fires, while for urban areas, in this case Nairobi, primary sources approach 100 %. The latter has implications for air quality policy, suggesting primary emissions such as traffic should be targeted.
Christoph Heinze, Thorsten Blenckner, Peter Brown, Friederike Fröb, Anne Morée, Adrian L. New, Cara Nissen, Stefanie Rynders, Isabel Seguro, Yevgeny Aksenov, Yuri Artioli, Timothée Bourgeois, Friedrich Burger, Jonathan Buzan, B. B. Cael, Veli Çağlar Yumruktepe, Melissa Chierici, Christopher Danek, Ulf Dieckmann, Agneta Fransson, Thomas Frölicher, Giovanni Galli, Marion Gehlen, Aridane G. González, Melchor Gonzalez-Davila, Nicolas Gruber, Örjan Gustafsson, Judith Hauck, Mikko Heino, Stephanie Henson, Jenny Hieronymus, I. Emma Huertas, Fatma Jebri, Aurich Jeltsch-Thömmes, Fortunat Joos, Jaideep Joshi, Stephen Kelly, Nandini Menon, Precious Mongwe, Laurent Oziel, Sólveig Ólafsdottir, Julien Palmieri, Fiz F. Pérez, Rajamohanan Pillai Ranith, Juliano Ramanantsoa, Tilla Roy, Dagmara Rusiecka, J. Magdalena Santana Casiano, Yeray Santana-Falcón, Jörg Schwinger, Roland Séférian, Miriam Seifert, Anna Shchiptsova, Bablu Sinha, Christopher Somes, Reiner Steinfeldt, Dandan Tao, Jerry Tjiputra, Adam Ulfsbo, Christoph Völker, Tsuyoshi Wakamatsu, and Ying Ye
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-182, https://doi.org/10.5194/bg-2023-182, 2023
Preprint under review for BG
Short summary
Short summary
For assessing the consequences of human-induced climate change for the marine realm, it is necessary to not only look at gradual changes but also at abrupt changes of environmental conditions. We summarise abrupt changes in ocean warming, acidification, and oxygen concentration as the key environmental factors for ecosystems. Taking these abrupt changes into account requires greenhouse gas emissions to be reduced to a larger extent than previously thought to limit respective damage.
Peter Edward Land, Helen S. Findlay, Jamie D. Shutler, Jean-Francois Piolle, Richard Sims, Hannah Green, Vassilis Kitidis, Alexander Polukhin, and Irina I. Pipko
Earth Syst. Sci. Data, 15, 921–947, https://doi.org/10.5194/essd-15-921-2023, https://doi.org/10.5194/essd-15-921-2023, 2023
Short summary
Short summary
Measurements of the ocean’s carbonate system (e.g. CO2 and pH) have increased greatly in recent years, resulting in a need to combine these data with satellite measurements and model results, so they can be used to test predictions of how the ocean reacts to changes such as absorption of the CO2 emitted by humans. We show a method of combining data into regions of interest (100 km circles over a 10 d period) and apply it globally to produce a harmonised and easy-to-use data archive.
Victor Lomov, Victor Stepanenko, Maria Grechushnikova, and Irina Repina
EGUsphere, https://doi.org/10.5194/egusphere-2022-329, https://doi.org/10.5194/egusphere-2022-329, 2022
Preprint withdrawn
Short summary
Short summary
We present the first mechanistic model LAKE2.3 for prediction of methane emissions from artificial reservoirs. Estimates of CH4 emissions from the Mozhaysk reservoir (Moscow region) provided by the model are demonstrated. Methane annual emissions through diffusion, ebullition and downstream degassing according to in situ measurements and model simulations are presented. The experiments with the model allowed to determine the most sensitive model parameters for calibration of methane fluxes.
Jaclyn Clement Kinney, Karen M. Assmann, Wieslaw Maslowski, Göran Björk, Martin Jakobsson, Sara Jutterström, Younjoo J. Lee, Robert Osinski, Igor Semiletov, Adam Ulfsbo, Irene Wåhlström, and Leif G. Anderson
Ocean Sci., 18, 29–49, https://doi.org/10.5194/os-18-29-2022, https://doi.org/10.5194/os-18-29-2022, 2022
Short summary
Short summary
We use data crossing Herald Canyon in the Chukchi Sea collected in 2008 and 2014 together with numerical modelling to investigate the circulation in the western Chukchi Sea. A large fraction of water from the Chukchi Sea enters the East Siberian Sea south of Wrangel Island and circulates in an anticyclonic direction around the island. To assess the differences between years, we use numerical modelling results, which show that high-frequency variability dominates the flow in Herald Canyon.
Jannik Martens, Evgeny Romankevich, Igor Semiletov, Birgit Wild, Bart van Dongen, Jorien Vonk, Tommaso Tesi, Natalia Shakhova, Oleg V. Dudarev, Denis Kosmach, Alexander Vetrov, Leopold Lobkovsky, Nikolay Belyaev, Robie W. Macdonald, Anna J. Pieńkowski, Timothy I. Eglinton, Negar Haghipour, Salve Dahle, Michael L. Carroll, Emmelie K. L. Åström, Jacqueline M. Grebmeier, Lee W. Cooper, Göran Possnert, and Örjan Gustafsson
Earth Syst. Sci. Data, 13, 2561–2572, https://doi.org/10.5194/essd-13-2561-2021, https://doi.org/10.5194/essd-13-2561-2021, 2021
Short summary
Short summary
The paper describes the establishment, structure and current status of the first Circum-Arctic Sediment CArbon DatabasE (CASCADE), which is a scientific effort to harmonize and curate all published and unpublished data of carbon, nitrogen, carbon isotopes, and terrigenous biomarkers in sediments of the Arctic Ocean in one database. CASCADE will enable a variety of studies of the Arctic carbon cycle and thus contribute to a better understanding of how climate change affects the Arctic.
Alexander Osadchiev, Igor Medvedev, Sergey Shchuka, Mikhail Kulikov, Eduard Spivak, Maria Pisareva, and Igor Semiletov
Ocean Sci., 16, 781–798, https://doi.org/10.5194/os-16-781-2020, https://doi.org/10.5194/os-16-781-2020, 2020
Short summary
Short summary
The Yenisei and Khatanga rivers are among the largest estuarine rivers that inflow to the Arctic Ocean. Discharge of the Yenisei River is 1 order of magnitude larger than that of the Khatanga River. However, spatial scales of buoyant plumes formed by freshwater runoff from the Yenisei and Khatanga gulfs are similar. This feature is caused by intense tidal mixing in the Khatanga Gulf, which causes formation of the diluted and therefore anomalously deep and large Khatanga plume.
Francesco Muschitiello, Matt O'Regan, Jannik Martens, Gabriel West, Örjan Gustafsson, and Martin Jakobsson
Geochronology, 2, 81–91, https://doi.org/10.5194/gchron-2-81-2020, https://doi.org/10.5194/gchron-2-81-2020, 2020
Short summary
Short summary
In this study we present a new marine chronology of the last ~30 000 years for a sediment core retrieved from the central Arctic Ocean. Our new chronology reveals substantially faster sedimentation rates during the end of the last glacial cycle, the Last Glacial Maximum, and deglaciation than previously reported, thus implying a substantial re-interpretation of paleoceanographic reconstructions from this sector of the Arctic Ocean.
Sarah Conrad, Johan Ingri, Johan Gelting, Fredrik Nordblad, Emma Engström, Ilia Rodushkin, Per S. Andersson, Don Porcelli, Örjan Gustafsson, Igor Semiletov, and Björn Öhlander
Biogeosciences, 16, 1305–1319, https://doi.org/10.5194/bg-16-1305-2019, https://doi.org/10.5194/bg-16-1305-2019, 2019
Short summary
Short summary
Iron analysis of the particulate, colloidal, and truly dissolved fractions along the Lena River freshwater plume showed that the particulate iron dominates close to the coast. Over 99 % particulate and about 90 % colloidal iron were lost, while the truly dissolved phase was almost constant. Iron isotopes suggest that the shelf acts as a sink for particles and colloids with negative iron isotope values, while colloids with positive iron isotope values travel further out into the Arctic Ocean.
Sergej Zilitinkevich, Oleg Druzhinin, Andrey Glazunov, Evgeny Kadantsev, Evgeny Mortikov, Iryna Repina, and Yulia Troitskaya
Atmos. Chem. Phys., 19, 2489–2496, https://doi.org/10.5194/acp-19-2489-2019, https://doi.org/10.5194/acp-19-2489-2019, 2019
Short summary
Short summary
We consider the budget of turbulent kinetic energy (TKE) in stably stratified flows. TKE is generated by velocity shear, then partially converted to potential energy, but basically cascades towards very small eddies and dissipates into heat. The TKE dissipation rate is vital for comprehending and modelling turbulent flows in geophysics, astrophysics, and engineering. Until now its dependence on static stability remained unclear. We define it theoretically and validate against experimental data.
Birgit Wild, Natalia Shakhova, Oleg Dudarev, Alexey Ruban, Denis Kosmach, Vladimir Tumskoy, Tommaso Tesi, Hanna Joß, Helena Alexanderson, Martin Jakobsson, Alexey Mazurov, Igor Semiletov, and Örjan Gustafsson
The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-229, https://doi.org/10.5194/tc-2018-229, 2018
Revised manuscript not accepted
Short summary
Short summary
The thaw and degradation of subsea permafrost on the Arctic Ocean shelves is one of the key uncertainties concerning natural greenhouse gas emissions since difficult access limits the availability of observational data. In this study, we describe sediment properties and age constraints of a unique set of three subsea permafrost cores from the East Siberian Arctic Shelf, as well as content, origin and degradation state of organic matter at the current thaw front.
Robert B. Sparkes, Melissa Maher, Jerome Blewett, Ayça Doğrul Selver, Örjan Gustafsson, Igor P. Semiletov, and Bart E. van Dongen
The Cryosphere, 12, 3293–3309, https://doi.org/10.5194/tc-12-3293-2018, https://doi.org/10.5194/tc-12-3293-2018, 2018
Short summary
Short summary
Ongoing climate change in the Siberian Arctic region has the potential to release large amounts of carbon, currently stored in permafrost, to the Arctic Shelf. Degradation can release this to the atmosphere as greenhouse gas. We used Raman spectroscopy to analyse a fraction of this carbon, carbonaceous material, a group that includes coal, lignite and graphite. We were able to trace this carbon from the river mouths and coastal erosion sites across the Arctic shelf for hundreds of kilometres.
Svetlana P. Pugach, Irina I. Pipko, Natalia E. Shakhova, Evgeny A. Shirshin, Irina V. Perminova, Örjan Gustafsson, Valery G. Bondur, Alexey S. Ruban, and Igor P. Semiletov
Ocean Sci., 14, 87–103, https://doi.org/10.5194/os-14-87-2018, https://doi.org/10.5194/os-14-87-2018, 2018
Short summary
Short summary
This paper explores the possibility of using CDOM and its spectral parameters to identify the different biogeochemical regimes on the ESAS. The strong correlation between DOC and CDOM values in the surface shelf waters influenced by terrigenous discharge indicates that it is feasible to estimate DOC content from CDOM fluorescence assessed in situ. The direct estimation of DOM optical parameters in the surface ESAS waters provided by this study will be useful for validating remote sensing data.
Volker Brüchert, Lisa Bröder, Joanna E. Sawicka, Tommaso Tesi, Samantha P. Joye, Xiaole Sun, Igor P. Semiletov, and Vladimir A. Samarkin
Biogeosciences, 15, 471–490, https://doi.org/10.5194/bg-15-471-2018, https://doi.org/10.5194/bg-15-471-2018, 2018
Short summary
Short summary
We determined the aerobic and anaerobic degradation rates of land- and marine-derived organic material in East Siberian shelf sediment. Marine plankton-derived organic carbon was the main source for the oxic dissolved carbon dioxide production, whereas terrestrial organic material significantly contributed to the production of carbon dioxide under anoxic conditions. Our direct degradation rate measurements provide new constraints for the present-day Arctic marine carbon budget.
Göran Björk, Martin Jakobsson, Karen Assmann, Leif G. Andersson, Johan Nilsson, Christian Stranne, and Larry Mayer
Ocean Sci., 14, 1–13, https://doi.org/10.5194/os-14-1-2018, https://doi.org/10.5194/os-14-1-2018, 2018
Short summary
Short summary
This study presents detailed bathymetric data along with hydrographic data at two deep passages across the Lomonosov Ridge in the Arctic Ocean. The southern channel is relatively smooth with a sill depth close to 1700 m. Hydrographic data reveals an eastward flow in the southern part and opposite in the northern part. The northern passage is characterized by a narrow and steep ridge with a sill depth of 1470 m. Here, water exchange appears to occur in well-defined but irregular vertical layers.
Alexander N. Charkin, Michiel Rutgers van der Loeff, Natalia E. Shakhova, Örjan Gustafsson, Oleg V. Dudarev, Maxim S. Cherepnev, Anatoly N. Salyuk, Andrey V. Koshurnikov, Eduard A. Spivak, Alexey Y. Gunar, Alexey S. Ruban, and Igor P. Semiletov
The Cryosphere, 11, 2305–2327, https://doi.org/10.5194/tc-11-2305-2017, https://doi.org/10.5194/tc-11-2305-2017, 2017
Short summary
Short summary
This study tests the hypothesis that SGD exists in the Siberian Arctic shelf seas, but its dynamics may be largely controlled by complicated geocryological conditions such as permafrost. The permafrost cements rocks, forms a confining bed, and as a result makes it difficult for the groundwater escape to the shelf surface. However, the discovery of subterranean outcrops of groundwater springs in the Buor-Khaya Gulf are clear evidence that a groundwater flow system exists in the environment.
Matt O'Regan, Jan Backman, Natalia Barrientos, Thomas M. Cronin, Laura Gemery, Nina Kirchner, Larry A. Mayer, Johan Nilsson, Riko Noormets, Christof Pearce, Igor Semiletov, Christian Stranne, and Martin Jakobsson
Clim. Past, 13, 1269–1284, https://doi.org/10.5194/cp-13-1269-2017, https://doi.org/10.5194/cp-13-1269-2017, 2017
Short summary
Short summary
Past glacial activity on the East Siberian continental margin is poorly known, partly due to the lack of geomorphological evidence. Here we present geophysical mapping and sediment coring data from the East Siberian shelf and slope revealing the presence of a glacially excavated cross-shelf trough reaching to the continental shelf edge north of the De Long Islands. The data provide direct evidence for extensive glacial activity on the Siberian shelf that predates the Last Glacial Maximum.
Kirsi Keskitalo, Tommaso Tesi, Lisa Bröder, August Andersson, Christof Pearce, Martin Sköld, Igor P. Semiletov, Oleg V. Dudarev, and Örjan Gustafsson
Clim. Past, 13, 1213–1226, https://doi.org/10.5194/cp-13-1213-2017, https://doi.org/10.5194/cp-13-1213-2017, 2017
Short summary
Short summary
In this study we investigate land-to-ocean transfer and the fate of permafrost carbon in the East Siberian Sea from the early Holocene until the present day. Our results suggest that there was a high input of terrestrial organic carbon to the East Siberian Sea during the last glacial–interglacial period caused by permafrost destabilisation. This material was mainly characterised as relict Pleistocene permafrost deposited via coastal erosion as a result of the sea level rise.
Tommaso Tesi, Marc C. Geibel, Christof Pearce, Elena Panova, Jorien E. Vonk, Emma Karlsson, Joan A. Salvado, Martin Kruså, Lisa Bröder, Christoph Humborg, Igor Semiletov, and Örjan Gustafsson
Ocean Sci., 13, 735–748, https://doi.org/10.5194/os-13-735-2017, https://doi.org/10.5194/os-13-735-2017, 2017
Short summary
Short summary
Recent Arctic studies suggest that sea-ice decline and permafrost thawing will affect the phytoplankton in the Arctic Ocean. However, in what way the plankton composition will change as the warming proceeds remains elusive. Here we show that the carbon composition of plankton might change as a function of the enhanced terrestrial organic carbon supply and progressive sea-ice thawing.
Thomas M. Cronin, Matt O'Regan, Christof Pearce, Laura Gemery, Michael Toomey, Igor Semiletov, and Martin Jakobsson
Clim. Past, 13, 1097–1110, https://doi.org/10.5194/cp-13-1097-2017, https://doi.org/10.5194/cp-13-1097-2017, 2017
Short summary
Short summary
Global sea level rise during the last deglacial flooded the Siberian continental shelf in the Arctic Ocean. Sediment cores, radiocarbon dating, and microfossils show that the regional sea level in the Arctic rose rapidly from about 12 500 to 10 700 years ago. Regional sea level history on the Siberian shelf differs from the global deglacial sea level rise perhaps due to regional vertical adjustment resulting from the growth and decay of ice sheets.
Jorien E. Vonk, Tommaso Tesi, Lisa Bröder, Henry Holmstrand, Gustaf Hugelius, August Andersson, Oleg Dudarev, Igor Semiletov, and Örjan Gustafsson
The Cryosphere, 11, 1879–1895, https://doi.org/10.5194/tc-11-1879-2017, https://doi.org/10.5194/tc-11-1879-2017, 2017
Martin Jakobsson, Christof Pearce, Thomas M. Cronin, Jan Backman, Leif G. Anderson, Natalia Barrientos, Göran Björk, Helen Coxall, Agatha de Boer, Larry A. Mayer, Carl-Magnus Mörth, Johan Nilsson, Jayne E. Rattray, Christian Stranne, Igor Semiletov, and Matt O'Regan
Clim. Past, 13, 991–1005, https://doi.org/10.5194/cp-13-991-2017, https://doi.org/10.5194/cp-13-991-2017, 2017
Short summary
Short summary
The Arctic and Pacific oceans are connected by the presently ~53 m deep Bering Strait. During the last glacial period when the sea level was lower than today, the Bering Strait was exposed. Humans and animals could then migrate between Asia and North America across the formed land bridge. From analyses of sediment cores and geophysical mapping data from Herald Canyon north of the Bering Strait, we show that the land bridge was flooded about 11 000 years ago.
Ira Leifer, Denis Chernykh, Natalia Shakhova, and Igor Semiletov
The Cryosphere, 11, 1333–1350, https://doi.org/10.5194/tc-11-1333-2017, https://doi.org/10.5194/tc-11-1333-2017, 2017
Short summary
Short summary
Vast Arctic methane deposits may alter global climate and require remote sensing (RS) to map. Sonar has great promise, but quantitative inversion based on theory is challenged by multiple bubble acoustical scattering in plumes. We demonstrate use of a real-world in situ bubble plume calibration using a bubble model to correct for differences in the calibration and seep plumes. Spatial seep sonar maps were then used to improve understanding of subsurface geologic controls.
Célia J. Sapart, Natalia Shakhova, Igor Semiletov, Joachim Jansen, Sönke Szidat, Denis Kosmach, Oleg Dudarev, Carina van der Veen, Matthias Egger, Valentine Sergienko, Anatoly Salyuk, Vladimir Tumskoy, Jean-Louis Tison, and Thomas Röckmann
Biogeosciences, 14, 2283–2292, https://doi.org/10.5194/bg-14-2283-2017, https://doi.org/10.5194/bg-14-2283-2017, 2017
Short summary
Short summary
The Arctic Ocean, especially the Siberian shelves, overlays large areas of subsea permafrost that is degrading. We show that methane with a biogenic origin is emitted from this permafrost. At locations where bubble plumes have been observed, methane can escape oxidation in the surface sediment and rapidly migrate through the very shallow water column of this region to escape to the atmosphere, generating a positive radiative feedback.
Leif G. Anderson, Göran Björk, Ola Holby, Sara Jutterström, Carl Magnus Mörth, Matt O'Regan, Christof Pearce, Igor Semiletov, Christian Stranne, Tim Stöven, Toste Tanhua, Adam Ulfsbo, and Martin Jakobsson
Ocean Sci., 13, 349–363, https://doi.org/10.5194/os-13-349-2017, https://doi.org/10.5194/os-13-349-2017, 2017
Short summary
Short summary
We use data collected in 2014 to show that the outflow of nutrient-rich water occurs much further to the west than has been reported in the past. We suggest that this is due to much less summer sea-ice coverage in the northwestern East Siberian Sea than in the past decades. Further, our data support a more complicated flow pattern in the region where the Mendeleev Ridge reaches the shelf compared to the general cyclonic circulation within the individual basins as suggested historically.
Christof Pearce, Aron Varhelyi, Stefan Wastegård, Francesco Muschitiello, Natalia Barrientos, Matt O'Regan, Thomas M. Cronin, Laura Gemery, Igor Semiletov, Jan Backman, and Martin Jakobsson
Clim. Past, 13, 303–316, https://doi.org/10.5194/cp-13-303-2017, https://doi.org/10.5194/cp-13-303-2017, 2017
Short summary
Short summary
The eruption of the Alaskan Aniakchak volcano of 3.6 thousand years ago was one of the largest Holocene eruptions worldwide. The resulting ash is found in several Alaskan sites and as far as Newfoundland and Greenland. In this study, we found ash from the Aniakchak eruption in a marine sediment core from the western Chukchi Sea in the Arctic Ocean. Combined with radiocarbon dates on mollusks, the volcanic age marker is used to calculate the marine radiocarbon reservoir age at that time.
Leif G. Anderson, Jörgen Ek, Ylva Ericson, Christoph Humborg, Igor Semiletov, Marcus Sundbom, and Adam Ulfsbo
Biogeosciences, 14, 1811–1823, https://doi.org/10.5194/bg-14-1811-2017, https://doi.org/10.5194/bg-14-1811-2017, 2017
Short summary
Short summary
Waters with very high p>CO2, nutrients and low oxygen concentrations were observed along the continental margin of the East Siberian Sea and well out into the deep Makarov and Canada basins during the SWERUS-C3 expedition in 2014. This water had a low saturation state with respect to calcium carbonate, down to less than 0.8 for calcite and 0.5 for aragonite, and is traced in historic data to the Canada Basin and in the waters flowing out of the Arctic Ocean in the western Fram Strait.
Erik Gustafsson, Christoph Humborg, Göran Björk, Christian Stranne, Leif G. Anderson, Marc C. Geibel, Carl-Magnus Mörth, Marcus Sundbom, Igor P. Semiletov, Brett F. Thornton, and Bo G. Gustafsson
Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-115, https://doi.org/10.5194/bg-2017-115, 2017
Preprint withdrawn
Short summary
Short summary
In this study we quantify key carbon cycling processes on the East Siberian Arctic Shelf. A specific aim is to determine the pathways of terrestrial organic carbon (OC) supplied by rivers and coastline erosion – and particularly to what extent degradation of terrestrial OC contributes to air-sea CO2 exchange. We estimate that the shelf is a weak CO2 sink, although this sink is considerably reduced mainly by degradation of eroded OC and to a lesser extent by degradation of riverine OC.
Joan A. Salvadó, Tommaso Tesi, Marcus Sundbom, Emma Karlsson, Martin Kruså, Igor P. Semiletov, Elena Panova, and Örjan Gustafsson
Biogeosciences, 13, 6121–6138, https://doi.org/10.5194/bg-13-6121-2016, https://doi.org/10.5194/bg-13-6121-2016, 2016
Short summary
Short summary
Fluvial discharge and coastal erosion of the permafrost-dominated East Siberian Arctic delivers large quantities of terrigenous organic carbon (Terr-OC) to marine waters. We assessed its fate and composition in different marine pools with a suite of biomarkers. The dissolved organic carbon is transporting off-shelf “young” and fresh vascular plant material, while sedimentary and near-bottom particulate organic carbon preferentially carries old organic carbon released from thawing permafrost.
Robert B. Sparkes, Ayça Doğrul Selver, Örjan Gustafsson, Igor P. Semiletov, Negar Haghipour, Lukas Wacker, Timothy I. Eglinton, Helen M. Talbot, and Bart E. van Dongen
The Cryosphere, 10, 2485–2500, https://doi.org/10.5194/tc-10-2485-2016, https://doi.org/10.5194/tc-10-2485-2016, 2016
Short summary
Short summary
The permafrost in eastern Siberia contains large amounts of carbon frozen in soils and sediments. Continuing global warming is thawing the permafrost and releasing carbon to the Arctic Ocean. We used pyrolysis-GCMS, a chemical fingerprinting technique, to study the types of carbon being deposited on the continental shelf. We found large amounts of permafrost-sourced carbon being deposited up to 200 km offshore.
Lisa Bröder, Tommaso Tesi, Joan A. Salvadó, Igor P. Semiletov, Oleg V. Dudarev, and Örjan Gustafsson
Biogeosciences, 13, 5003–5019, https://doi.org/10.5194/bg-13-5003-2016, https://doi.org/10.5194/bg-13-5003-2016, 2016
Short summary
Short summary
Thawing permafrost may release large amounts of terrestrial organic carbon (TerrOC) to the Arctic Ocean. We assessed its fate in the marine environment with a suite of biomarkers. Across the Laptev Sea their concentrations in surface sediments decreased significantly and showed a trend to qualitatively more degraded TerrOC with increasing water depth. We infer that the degree of degradation of TerrOC is a function of the time spent under oxic conditions during protracted cross-shelf transport.
Juliane Bischoff, Robert B. Sparkes, Ayça Doğrul Selver, Robert G. M. Spencer, Örjan Gustafsson, Igor P. Semiletov, Oleg V. Dudarev, Dirk Wagner, Elizaveta Rivkina, Bart E. van Dongen, and Helen M. Talbot
Biogeosciences, 13, 4899–4914, https://doi.org/10.5194/bg-13-4899-2016, https://doi.org/10.5194/bg-13-4899-2016, 2016
Short summary
Short summary
The Arctic contains a large pool of carbon that is vulnerable to warming and can be released by rivers and coastal erosion. We study microbial lipids (BHPs) in permafrost and shelf sediments to trace the source, transport and fate of this carbon. BHPs in permafrost deposits are released to the shelf by rivers and coastal erosion, in contrast to other microbial lipids (GDGTs) that are transported by rivers. Several further analyses are needed to understand the complex East Siberian Shelf system.
X. Feng, Ö. Gustafsson, R. M. Holmes, J. E. Vonk, B. E. van Dongen, I. P. Semiletov, O. V. Dudarev, M. B. Yunker, R. W. Macdonald, D. B. Montluçon, and T. I. Eglinton
Biogeosciences, 12, 4841–4860, https://doi.org/10.5194/bg-12-4841-2015, https://doi.org/10.5194/bg-12-4841-2015, 2015
Short summary
Short summary
Currently very few studies have examined the distribution and fate of hydrolyzable organic carbon (OC) in Arctic sediments, whose fate remains unclear in the context of climate change. Our study focuses on the source, distribution and fate of hydrolyzable OC as compared with plant wax lipids and lignin phenols in the sedimentary particles of nine Arctic and sub-Arctic rivers. This multi-molecular approach allows for a comprehensive investigation of terrestrial OC transfer via Arctic rivers.
R. B. Sparkes, A. Doğrul Selver, J. Bischoff, H. M. Talbot, Ö. Gustafsson, I. P. Semiletov, O. V. Dudarev, and B. E. van Dongen
Biogeosciences, 12, 3753–3768, https://doi.org/10.5194/bg-12-3753-2015, https://doi.org/10.5194/bg-12-3753-2015, 2015
Short summary
Short summary
Siberian permafrost contains large amounts of organic carbon that may be released by climate warming. We collected and analysed samples from the East Siberian Sea, using GDGT biomarkers to trace the sourcing and deposition of organic carbon across the shelf. We show that branched GDGTs may be used to trace river erosion. Results from modelling show that organic carbon on the shelf is a complex process involving river-derived and coastal-derived material as well as marine carbon production.
E. N. Kirillova, A. Andersson, J. Han, M. Lee, and Ö. Gustafsson
Atmos. Chem. Phys., 14, 1413–1422, https://doi.org/10.5194/acp-14-1413-2014, https://doi.org/10.5194/acp-14-1413-2014, 2014
I. P. Semiletov, N. E. Shakhova, I. I. Pipko, S. P. Pugach, A. N. Charkin, O. V. Dudarev, D. A. Kosmach, and S. Nishino
Biogeosciences, 10, 5977–5996, https://doi.org/10.5194/bg-10-5977-2013, https://doi.org/10.5194/bg-10-5977-2013, 2013
Related subject area
Approach: In situ Observations | Depth range: Surface | Geographical range: Shelf Seas | Phenomena: Air-Sea Fluxes
pCO2 variability in the surface waters of the eastern Gulf of Cádiz (SW Iberian Peninsula)
A 3-year time series of volatile organic iodocarbons in Bedford Basin, Nova Scotia: a northwestern Atlantic fjord
Spatiotemporal variations of fCO2 in the North Sea
Dolores Jiménez-López, Ana Sierra, Teodora Ortega, Soledad Garrido, Nerea Hernández-Puyuelo, Ricardo Sánchez-Leal, and Jesús Forja
Ocean Sci., 15, 1225–1245, https://doi.org/10.5194/os-15-1225-2019, https://doi.org/10.5194/os-15-1225-2019, 2019
Short summary
Short summary
The present study describes the surface distribution of the partial pressure of CO2 in the continental shelf of the eastern Gulf of Cádiz. For this, eight oceanographic cruises were carried out between March 2014 and February 2016. This distribution presents a linear dependence with the temperature and it decreases with distance from the coast. The Gulf of Cádiz shows a mean rate of −0.18 ± 1.32 mmol m-2 d-1, with an annual uptake capacity of CO2 of 4.1 Gg C year-1.
Qiang Shi and Douglas Wallace
Ocean Sci., 14, 1385–1403, https://doi.org/10.5194/os-14-1385-2018, https://doi.org/10.5194/os-14-1385-2018, 2018
Short summary
Short summary
Time series observations can reveal processes and controlling factors underlying the production and loss of iodocarbons in the ocean and provide data for testing hypotheses and models. We report weekly observations from May 2015 to December 2017 at four depths in Bedford Basin, Canada. Iodocarbons in near-surface waters showed strong seasonal variability and similarities and differences in their correlation with temporal variations of potentially related properties and causal factors.
A. M. Omar, A. Olsen, T. Johannessen, M. Hoppema, H. Thomas, and A. V. Borges
Ocean Sci., 6, 77–89, https://doi.org/10.5194/os-6-77-2010, https://doi.org/10.5194/os-6-77-2010, 2010
Cited articles
Abrahamsen, E. P., Meredith, M. P., Falkner, K. K., Torres-Valdes, S., Leng, M. J., Alkire, M. B., Bacon, S., Laxon, S. W., Polyakov, I., and Ivanov, V.: Tracer-derived freshwater budget of the Siberian Continental Shelf following the extreme Arctic summer of 2007, Geophys. Res. Lett., 36, L07602, https://doi.org/10.1029/2009GL037341, 2009.
Alling, V., Sánchez-García, L., Porcelli, D., Pugach, S., Vonk, J., van Dongen, B., Mörth, C. M., Anderson, L. G., Sokolov, A., Andersson, P., Humborg, C., Semiletov, I., and Gustafsson, Ö.: Nonconservative behavior of dissolved organic carbon across the Laptev and East Siberian seas, Global Biogeochem. Cy., 24, GB4033, https://doi.org/10.1029/2010GB003834, 2010.
Anderson, L. G., Olsson, K., and Chierici, M.: A carbon budget for the Arctic Ocean, Global Biogeochem. Cy., 12, 455–465, 1998.
Anderson, L. G., Jutterström, S., Hjalmarsson, S., Wáhlström, I., and Semiletov, I. P.: Out-gassing of CO2 from Siberian shelf seas by terrestrial organic matter decomposition, Geophys. Res. Lett., 36, L20601, https://doi.org/10.1029/2009GL040046, 2009.
Anderson, L. G., Björk, G., Jutterström, S., Pipko, I., Shakhova, N., Semiletov, I., and Wåhlström, I.: East Siberian Sea, an Arctic region of very high biogeochemical activity, Biogeosciences, 8, 1745–1754, https://doi.org/10.5194/bg-8-1745-2011, 2011.
Anderson, L. G., Ek, J., Ericson, Y., Humborg, C., Semiletov, I., Sundbom, M., and Ulfsbo, A.: Export of calcium carbonate corrosive waters from the East Siberian Sea, Biogeosciences, 14, 1811–1823, https://doi.org/10.5194/bg-14-1811-2017, 2017.
Årthun, M., Bellerby, R. G. J., Omar, A. M., and Schrum, C.: Spatiotemporal variability of air–sea CO2 fluxes in the Barents Sea, as determined from empirical relationships and modeled hydrography, J. Marine Syst., 98–99, 40–50, 2012.
Bates, N. R.: Air–sea CO2 fluxes and the continental shelf pump of carbon in the Chukchi Sea adjacent to the Arctic Ocean, J. Geophys. Res., 111, C10013, https://doi.org/10.1029/2005JC003083, 2006.
Bates, N. R. and Mathis, J. T.: The Arctic Ocean marine carbon cycle: evaluation of air-sea CO2 exchanges, ocean acidification impacts and potential feedbacks, Biogeosciences, 6, 2433–2459, https://doi.org/10.5194/bg-6-2433-2009, 2009.
Bauch, D., Dmitrenko, I. A., Wegner, C., Hölemann, J., Kirillov, S. A., Timokhov, L. A., and Kassens H.: Exchange of Laptev Sea and Arctic Ocean halocline waters in response to atmospheric forcing, J. Geophys. Res., 114, C05008, https://doi.org/10.1029/2008JC005062, 2009.
Bauch, D., Groger, M., Dmitrenko, I., Holemann, J., Kirillov, S., Mackensen, A., Taldenkova, E., and Andersen, N.: Atmospheric controlled freshwater release at the Laptev Sea continental margin, Polar Res., 30, 5858, https://doi.org/10.3402/polar.v30i0.5858, 2011.
Bélanger, S., Xie, H., Krotkov, N., Larouche, P., Vincent, W. F., and Babin, M.: Photomineralization of terrigenous dissolved organic matter in Arctic coastal waters from 1979 to 2003: Interannual variability and implications of climate change, Global Biogeochem. Cycles, 20, GB4005, https://doi.org/10.1029/2006GB002708, 2006.
Bhatt, U. S., Walker, D. A., Raynolds, M. K., Comiso, J. C., Epstein, H. E., Jia, G., Gens, R., Pinzon, J. E., Tucker, C. J., Tweedie, C. E., and Webber, P.J.: Circumpolar Arctic tundra vegetation change is linked to sea-ice decline, Earth Interact., 14, 1–20, https://doi.org/10.1175/2010EI315.1, 2010.
Bischoff, J., Sparkes, R. B., Dogrul Selver, A., Spencer, R. G. M., Gustafsson, Ö., Semiletov, I. P., Dudarev, O. V., Wagner, D., Rivkina, E., van Dongen, B. E., and Talbot, H. M.: Source, transport and fate of soil organic matter inferred from microbial biomarker lipids on the East Siberian Arctic Shelf, Biogeosciences, 13, 4899–4914, https://doi.org/10.5194/bg-13-4899-2016, 2016.
Bröder, L., Tesi, T., Salvadó, J. A., Semiletov, I. P., Dudarev, O. V., and Gustafsson, Ö.: Fate of terrigenous organic matter across the Laptev Sea from the mouth of the Lena River to the deep sea of the Arctic interior, Biogeosciences, 13, 5003–5019, https://doi.org/10.5194/bg-13-5003-2016, 2016
Bruevich, S. V.: Instruction for Chemical Investigation of Seawater, Glavsevmorput, Moscow, 83 pp., 1944 (in Russian).
Carmack, E., Barber, D., Christensen, J., Macdonald, R., Rudels, B., and Sakshaug, E.: Climate variability and physical forcing of the food webs and the carbon budget on panarctic shelves, Prog. Oceanogr., 71, 145–181, 2006.
Charkin, A. N., Dudarev, O. V., Shakhova, N. E., Semiletov, I. P., Pipko, I. I., Pugach, S. P., and Sergienko, V.I.: Peculiarities of the formation of suspended particulate matter fields in the eastern Arctic seas, Dokl. Earth Sci., 462, 626–630, 2015.
DeGrandpre, M. D., Hammar, T. R., Smith, S. P., and Sayles, F. L.: In-situ measurements of seawater pCO2, Limnol. Oceanogr., 40, 969–975, 1995.
Dickson, A. G.: Standard potential of the reaction: AgCl(s) + 1/2 H2(g) = Ag(s) + HCl(aq), and the standard acidity constant of the ion HSO4− in synthetic sea water from 273.15 to 318.15 K, J. Chem. Thermodyn., 22, 113–127, 1990a.
Dickson, A. G.: Thermodynamics of the dissolution of boric acid in synthetic seawater from 273.15° K to 318.15° K, Deep-Sea Res. Pt. I, 37, 755–766, 1990b.
Dickson, A. G. and Millero, F. J.: A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media, Deep-Sea Res., 34, 1733–1743, 1987.
Dickson, A. G., Sabine, C. L., and Christian, J. R.: Guide to best practices for ocean CO2 measurements, PICES Special Publication 3, IOCCP Report no. 8, 2007.
Dittmar, T. and Kattner, G.: The biogeochemistry of the river and shelf ecosystem of the Arctic Ocean: A review, Mar. Chem., 83, 103–120, 2003.
DOE: Handbook of Methods for the Analysis of the Various Parameters of the Carbon Dioxide System in Sea Water, Version 2, edited by: Dickson, A. G. and Goyet, C., US Department of Energy, 1994.
Dudarev, O. V., Semiletov, I. P., and Charkin, A. N.: Particulate material composition in the Lena River-Laptev Sea system: scales of heterogeneities, Dokl. Earth Sci., 411, 1445–1451, 2006.
Ekwurzel, B., Schlosser, P., Mortlock, R., and Fairbanks, R.: River runoff, sea-ice meltwater, and Pacific water distribution and mean residence times in the Arctic Ocean, J. Geophys. Res.-Oceans, 106, 9075–9092, 2001.
Fichot, C. G. and Benner, R.: The fate of terrigenous dissolved organic carbon in a river-influenced ocean margin, Global Biogeochem. Cy., 28, 300–318, https://doi.org/10.1002/2013GB004670, 2014.
Findlay, H. S., Gibson, G., Kedra, M., Morata, N., Orchowska, M., Pavlov, A. K., Reigstad, M., Silyakova, A., Tremblay, J.-E., Walczowski, W., Weydmann, A., and Logvinova, C.: Responses in Arctic marine carbon cycle processes: conceptual scenarios and implications for ecosystem function, Polar Res., 34, 24252, http:10.3402/polar.v34.24252, 2015.
Fransson, A., Chierici, M., Anderson, L. G., Bussmann, I., Kattner, G., Jones, E. P., and Swift, J. H.: The importance of shelf processes for the modification of chemical constituents in the waters of the Eurasian Arctic Ocean: implication for carbon fluxes, Cont. Shelf Res., 21, 225–242, 2001.
Fransson, A., Chierici, M., and Nojiri, Y.: New insights into the spatial variability of the surface water carbon dioxide in varying sea-ice conditions in the Arctic Ocean, Cont. Shelf Res., 29, 1317–1328, https://doi.org/10.1016/j.csr.2009.03.008, 2009.
Granskog, M. A., Macdonald, R. W., Mundy, C. J., and Barber, D. G.: Distribution, characteristics and potential impacts of chromophoric dissolved organic matter (CDOM) in Hudson Strait and Hudson Bay, Canada, Cont. Shelf Res., 27, 2032–2050, 2007.
Granskog, M. A., Pavlov, A. K., Sagan, S., Kowalczuk, P., Raczkowska, A., and Stedmon, C. A.: Effect of sea-ice melt on inherent optical properties and vertical distribution of solar radiant heating in Arctic surface waters, J. Geophys. Res.-Oceans, 120, 7028–7039, https://doi.org/10.1002/2015JC011087, 2015.
Gustafsson, Ö., van Dongen, B. E., Vonk, J. E., Dudarev, O. V., and Semiletov, I. P.: Widespread release of old carbon across the Siberian Arctic echoed by its large rivers, Biogeosciences, 8, 1737–1743, https://doi.org/10.5194/bg-8-1737-2011, 2011.
Harms, I. H. and Karcher, M. J.: Modeling the seasonal variability of hydrography and circulation in the Kara Sea, J. Geophys. Res., 104, 13431–13448, 1999.
Hill, V. J.: Impacts of chromophoric dissolved organic material on surface ocean heating in the Chukchi Sea, J. Geophys. Res., 113, C07024, https://doi.org/10.1029/2007JC004119, 2008.
Holmes, R. M., McClelland, J.W., Peterson, B. J., Tank, S. E., Bulygina, E., Eglinton, T. I., Gordeev, V. V., Gurtovaya, T. Y., Raymond, P. A., Repeta, D. J., Staples, R., Striegl, R. G., Zhulidov, A. V., and Zimov, S. A.: Seasonal and Annual Fluxes of Nutrients and Organic Matter from Large Rivers to the Arctic Ocean and Surrounding Seas, Estuar. Coast., 35, 369–382, 2012.
Hopkins, T. S.: The GIN Sea – a synthesis of its physical oceanography and literature review 1972–1985, Earth-Sci. Rev., 30, 175–318, 1991.
Jakobsson, M.: Hypsometry and volume of the Arctic Ocean and its constituent seas, Geochem. Geophys. Geosyst., 3, 1028, https://doi.org/10.1029/2001GC000302, 2002.
Kaltin, S., Anderson, L. G., Olsson, K., Fransson, A., and Chierici, M.: Uptake of atmospheric carbon dioxide in the Barents Sea, J. Mar. Syst., 38, 31–45, 2002.
Karlsson, E., Gelting, J., Tesi, T., van Dongen, B., Semiletov, I., Charkin, A., Dudarev, O., and Gustafsson, Ö.: Different sources and degradation status of dissolved, particulate and sedimentary organic matter along the Eurasian Arctic coastal margin, Global Biogeochem. Cy., 30, 898–916, 2016.
Kattsov, V., Ryabinin, V., Overland, J., Serreze, M., Visbeck, M., Walsh, J., Meier, W., and Zhang, X.: Arctic sea-ice change: A grand challenge of climate science, J. Glaciol., 56, 1115–1121, https://doi.org/10.3189/002214311796406176, 2010.
Lauvset, S. K., Chierici, M., Counillon, F., Omar, A., Nondal, G., Johannessen, T., and Olsen, A.: Annual and seasonal fCO2 and air–sea CO2 fluxes in the Barents Sea, J. Mar. Syst., 113–114, 62–74, 2013.
Lewis, E. and Wallace, D. W. R.: Program developed for CO2 system calculations, ORNL/CDIAC-105, Carbon Dioxide Information Analysis Center. Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, Tennessee, 1998.
Loeng, H.: Features of the physical oceanographic conditions of the Barents Sea, Polar Res., 10, 5–18, https://doi.org/10.1111/j.1751-8369.1991.tb00630.x, 1991.
Logvinova, C. L., Frey, K. E., and Cooper, L. W.: The potential role of sea ice melt in the distribution of chromophoric dissolved organic matter in the Chukchi and Beaufort Seas, Deep-Sea Res. Pt. II, 130, 28–42, 2016.
Macdonald, R. W., Anderson, L. G., Christensen, J. P., Miller, L. A., Semiletov, I. P., and Stein, R.: The Arctic Ocean: budgets and fluxes, in: Carbon and Nutrient Fluxes in Continental Margins: A Global Synthesis, edited by: Liu, K.-K., Atkinson, L., Quinones, R., and Talaue-McManus, L., Springer-Verlag, 291–303, 2008.
Makhotin, M. S.: Distribution of pacific summer waters in the Arctic Ocean, Problemi Arktiki I Antarktiki, 86, 89–96, 2010 (in Russian).
Makkaveev, P. N., Stunzhas, P. A., and Khlebopashev, P. V.: The distinguishing of the Ob and Yenisei waters in the desalinated lenses of the Kara Sea in 1993 and 2007, Oceanology, 50, 698–705, https://doi.org/10.1134/S0001437010050073, 2010.
Makkaveev, P. N., Melnikova, Z. G., Polukhin, A. A., Stepanova, S. V., Khlebopashev, P. V., and Chultsova, A. L.: Hydrochemical characteristics of the waters in the western part of the Kara Sea, Oceanology, 55, 485–496, https://doi.org/10.1134/S0001437015040116, 2015.
Mann, P. J., Davydova, A., Zimov, N., Spencer, R. G. M., Davydov, S., Bulygina, E., Zimov, S., and Holmes, R. M.: Controls on the composition and lability of dissolved organic matter in Siberia's Kolyma River basin, J. Geophys. Res., 117, G01028, https://doi.org/10.1029/2011JG001798, 2012.
Mann, P. J., Eglinton, T. I., McIntyre, C. P., Zimov, N., Davydova, A., Vonk, J. E., Holmes, R. M., and Spencer, R. G. M.: Utilization of ancient permafrost carbon in headwaters of Arctic fluvial networks, Nat. Comm., 6, 7856, https://doi.org/10.1038/ncomms8856, 2015.
Mehrbach, C., Culberson, C. H., Hawley, J. E., and Pytkowicz, R. M.: Measurements of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure, Limnol. Oceanogr., 18, 897–907, 1973.
Nakaoka, S., Aiki, S., Nakazawa, T., Hashida, G., Morimoto, S., Yamanouchi, T., and Yoshikawa-Inoue, H.: Temporal and spatial variations of oceanic pCO2 and air–sea CO2 flux in the Greenland Sea and the Barents Sea, Tellus, 58, 148–161, 2006.
Nedashkovsky, A. P. and Shvetsova, M. G.: Total inorganic carbon in sea-ice, Oceanology, 50, 861–868, 2010.
Nicolsky, D. and Shakhova, N. E.: Modeling sub-sea permafrost in the East Siberian Arctic Shelf: the Dmitry Laptev Strait, Environ. Res. Lett., 5, 015006, https://doi.org/10.1088/1748-9326/5/1/015006, 2010.
Olsson, K. and Anderson, L. G.: Input and biogeochemical transformation of dissolved carbon in the Siberian shelf seas, Cont. Shelf Res., 17, 819–833, 1997.
Omar, A. M., Johannessen, T., Olsen, A., Kaltin, S., and Rey, F.: Seasonal and interannual variability of the air–sea CO2 flux in the Atlantic sector of the Barents Sea, Mar. Chem., 104, 203–213, 2007.
Overland, J. E., Wang, J., Pickart, R. S., and Wang, M.: Recent and Future Changes in the Meteorology of the Pacific Arctic, in: The Pacific Arctic Region: Ecosystem Status and Trends in a Rapidly Changing Environment, edited by: Grebmeier, J. M. and Maslowski, W., Springer Science + Business Media Dordrecht, 17–30, https://doi.org/10.1007/978-94-017-8863-2, 2014.
Pavlova, G. Yu., Tishchenko, P. Ya., Volkova, T. I., Dickson, A., and Wallmann, K.: Intercalibration of Bruevich's method to determine the total alkalinity in seawater, Oceanology, 48, 438–443, 2008.
Pipko, I. I., Semiletov, I. P., Tishchenko, P. Ya., Pugach, S. P., and Christensen, J. P.: Carbonate chemistry dynamics in Bering Strait and the Chukchi Sea, Prog. Oceanogr., 55, 77–94, 2002.
Pipko, I. I., Semiletov, I. P., and Pugach S. P.: The carbonate system of the East Siberian Sea waters, Dokl. Earth Sci., 402, 624–627, 2005.
Pipko, I. I., Pugach, S. P., Semiletov, I. P., and Salyuk, A. N.: Carbonate characteristics of waters of the Arctic Ocean continental slope, Dokl. Earth Sci., 438, 858–863, 2011a.
Pipko, I. I., Semiletov, I. P., Pugach, S. P., Wåhlström, I., and Anderson, L. G.: Interannual variability of air-sea CO2 fluxes and carbon system in the East Siberian Sea, Biogeosciences, 8, 1987–2007, https://doi.org/10.5194/bg-8-1987-2011, 2011b.
Pipko, I. I., Pugach, S. P., and Semiletov, I. P.: Characteristic features of the dynamics of carbonate parameters in the Eastern part of the Laptev Sea, Oceanology, 55, 68–81, 2015.
Pipko, I. I., Pugach, S. P., and Semiletov, I. P.: Assessment of the CO2 fluxes between the ocean and the atmosphere in the eastern part of the Laptev Sea in the ice-free period, Dokl. Earth Sci., 467, 398–401, 2016.
Pitzer, K. S. (Ed.): Ionic interaction approach: theory and data correlation, in: Activity Coefficients in Electrolyte Solutions, 2nd Edn., CRC Press, London, UK, 75–153, 1991.
Pugach, S. P. and Pipko, I. I.: Dynamic of colored dissolved matter on the East-Siberian Sea shelf, Dokl. Earth Sci., 448, 153–156, 2013.
Pugach, S. P., Pipko, I. I., Semiletov, I. P., and Sergienko, V. I.: Optical characteristics of the colored dissolved organic matter on the East Siberian Shelf, Dokl. Earth Sci., 465, 1293–1296, 2015.
Pugach, S. P., Pipko, I. I., Shakhova, N. E., Shirshin, E. A., Perminova, I. V., Gustafsson, Ö., Bondur, V. G., and Semiletov, I. P.: DOM and its optical characteristics in the Laptev and East Siberian seas: Spatial distribution and inter-annual variability (2003–2011), Ocean Sci. Discuss., https://doi.org/10.5194/os-2017-20, in review, 2017.
Raymond, P. A., McClelland, J. W., Holmes, R. M., Zhulidov, A. V., Mull, K., Peterson, B. J., Striegl, R. G., Aiken, G. R., and Gurtovaya, T. Y.: Flux and age of dissolved organic carbon exported to the Arctic Ocean: A carbon isotopic study of the five largest arctic rivers, Global Biogeochem. Cy., 21, GB4011, https://doi.org/10.1029/2007GB002934, 2007.
Rysgaard, S., Glud, R. N., Lennert, K., Cooper, M., Halden, N., Leakey, R. J. G., Hawthorne, F. C., and Barber, D.: Ikaite crystals in melting sea ice – implications for pCO2 and pH levels in Arctic surface waters, The Cryosphere, 6, 901–908, https://doi.org/10.5194/tc-6-901-2012, 2012
Sánchez-García, L., Vonk, J. E., Charkin, A. N., Kosmach, D., Dudarev, O. V., Semiletov, I. P., and Gustafsson, Ö.: Characterisation of three regimes of collapsing Arctic ice complex deposits on the SE Laptev Sea coast using biomarkers and dual carbon isotopes, Permafrost Periglac., 25, 172–183, 2014.
Schauer, U., Loeng, H., Rudels, B., Ozhigin, V. K., and Dieck, W.: Atlantic water flow through the Barents and Kara Seas, Deep-Sea Res. Pt. I, 49, 2281–2298, 2002.
Schirrmeister, L., Grosse, G., Wetterich, S., Overduin, P. P., Strauss, J., Schuur, E. A. G., and Hubberten, H.-W.: Fossil organic matter characteristics in permafrost deposits of the northeast Siberian Arctic, J. Geophys. Res., 116, G00M02, https://doi.org/10.1029/2011JG001647, 2011.
Schlitzer, R.: Ocean Data View, http://odv.awi.de, 2011.
Semiletov, I. P.: Destruction of the coastal permafrost as an important factor in biogeochemistry of the Arctic shelf waters, Dokl. Earth Sci., 368, 679–682, 1999.
Semiletov, I. P., Savelieva, N. I., Weller, G. E., Pipko, I. I., Pugach, S. P., Gukov, A. Y., and Vasilevskaya, L. N.: The dispersion of Siberian river flows into coastal waters: Meteorological, hydrological and hydrochemical Aspects, in: The Freshwater Budget of the Arctic Ocean, edited by: Lewis, E. L., Jones, E. P., Lemke, P., Prowse, T. D., and Wadhams, P., Springer Netherlands, Dordrecht, 323–366, https://doi.org/10.1007/978-94-011-4132-1_15, 2000.
Semiletov, I. P., Pipko, I. I., Repina, I., and Shakhova, N. E.: Carbonate chemistry dynamics and carbon dioxide fluxes across the atmosphere-ice-water interfaces in the Arctic Ocean: Pacific sector of the Arctic, J. Marine Syst., 66, 204–226, 2007.
Semiletov, I. P., Shakhova, N. E., Sergienko, V. I., Pipko, I. I., and Dudarev, O. V.: On carbon transport and fate in the East Siberian Arctic land-shelf-atmosphere system, Environ. Res. Lett., 7, 015201, https://doi.org/10.1088/1748-9326/7/1/015201, 2012.
Semiletov, I. P., Shakhova, N. E., Pipko, I. I., Pugach, S. P., Charkin, A. N., Dudarev, O. V., Kosmach, D. A., and Nishino, S.: Space-time dynamics of carbon and environmental parameters related to carbon dioxide emissions in the Buor-Khaya Bay and adjacent part of the Laptev Sea, Biogeosciences, 10, 5977–5996, https://doi.org/10.5194/bg-10-5977-2013, 2013.
Semiletov, I., Pipko, I., Gustafsson, Ö., Anderson, L. G., Sergienko, V., Pugach, S., Dudarev, O., Charkin, A., Gukov, A., Bröder, L., Andersson, A., Spivak, E., and Shakhova, N.: Acidification of East Siberian Arctic Shelf waters through addition of freshwater and terrestrial carbon, Nature Geosci., 9, 361–365, https://doi.org/10.1038/ngeo2695, 2016.
Serreze, M. C. and Barry, R. G.: Processes and impacts of Arctic amplification: A research synthesis, Global Planet. Change, 77, 85–96, 2011.
Serreze, M. C., Holland, M. M., and Stroeve, J.: Perspectives on the Arctic's shrinking sea-ice cover, Science, 315, 5818, 1533–1536, https://doi.org/10.1126/science.1139426, 2007.
Shakhova, N., Sergienko, V., and Semiletov, I.: The contribution of the East Siberian shelf to the modern methane cycle, Herald of the Russian Academy of Sciences, 79, 1, 237–246, 2009.
Shakhova, N., Semiletov, I., Leifer, I., Sergienko, V., Salyuk, A., Kosmach, D., Chernikh, D., Stubbs, Ch., Nicolsky, D., Tumskoy, V., and Gustafsson, Ö.: Ebullition and storm-induced methane release from the East Siberian Arctic Shelf, Nature Geosci., 7, 64–70, 2014.
Shakhova, N., Semiletov, I., Sergienko, V., Lobkovsky, L., Yusupov, V., Salyuk, A., Salomatin, A., Chernykh, D., Kosmach, D., Panteleev, G., Nicolsky, D., Samarkin, V., Joye, S., Charkin, A., Dudarev, O., Meluzov, A., and Gustafsson, Ö.: The East Siberian Arctic Shelf: towards further assessment of permafrost-related methane fluxes and role of sea-ice, Philos. T. Roy. Soc. A, 373, 20140451, https://doi.org/10.1098/rsta.2014.0451, 2015.
Shakhova, N., Semiletov, I., Gustafsson, O., Sergienko, V., Lobkovsky, L., Dudarev, O., Tumskoy, T., Grigoriev, M., Mazurov, A., Salyuk, A., Ananiev, R., Koshurnikov, A., Kosmach, D., Charkin, A., Dmitrevsky, N., Karnaukh, V., Gunar, A., Meluzov, A., and Chernykh, D.: Current rates and mechanisms of subsea permafrost degradation in the East Siberian Arctic Shelf, Nat. Comm., 8, 15872, https://doi.org/10.1038/ncomms15872, 2017.
Stroeve, J. C., Serreze, M. C., Holland, M. M., Kay, J. E., Malanik, J., and Barrett, A. P.: The Arctic's rapidly shrinking sea-ice cover: a research synthesis, Clim. Change, 110, 1005–1027, 2012.
Stroeve, J. C., Markus, T., Boisvert, L., Miller, J., and Barrett, A.: Changes in Arctic melt season and implications for sea-ice loss, Geophys. Res. Lett., 41, 1216–1225, https://doi.org/10.1002/2013GL058951, 2014.
Takahashi, T., Olafsson, J., Goddard, J. G., Chipman, D. W., and Sutherland, S. C.: Seasonal variation of CO2 and nutrients in the high latitude surface oceans: a comparative study, Global Biogeochem. Cy., 7, 843–878, 1993.
Tank, S. E., Raymond, P. A., Striegl, R. G., McClelland, J. W., Holmes, R. M., Fiske, G. J., and Peterson, B. J.: A land-to-ocean perspective on the magnitude, source and implication of DIC flux from major Arctic rivers to the Arctic Ocean, Global Biogeochem. Cy., 26, GB4018, https://doi.org/10.1029/2011GB004192, 2012.
Tesi, T., Semiletov, I., Hugelius, G., Dudarev, O., Kuhry, P., and Gustafsson, Ö.: Composition and fate of terrigenous organic matter along the Arctic land–ocean continuum in East Siberia: Insights from biomarkers and carbon isotopes, Geochim. Cosmochim. Acta, 133, 235–256, 2014.
Tesi, T., Semiletov, I., Dudarev, O., Andersson, A., and Gustafsson, Ö.: Matrix association effects on hydrodynamic sorting and degradation of terrestrial organic matter during cross-shelf transport in the Laptev and East Siberian shelf seas, J. Geophys. Res.-Biogeo., 121, https://doi.org/10.1002/2015JG003067, 2016.
Tishchenko, P. Ya.: Non-ideal properties of the TRIS–TRIS – HCl–NaCl–H2O buffer system in the 0–40 °C temperature interval, Application of the Pitzer equations, Izv. Akad. Nayk. Ser. Khim., 49, 670–675, 2000 (in Russian).
Tishchenko, P. Ya., Wong, C. S., Pavlova, G. Yu., Johnson, W. K., Kang, D.-J., and Kim, K.-R.: The measurement of pH values in seawater using a cell without a liquid junction, Oceanology, 41, 813–822, 2001.
Tishchenko, P. Ya., Kang, D.-J., Chichkin, R. V., Lazaryuk, A. Yu., Wong, C. Sh., and Johnson, W. K.: Application of potentiometric method using a cell without liquid junction to underway pH measurements in surface seawater, Deep-Sea Res. Pt. I, 58, 778–786, 2011.
Vonk, J. E., Semiletov, I. P., Dudarev, O. V., Eglinton, T. I., Andersson, A., Shakhova, N., Charkin, A., Heim, B., and Gustafsson, Ö.: Preferential burial of permafrost-derived organic carbon in Siberian-Arctic shelf waters, J. Geophys. Res.-Oceans, 119, 1–12, https://doi.org/10.1002/2014JC010261, 2014.
Wanninkhof, R.: Relationship between wind speed and gas exchange over the ocean, J. Geophys. Res., 97, 7373–7382, 1992.
Wanninkhof, R. and McGillis, W. R.: A cubic relationship between air-sea CO2 exchange and wind speed, Geophys. Res. Lett., 26, 1889–1892, 1999.
Weiss, R. F.: Carbon dioxide in water and seawater: the solubility of a non-ideal gas, Mar. Chem., 2, 203–215, 1974.
Wood, K. R., Bond, N. A., Danielson, S. L., Overland, J. E., Salo, S. A., Stabeno, P. J., and Whitefield, J.: A decade of environmental change in the Pacific Arctic region, Prog. Oceanogr., 136, 12–31, 2015.
Yakushev, E. V. and Sørensen, K.: On seasonal changes of the carbonate system in the Barents Sea: observations and modeling, Mar. Biol. Res., 9, 822–830, https://doi.org/10.1080/17451000.2013.775454, 2013.
Zatsepin, A. G., Morozov, E. G., Paka, V. T., Demidov, A. N., Kondrashov, A. A., Korzh, A. O., Kremenetskiy V. V., Poyarkov, S. G., and Soloviev, D. M.: Circulation in the Southwestern Part of the Kara Sea in September 2007, Oceanology, 50, 643–656, 2010.
Short summary
The study of the outer shelf and the continental slope waters of the Eurasian Arctic seas has revealed a general trend in the surface pCO2 distribution, which manifested as an increase in pCO2 values eastward. It has been shown that the influence of terrestrial discharge on the carbonate system of East Siberian Arctic sea surface waters is not limited to the shallow shelf and that contemporary climate change impacts the carbon cycle of the Eurasian Arctic Ocean and influences air–sea CO2 flux.
The study of the outer shelf and the continental slope waters of the Eurasian Arctic seas has...
Special issue