Articles | Volume 13, issue 5
https://doi.org/10.5194/os-13-633-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/os-13-633-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Study on organic matter fractions in the surface microlayer in the Baltic Sea by spectrophotometric and spectrofluorometric methods
Violetta Drozdowska
CORRESPONDING AUTHOR
Physical Oceanography Department, Institute of Oceanology Polish Academy of Sciences, Sopot, 81-712, Poland
Iwona Wrobel
Physical Oceanography Department, Institute of Oceanology Polish Academy of Sciences, Sopot, 81-712, Poland
Piotr Markuszewski
Physical Oceanography Department, Institute of Oceanology Polish Academy of Sciences, Sopot, 81-712, Poland
Przemysław Makuch
Physical Oceanography Department, Institute of Oceanology Polish Academy of Sciences, Sopot, 81-712, Poland
Anna Raczkowska
Marine Physics Department, Institute of Oceanology Polish Academy of Sciences, Sopot, 81-712, Poland
Piotr Kowalczuk
Marine Physics Department, Institute of Oceanology Polish Academy of Sciences, Sopot, 81-712, Poland
Related authors
Piotr Markuszewski, E. Douglas Nilsson, Julika Zinke, E. Monica Mårtensson, Matthew Salter, Przemysław Makuch, Małgorzata Kitowska, Iwona Niedźwiecka-Wróbel, Violetta Drozdowska, Dominik Lis, Tomasz Petelski, Luca Ferrero, and Jacek Piskozub
Atmos. Chem. Phys., 24, 11227–11253, https://doi.org/10.5194/acp-24-11227-2024, https://doi.org/10.5194/acp-24-11227-2024, 2024
Short summary
Short summary
Our research provides new insights into the study of sea spray aerosol (SSA) emissions in the Baltic Sea and North Atlantic. We observed that SSA flux is suppressed during increased marine biological activity in the Baltic Sea. At the same time, the influence of wave age showed higher SSA emissions in the Baltic Sea for younger waves compared to the Atlantic Ocean. These insights underscore the complex interplay between biological activity and physical dynamics in regulating SSA emissions.
Iwona Wrobel-Niedzwiecka, Violetta Drozdowska, and Jacek Piskozub
Ocean Sci. Discuss., https://doi.org/10.5194/os-2018-61, https://doi.org/10.5194/os-2018-61, 2018
Revised manuscript not accepted
Short summary
Short summary
Drag coefficient is not a constant because it is an increasing function of wind speed so we chose to check the differences between the relevant parameterizations for drag coefficient for momentum transfer values in the North Atlantic and the European Arctic. We show that the choice of drag coefficient parameterization can lead to significant differences in resultant momentum flux (or wind stress) values. The differences between the highest and lowest parameterizations may be 14 % in the Arctic.
Piotr Markuszewski, E. Douglas Nilsson, Julika Zinke, E. Monica Mårtensson, Matthew Salter, Przemysław Makuch, Małgorzata Kitowska, Iwona Niedźwiecka-Wróbel, Violetta Drozdowska, Dominik Lis, Tomasz Petelski, Luca Ferrero, and Jacek Piskozub
Atmos. Chem. Phys., 24, 11227–11253, https://doi.org/10.5194/acp-24-11227-2024, https://doi.org/10.5194/acp-24-11227-2024, 2024
Short summary
Short summary
Our research provides new insights into the study of sea spray aerosol (SSA) emissions in the Baltic Sea and North Atlantic. We observed that SSA flux is suppressed during increased marine biological activity in the Baltic Sea. At the same time, the influence of wave age showed higher SSA emissions in the Baltic Sea for younger waves compared to the Atlantic Ocean. These insights underscore the complex interplay between biological activity and physical dynamics in regulating SSA emissions.
Julika Zinke, Gabriel Freitas, Rachel Ann Foster, Paul Zieger, Ernst Douglas Nilsson, Piotr Markuszewski, and Matthew Edward Salter
EGUsphere, https://doi.org/10.5194/egusphere-2024-1851, https://doi.org/10.5194/egusphere-2024-1851, 2024
Short summary
Short summary
Bioaerosols, which can influence climate and human health, were studied in the Baltic Sea. In May and August 2021, we used a sea spray simulation chamber on two ship based campaigns to collect and measure these aerosols. We found that bacteria were enriched in the air compared to seawater. Bacterial diversity was analyzed using DNA sequencing. Our methods provided consistent estimates of bacterial emission fluxes, aligning with previous studies.
Julika Zinke, Ernst Douglas Nilsson, Piotr Markuszewski, Paul Zieger, Eva Monica Mårtensson, Anna Rutgersson, Erik Nilsson, and Matthew Edward Salter
Atmos. Chem. Phys., 24, 1895–1918, https://doi.org/10.5194/acp-24-1895-2024, https://doi.org/10.5194/acp-24-1895-2024, 2024
Short summary
Short summary
We conducted two research campaigns in the Baltic Sea, during which we combined laboratory sea spray simulation experiments with flux measurements on a nearby island. To combine these two methods, we scaled the laboratory measurements to the flux measurements using three different approaches. As a result, we derived a parameterization that is dependent on wind speed and wave state for particles with diameters 0.015–10 μm. This parameterization is applicable to low-salinity waters.
Aleksandra Cherkasheva, Rustam Manurov, Piotr Kowalczuk, Alexandra N. Loginova, Monika Zabłocka, and Astrid Bracher
EGUsphere, https://doi.org/10.5194/egusphere-2023-2495, https://doi.org/10.5194/egusphere-2023-2495, 2023
Preprint archived
Short summary
Short summary
We aimed to improve the quality of regional Greenland Sea primary production estimates. Seventy two versions of primary production model setups were tested against field data. Best performing models had local biomass and light absorption profiles. Thus by using local parametrizations for these parameters we can improve Arctic primary production model performance. Annual Greenland Sea basin estimates are larger than previously reported.
Bronwyn E. Cahill, Piotr Kowalczuk, Lena Kritten, Ulf Gräwe, John Wilkin, and Jürgen Fischer
Biogeosciences, 20, 2743–2768, https://doi.org/10.5194/bg-20-2743-2023, https://doi.org/10.5194/bg-20-2743-2023, 2023
Short summary
Short summary
We quantify the impact of optically significant water constituents on surface heating rates and thermal energy fluxes in the western Baltic Sea. During productive months in 2018 (April to September) we found that the combined effect of coloured
dissolved organic matter and particulate absorption contributes to sea surface heating of between 0.4 and 0.9 K m−1 d−1 and a mean loss of heat (ca. 5 W m−2) from the sea to the atmosphere. This may be important for regional heat balance budgets.
Adriana Bailey, Franziska Aemisegger, Leonie Villiger, Sebastian A. Los, Gilles Reverdin, Estefanía Quiñones Meléndez, Claudia Acquistapace, Dariusz B. Baranowski, Tobias Böck, Sandrine Bony, Tobias Bordsdorff, Derek Coffman, Simon P. de Szoeke, Christopher J. Diekmann, Marina Dütsch, Benjamin Ertl, Joseph Galewsky, Dean Henze, Przemyslaw Makuch, David Noone, Patricia K. Quinn, Michael Rösch, Andreas Schneider, Matthias Schneider, Sabrina Speich, Bjorn Stevens, and Elizabeth J. Thompson
Earth Syst. Sci. Data, 15, 465–495, https://doi.org/10.5194/essd-15-465-2023, https://doi.org/10.5194/essd-15-465-2023, 2023
Short summary
Short summary
One of the novel ways EUREC4A set out to investigate trade wind clouds and their coupling to the large-scale circulation was through an extensive network of isotopic measurements in water vapor, precipitation, and seawater. Samples were taken from the island of Barbados, from aboard two aircraft, and from aboard four ships. This paper describes the full collection of EUREC4A isotopic in situ data and guides readers to complementary remotely sensed water vapor isotope ratios.
Tristan Petit, Børge Hamre, Håkon Sandven, Rüdiger Röttgers, Piotr Kowalczuk, Monika Zablocka, and Mats A. Granskog
Ocean Sci., 18, 455–468, https://doi.org/10.5194/os-18-455-2022, https://doi.org/10.5194/os-18-455-2022, 2022
Short summary
Short summary
We provide the first insights on bio-optical processes in Storfjorden (Svalbard). Information on factors controlling light propagation in the water column in this arctic fjord becomes crucial in times of rapid sea ice decline. We find a significant contribution of dissolved matter to light absorption and a subsurface absorption maximum linked to phytoplankton production. Dense bottom waters from sea ice formation carry elevated levels of dissolved and particulate matter.
Bjorn Stevens, Sandrine Bony, David Farrell, Felix Ament, Alan Blyth, Christopher Fairall, Johannes Karstensen, Patricia K. Quinn, Sabrina Speich, Claudia Acquistapace, Franziska Aemisegger, Anna Lea Albright, Hugo Bellenger, Eberhard Bodenschatz, Kathy-Ann Caesar, Rebecca Chewitt-Lucas, Gijs de Boer, Julien Delanoë, Leif Denby, Florian Ewald, Benjamin Fildier, Marvin Forde, Geet George, Silke Gross, Martin Hagen, Andrea Hausold, Karen J. Heywood, Lutz Hirsch, Marek Jacob, Friedhelm Jansen, Stefan Kinne, Daniel Klocke, Tobias Kölling, Heike Konow, Marie Lothon, Wiebke Mohr, Ann Kristin Naumann, Louise Nuijens, Léa Olivier, Robert Pincus, Mira Pöhlker, Gilles Reverdin, Gregory Roberts, Sabrina Schnitt, Hauke Schulz, A. Pier Siebesma, Claudia Christine Stephan, Peter Sullivan, Ludovic Touzé-Peiffer, Jessica Vial, Raphaela Vogel, Paquita Zuidema, Nicola Alexander, Lyndon Alves, Sophian Arixi, Hamish Asmath, Gholamhossein Bagheri, Katharina Baier, Adriana Bailey, Dariusz Baranowski, Alexandre Baron, Sébastien Barrau, Paul A. Barrett, Frédéric Batier, Andreas Behrendt, Arne Bendinger, Florent Beucher, Sebastien Bigorre, Edmund Blades, Peter Blossey, Olivier Bock, Steven Böing, Pierre Bosser, Denis Bourras, Pascale Bouruet-Aubertot, Keith Bower, Pierre Branellec, Hubert Branger, Michal Brennek, Alan Brewer, Pierre-Etienne Brilouet, Björn Brügmann, Stefan A. Buehler, Elmo Burke, Ralph Burton, Radiance Calmer, Jean-Christophe Canonici, Xavier Carton, Gregory Cato Jr., Jude Andre Charles, Patrick Chazette, Yanxu Chen, Michal T. Chilinski, Thomas Choularton, Patrick Chuang, Shamal Clarke, Hugh Coe, Céline Cornet, Pierre Coutris, Fleur Couvreux, Susanne Crewell, Timothy Cronin, Zhiqiang Cui, Yannis Cuypers, Alton Daley, Gillian M. Damerell, Thibaut Dauhut, Hartwig Deneke, Jean-Philippe Desbios, Steffen Dörner, Sebastian Donner, Vincent Douet, Kyla Drushka, Marina Dütsch, André Ehrlich, Kerry Emanuel, Alexandros Emmanouilidis, Jean-Claude Etienne, Sheryl Etienne-Leblanc, Ghislain Faure, Graham Feingold, Luca Ferrero, Andreas Fix, Cyrille Flamant, Piotr Jacek Flatau, Gregory R. Foltz, Linda Forster, Iulian Furtuna, Alan Gadian, Joseph Galewsky, Martin Gallagher, Peter Gallimore, Cassandra Gaston, Chelle Gentemann, Nicolas Geyskens, Andreas Giez, John Gollop, Isabelle Gouirand, Christophe Gourbeyre, Dörte de Graaf, Geiske E. de Groot, Robert Grosz, Johannes Güttler, Manuel Gutleben, Kashawn Hall, George Harris, Kevin C. Helfer, Dean Henze, Calvert Herbert, Bruna Holanda, Antonio Ibanez-Landeta, Janet Intrieri, Suneil Iyer, Fabrice Julien, Heike Kalesse, Jan Kazil, Alexander Kellman, Abiel T. Kidane, Ulrike Kirchner, Marcus Klingebiel, Mareike Körner, Leslie Ann Kremper, Jan Kretzschmar, Ovid Krüger, Wojciech Kumala, Armin Kurz, Pierre L'Hégaret, Matthieu Labaste, Tom Lachlan-Cope, Arlene Laing, Peter Landschützer, Theresa Lang, Diego Lange, Ingo Lange, Clément Laplace, Gauke Lavik, Rémi Laxenaire, Caroline Le Bihan, Mason Leandro, Nathalie Lefevre, Marius Lena, Donald Lenschow, Qiang Li, Gary Lloyd, Sebastian Los, Niccolò Losi, Oscar Lovell, Christopher Luneau, Przemyslaw Makuch, Szymon Malinowski, Gaston Manta, Eleni Marinou, Nicholas Marsden, Sebastien Masson, Nicolas Maury, Bernhard Mayer, Margarette Mayers-Als, Christophe Mazel, Wayne McGeary, James C. McWilliams, Mario Mech, Melina Mehlmann, Agostino Niyonkuru Meroni, Theresa Mieslinger, Andreas Minikin, Peter Minnett, Gregor Möller, Yanmichel Morfa Avalos, Caroline Muller, Ionela Musat, Anna Napoli, Almuth Neuberger, Christophe Noisel, David Noone, Freja Nordsiek, Jakub L. Nowak, Lothar Oswald, Douglas J. Parker, Carolyn Peck, Renaud Person, Miriam Philippi, Albert Plueddemann, Christopher Pöhlker, Veronika Pörtge, Ulrich Pöschl, Lawrence Pologne, Michał Posyniak, Marc Prange, Estefanía Quiñones Meléndez, Jule Radtke, Karim Ramage, Jens Reimann, Lionel Renault, Klaus Reus, Ashford Reyes, Joachim Ribbe, Maximilian Ringel, Markus Ritschel, Cesar B. Rocha, Nicolas Rochetin, Johannes Röttenbacher, Callum Rollo, Haley Royer, Pauline Sadoulet, Leo Saffin, Sanola Sandiford, Irina Sandu, Michael Schäfer, Vera Schemann, Imke Schirmacher, Oliver Schlenczek, Jerome Schmidt, Marcel Schröder, Alfons Schwarzenboeck, Andrea Sealy, Christoph J. Senff, Ilya Serikov, Samkeyat Shohan, Elizabeth Siddle, Alexander Smirnov, Florian Späth, Branden Spooner, M. Katharina Stolla, Wojciech Szkółka, Simon P. de Szoeke, Stéphane Tarot, Eleni Tetoni, Elizabeth Thompson, Jim Thomson, Lorenzo Tomassini, Julien Totems, Alma Anna Ubele, Leonie Villiger, Jan von Arx, Thomas Wagner, Andi Walther, Ben Webber, Manfred Wendisch, Shanice Whitehall, Anton Wiltshire, Allison A. Wing, Martin Wirth, Jonathan Wiskandt, Kevin Wolf, Ludwig Worbes, Ethan Wright, Volker Wulfmeyer, Shanea Young, Chidong Zhang, Dongxiao Zhang, Florian Ziemen, Tobias Zinner, and Martin Zöger
Earth Syst. Sci. Data, 13, 4067–4119, https://doi.org/10.5194/essd-13-4067-2021, https://doi.org/10.5194/essd-13-4067-2021, 2021
Short summary
Short summary
The EUREC4A field campaign, designed to test hypothesized mechanisms by which clouds respond to warming and benchmark next-generation Earth-system models, is presented. EUREC4A comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. It was the first campaign that attempted to characterize the full range of processes and scales influencing trade wind clouds.
Anna Makarewicz, Piotr Kowalczuk, Sławomir Sagan, Mats A. Granskog, Alexey K. Pavlov, Agnieszka Zdun, Karolina Borzycka, and Monika Zabłocka
Ocean Sci., 14, 543–562, https://doi.org/10.5194/os-14-543-2018, https://doi.org/10.5194/os-14-543-2018, 2018
Iwona Wrobel-Niedzwiecka, Violetta Drozdowska, and Jacek Piskozub
Ocean Sci. Discuss., https://doi.org/10.5194/os-2018-61, https://doi.org/10.5194/os-2018-61, 2018
Revised manuscript not accepted
Short summary
Short summary
Drag coefficient is not a constant because it is an increasing function of wind speed so we chose to check the differences between the relevant parameterizations for drag coefficient for momentum transfer values in the North Atlantic and the European Arctic. We show that the choice of drag coefficient parameterization can lead to significant differences in resultant momentum flux (or wind stress) values. The differences between the highest and lowest parameterizations may be 14 % in the Arctic.
Iwona Wrobel and Jacek Piskozub
Ocean Sci., 12, 1091–1103, https://doi.org/10.5194/os-12-1091-2016, https://doi.org/10.5194/os-12-1091-2016, 2016
Short summary
Short summary
We used a recently developed tool – FluxEngine, to calculate monthly net carbon air–sea CO2 fluxes for the extratropical North Atlantic Ocean, European Arctic, and global values, using several available parameterizations of gas transfer velocity on different dependence of wind speed. The aim of the study is to constrain the uncertainty caused by the choice of parameterization in the North Atlantic, a large sink of CO2 and a region with good measurement coverage, characterized by strong winds.
Justyna Meler, Piotr Kowalczuk, Mirosława Ostrowska, Dariusz Ficek, Monika Zabłocka, and Agnieszka Zdun
Ocean Sci., 12, 1013–1032, https://doi.org/10.5194/os-12-1013-2016, https://doi.org/10.5194/os-12-1013-2016, 2016
Short summary
Short summary
Three alternative models for estimation of absorption of chromophoric dissolved organic matter (CDOM) have been formulated. The models were based on empirical database containing measurements from different regions of the Baltic Sea and three Pomeranian lakes in Poland. An assumption regarding continuum of inherent optical properties in marine and estuarine waters and freshwater has been proved and enabled the accurate estimation of CDOM absorption in various environments.
Cited articles
Andrade-Eiroa, Á., Canle, M., and V. Cerdá, V.: Environmental applications of excitation-emission spectrofluorimetry, An in-depth Review II, Appl. Spectrosc. Rev., 48, 77–141, https://doi.org/10.1080/05704928.2012.692105, 2013.
Blough, N. V. and Del Vecchio, R.: Chromophoric DOM in the coastal environment, in: Biogeochemistry of Marine Dissolved Organic Matter, edited by: Hansell, D. and Carlson, C., Academic Press, New York, 509–546, 2002.
Blough, N. V. and Green, S. A.: Spectroscopic characterization and remote sensing of nonliving organic matter, in: Role of nonliving organic matter in the earth's carbon cycle, edited by: Zepp, R. G. and Sonntag, C., Wiley, New York, 23–45, 1995.
Boehme, J. and Wells, M.: Fluorescence variability of marine and terrestrial colloids: Examining size fractions of chromophoric dissolved organic matter in the Damariscotta River estuary, Mar. Chem., 101, 95–103, https://doi.org/10.1016/j.marchem.2006.02.001, 2006.
Bracchini, L., Cózar, A., Dattilo, A. M., Loiselle, S. A., Tognazzi, A., Azza, N., and Rossi, C.: The role of wetlands in the chromophoric dissolved organic matter release and its relation to aquatic ecosystems optical properties. A case of study: Katonga and Bunjako Bays (Victoria Lake, Uganda), Chemosphere, 63, 1170–1178, https://doi.org/10.1016/j.chemosphere.2005.09.045, 2006.
Brown, M.: Transmission spectroscopy examinations of natural waters, Estuar. Coast. Mar. Sci., 5, 309–317, https://doi.org/10.1016/0302-3524(77)90058-5, 1977.
Carder, K. L., Steward, R. G., Harvey, G. R., and Ortner, P. B.: Marine humic and fulvic acids: their effects on remote sensing of ocean chlorophyll, Limnol. Oceanogr., 34, 68–81, 1989.
Carlson, D. J.: A field evaluation of plate and screen microlayer sampling techniques, Mar. Chem., 11, 189–208, https://doi.org/10.1016/0304-4203(82)90015-9, 1982.
Carlucci, A. F., Craven, D. B., and Henrichs, S. M.: Surface-film microheterotrophs: amino acid metabolism and solar radiation effects on their activities, Mar. Biol., 85, 13–22, https://doi.org/10.1007/BF00396410, 1985.
Chari, N. V. H. K., Sarma, N. S., Pandi, S. R., and Murthy, K. N.: Seasonal and spatial constraints of fluorophores in the midwestern Bay of Bengal by PARAFAC analysis of excitation emission matrix spectra, Estuar. Coast. Shelf. S., 100, 162–171, https://doi.org/10.1016/j.ecss.2012.01.012, 2012.
Chen, H., Zheng, B., Song, J., and Qin, Y.: Correlation between molecular absorption spectral slope ratios and fluorescence humification indices in characterizing CDOM, Aquat. Sci, 73, 103–112, https://doi.org/10.1007/s00027-010-0164-5, 2011.
Chin, Y.-P., Aiken, G., and O'Loughlin, E.: Molecular weight, polydispersity, and spectroscopic properties of aquatic humic substances, Environ. Sc. Technol., 28, 1853–1858, https://doi.org/10.1021/es00060a015, 1994.
Coble, P.: Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy, Mar. Chem. 51, 325–346, https://doi.org/10.1016/0304-4203(95)00062-3, 1996.
Coble, P.: Marine optical biogeochemistry: the chemistry of ocean color, Chem. Rev., 107, 402–418, https://doi.org/10.1021/cr050350+, 2007.
Coble, P. G., Lead, J., Baker, A., Reynolds, D. M., and Spencer, R. G. (Eds.): Aquatic Organic Matter Fluorescence, Cambridge University Press 375 pp., https://doi.org/10.1017/CBO9781139045452, 2014.
Ćosović, B. and Vojvodić, V.: Voltammetric Analysis of Surface Active Substances in Natural Seawater, Electroanal, 10, 429–434, https://doi.org/10.1002/(SICI)1521-4109(199805)10:6<429::AID-ELAN429>3.0.CO;2-7, 1998.
Cunliffe, M., Salter, M., Mann, P. J., Whiteley, A. S., Upstill-Goddard, R. C., and Murrell, J. C.: Dissolved organic carbon and bacterial populations in the gelatinous surface microlayer of a Norwegian fjord mesocosm, FEMS Microbiol. Lett., 299, 248–254, https://doi.org/10.1111/j.1574-6968.2009.01751.x, 2009.
Cunliffe, M., Upstill-Goddard, R. C., and Murrell, J. C.: Microbiology of aquatic microlayers, FEMS Microbiol. Rev., 35, 233–246, https://doi.org/10.1111/j.1574-6976.2010.00246.x, 2011.
Cunliffe, M. A., Engel, S., Frka, S, Gašparović, B, Guitart, C., Murrell, J. C., Salter, M., Stolle, C., Upstill-Goddard, R., and Wurl, O.: Sea surface microlayers: A unified physicochemical and biological perspective of the air–ocean interface, Prog. Oceanogr., 109, 104–116, https://doi.org/10.1016/j.pocean.2012.08.0, 2013.
De Haan, H. and De Boer, T.: Applicability of light absorbance and fluorescence as measures of concentration and molecular size of dissolved organic carbon in humic Lake Tjeukemeer, Water Res., 21, 731–734, https://doi.org/10.1016/0043-1354(87)90086-8, 1987.
Drozdowska, V.: The lidar investigation of the upper water layer fluorescence spectra of the Baltic Sea, Eur. Phys. J.-Spec. Top., 144, 141–145, https://doi.org/10.1140/epjst/e2007-00118-7, 2007a.
Drozdowska, V.: Seasonal and spatial variability of surface seawater fluorescence properties in the Baltic and Nordic Seas: results of lidar experiments, Oceanologia, 49, 59–69, 2007b.
Drozdowska, V. and Józefowicz, M.: Spectroscopic studies of marine surfactants in the southern Baltic Sea, Oceanologia, 57, 159–167, https://doi.org/10.1016/j.oceano.2014.12.002, 2015.
Drozdowska, V. and Kowalczuk, P.: Response of a lidar-induced fluorescence signal to yellow substance absorption, Oceanologia, 41, 601–608, 1999.
Drozdowska, V., Babichenko, S., and Lisin, A.: Natural water fluorescence characteristics based on the lidar investigations of the water surface layer polluted by an oil film; the Baltic cruise – May 2000, Oceanologia, 44, 339–354, 2002.
Drozdowska, V., Freda, W., Baszanowska, E., Rudź, K., Darecki, M., Heldt, J. R., and Toczek, H.: Spectral properties of natural and oil polluted Baltic seawater – results of measurements and modeling, Eur. Phys. J.-Spec. Top., 222, 1–14, https://doi.org/10.1140/epjst/e2013-01992-x, 2013.
Drozdowska, V., Kowalczuk, P., and Józefowicz, M.: Spectrofluorometric characteristics of fluorescent dissolved organic matter in a surface microlayer in the southern Baltic coastal waters, J. Eur. Opt. Soc.-Rapid, 10, 15050, https://doi.org/10.2971/jeos.2015.15050, 2015.
Engel, A., Bange, H. W., Cunliffe, M., Burrowa, S. M., Friedeichs, G., Galgani, L., Herrmann, H., Schartau, N., Soloviev, A., Stolle, C., Upstill-Goddard, R. C., van Pinxteren, M., and Zäncker, B.: The ocean's vital skin: toward an integrated understanding of the sea surface microlayer, Frontiers in Mararine Science, 4, 1–14, https://doi.org/10.3389/fmars.2017.00165, 2017.
Ferrari, G. M. and Dowell, M. D.: CDOM absorption characteristics with relation to fluorescence and salinity in coastal areas of the southern Baltic Sea, Estuar. Coast. Shelf S., 47, 91–105, https://doi.org/10.1006/ecss.1997.0309, 1998.
Frew, N., Goldman, J. C., Dennett, M. R., and Johnson, A. S.: Impact of phytoplankton-generated surfactants on air-sea gas exchange, J. Geophys. Res.-Ocean., 95, 3337–3352, https://doi.org/10.1029/JC095iC03p03337, 1990.
Frew, N. M., Houghton, L. A., and Witzell Jr., W. E.: Variability of surface film distributions in a coastal ocean regime, in 16th Symposium on Boundary Layers and Turbulence and the Coupled Boundary Layer Air-Sea Transfer Experiment 8.7, http://ams.confex.com/ams/BLTAIRSE/techprogram/paper_78749.htm, last access: 12 August 2004.
Fuentes, M., Gonzalez-Gaitano, G., and Garcia-Mina, J. M.: The usefulness of UV-visible and fluorescence spectroscopies to study the chemical nature of humic substances from soils and composts, in: Organic Geochemistry, Elsevier Science B.V., Amsterdam, 37, 1949–1959, 2006.
Garrett, W. D.: Collection of slick-forming materials from the sea surface, Limnol. Oceanogr., 10, 602–605, https://doi.org/10.4319/lo.1965.10.4.0602, 1965.
Glatzel, S., Kalbitz, K., Dalva, M., and Moore, T.: Dissolved organic matter properties and their relationship to carbon dioxide efflux from restored peat bogs, Geoderma, 113, 397–411; https://doi.org/10.1016/S0016-7061(02)00372-5, 2003.
Guéguen, C., Guo, L., Yamamoto-Kawai, M., and Tanaka, N.: Colored dissolved organic matter dynamics across the shelf/basin interfaces in the western Arctic Ocean, J. Geophys. Res.-Ocean., 112, C05038, https://doi.org/10.1029/2006JC003584, 2007.
Helms, J. R., Stubbins, A., Ritchie, J. D., Minor, E. C., Kieber, D. J., and Mopper, K.: Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter, Limnol. Oceanogr., 53, 955–969, https://doi.org/10.4319/lo.2008.53.3.0955, 2008.
Hudson, N., Baker, A., and Reynolds, D.: Fluorescence analysis of dissolved organic matter in natural, waste and polluted waters – a review, River Res. Appl., 23, 631–649, https://doi.org/10.1002/rra.1005, 2007.
Huguet, A., Vacher, L., Relexans, S., Saubusse, S., Froidefond, J. M., and Parlanti, E.: Properties of fluorescent dissolved organic matter in the Gironde Estuary, Org. Geochem., 40, 706–719, https://doi.org/10.1016/j.orggeochem.2009.03.002, 2009.
Ishii, S. K. L. and Boyer, T. H.: Behavior of reoccurring parafac components in fluorescent dissolved organic matter in natural and engineered systems: A critical review, Environ. Sc. Technol., 46, 2006–2017, https://doi.org/10.1021/es2043504, 2012.
Jørgensen, L., Stedmon, C. A., Kragh, T., Markager, S., Middelboe, M., and Søndergaardv, M.: Global trends in the fluorescence characteristics and distribution of marine dissolved organic matter, Mar. Chem., 126, 139–148, https://doi.org/10.1016/j.marchem.2011.05.002, 2011.
Konik, M. and Bradtke, K.: Object-oriented approach to oil spill detection using ENVISAT ASAR images, ISPRS J. Photogramm., 118, 37–52, https://doi.org/10.1016/j.isprsjprs.2016.04.006, 2016.
Kowalczuk, P.: Seasonal variability of yellow substance absorption in the surface layer of the Baltic Sea, J. Geophys. Res.-Ocean., 104, 30047–30058, https://doi.org/10.1029/1999JC900198, 1999.
Kowalczuk, P., Ston-Egiert, J., Cooper, W. J., Whitehead, R. F., and Durako, M. J.: Characterization of chromophoric dissolved organic matter (CDOM) in the Baltic Sea by excitation emission matrix fluorescence spectroscopy, Mar. Chem., 96, 273–292, https://doi.org/10.1016/j.marchem.2005.03.002, 2005.
Kowalczuk, P., Stedmon, C. A., and Markager, S.: Modelling abso rption by CDOM in the Baltic Sea from season, salinity and chlorophyll, Mar. Chem., 101, 1–11, https://doi.org/10.1016/j.marchem.2005.12.005, 2006.
Kowalczuk, P., Durako, M. J., Young, H., Kahn, A. E., Cooper, W. J., and Gonsior, M.: Characterization of dissolved organic matter fluorescence in the South Atlantic Bight with use of PARAFAC model: Interannual variability, Mar. Chem., 113, 182–196, https://doi.org/10.1016/j.marchem.2009.01.015, 2009.
Kowalczuk, P., Zabłocka, M., Sagan, S., and Kuliński, K.: Fluorescence measured in situ as a proxy of CDOM absorption and DOC concentration in the Baltic Sea, Oceanologia, 52, 431–471, 2010.
Kuznetsova, M. and Lee, C.: Enhanced extracellular enzymatic peptide hydrolysis in the sea-surface microlayer, Mar. Chem., 73, 319–332, https://doi.org/10.1016/S0304-4203(00)00116-X, 2001.
Lakowicz, J. R.: Principles of fluorescence spectroscopy, 3rd Edn., Plenum Press, New York, 2006.
Leppäranta, M. and Myrberg, K.: Physical Oceanography of the Baltic Sea, Springer-Praxis, Heidelberg, Germany, 336 pp., 2009.
Liss, P. S. and Duce, R. A.: The sea surface and global change, Cambridge University Press, 2005.
Liss P. S., Watson, A. J., Bock, E. J., Jahne, B., Asher, W. E., Frew, N. M., Hasse, L., Korenowski, G. M., Merlivat, L., Phillips, L. F., Schlussel, P., and Woolf, D. K.: Report Group I – Physical processes in the microlayer and the air-sea exchange of trace gases, in: The Sea Surface and Global Change, edited by: Liss, P. S. and Duce, R. A., Cambridge University Press, UK, 1–34, 1997.
Loiselle, S. A., Bracchini, L., Dattilo, A. M., Ricci, M., Tognazzi, A., Cózar, A., and Rossi, C.: The optical characterization of chromophoric dissolved organic matter using wavelength distribution of absorption spectral slopes, Limnol. Oceanogr., 54, 590–597, https://doi.org/10.4319/lo.2009.54.2.0590, 2009.
Maciejewska, A. and Pempkowiak, J.: DOC and POC in the southern Baltic Sea, Part II – Evaluation of factors affecting organic matter concentrations using multivariate statistical methods, Oceanologia, 57, 168–176, https://doi.org/10.5697/oc.56-3.523, 2015.
McKnight, D. M., Harnisch, R., Wershaw, L., Baron, J. S., and Schiff, S.: Chemical characteristics of particulate, colloidal, and dissolved organic matter in Loch Vale Watershed, Rocky Mountain National Park, Biogeochemistry, 36, 99–214, https://doi.org/10.1023/A:1005783812730, 1997.
McKnight, D. M., Boyer, E. W., Westerhoff, P. K., Doran, P. T., Kulbe, T., and Andersen, D. T.: Spectrofluorometric characterization of dissolved organic matter for indication of precursor of organic material and aromaticity, Limnol. Oceanogr., 46, 38–48, https://doi.org/10.4319/lo.2001.46.1.0038, 2001.
Milori, D., Martin-Neto, L., Bayer, C., Mielniczuk, J., and Vagnato, V.: Humification degree of soil humic acids determined by fluorescence spectroscopy, Soil Sci., 167, 739–749; https://doi.org/10.1097/00010694-200211000-00004, 2002.
Mopper, K. and Schultz, C. A.: Fluorescence as a possible tool for studying the nature and water column distribution of DOC components, Mar. Chem., 41, 229–238, https://doi.org/10.1016/0304-4203(93)90124-7, 1993.
Moran, M. A., Sheldon Jr., W. M., and Zepp, R. G.: Carbon loss and optical property changes during long-term photochemical and biological degradation of estuarine dissolved organic matter, Limnol. Oceanogr., 45, 1254–1264, https://doi.org/10.4319/lo.2000.45.6.1254, 2000.
Murphy, K. R., Butler, K. D., Spencer, R. G. M., Stedmon, C. A., Boehme, J. R., and Aiken, G. R.: Measurement of dissolved organic matter fluorescence in aquatic environments: an interlaboratory comparison, Environ. Sc. Technol., 44, 9405–9412, https://doi.org/10.1021/es102362t, 2010.
Nelson, N. B. and Siegel, D. A.: The global distribution and dynamics of chromophoric dissolved organic matter, Annu. Rev. Mar. Sci., 5, 447–476, https://doi.org/10.1146/annurev-marine-120710-100751, 2013.
Nightingale, P. D., Liss, P. S., and Schlosser, P.: Measurements of air-sea gas transfer during an open ocean algal bloom, Geophys. Res. Lett., 27, 2117–2120, https://doi.org/10.1029/2000GL011541, 2000.
Osburn, M., Sessions, A., and Spear, J.: Hydrogen-isotopic variability in fatty acids from Yellowstone National Park hot spring microbial communities, Geochim. Cosmochim. Ac., 75, 4830–4845, https://doi.org/10.1016/j.gca.2011.05.038, 2011.
Ostrowska, M., Darecki, M., Krężel, A., Ficek, D., and Furmańczyk, K.: Practical applicability and preliminary results of the Baltic Environmental Satellite Remote Sensing System (SatBałtyk), Polish Maritime Research, ISSN 1233-2585, 3, 22, 43–49, 2015.
Parlanti, E., Worz, K., Geoffroy, L., and Lamotte, M.: Dissolved organic matter fluorescence spectroscopy as a tool to estimate biological activity in a coastal zone submitted to anthropogenic inputs, Org. Geochem., 31, 1765–1781, https://doi.org/10.1016/S0146-6380(00)00124-8, 2000.
Pastuszak, M., Stålnacke, P., Pawlikowski, K., and Witek, Z.: Response of Polish rivers (Vistula, Oder) to reduced pressure from point sources and agriculture during the transition period (1988–2008), J. Marine Syst., 94, 157–173, https://doi.org/10.1016/j.jmarsys.2011.11.017, 2012.
Pereira, R., Schneider-Zapp, K., and Upstill-Goddard, R. C.: Surfactant control of gas transfer velocity along an offshore coastal transect: results from a laboratory gas exchange tank, Biogeosciences, 13, 3981–3989, 2016 https://doi.org/10.5194/bg-13-3981-2016, 2016.
Petelski, T., Markuszewski, P., Makuch, P., Jankowski, A., and Rozwadowska, A.: Studies of vertical coarse aerosol fluxes in the boundary layer over the Baltic Sea, Oceanologia, 56, 697–710, https://doi.org/10.5697/oc.56-4.697, 2014.
Peuravouri, J. and Pihlaja, K.: Molecular size distribution and spectroscopic properties of aquatic humic substances, Anal. Chim. Acta, 337, 133–149, 1997.
Sabbaghzadeh, B., Upstill-Goddard, R. C., Beale, R., Pereira, R., and Nightingale, P. D.: The Atlantic Ocean surface microlayer from 50° N to 50° S is ubiquitously enriched in surfactants at wind speeds up to 13 ms−1, Geophys. Res. Lett., 44, 2852–2858, https://doi.org/10.1002/2017GL072988, 2017.
Santos, A. L., Oliveira, V., Baptista, L., Henriques, L., Gomes, N. C. M., and Almeida, A.: Effects of UV-B radiation on the structural and physiological diversity of bacterioneuston and bacterioplankton, Appl. Environ. Microb., 78, 2066, https://doi.org/10.1128/AEM.06344-11, 2012.
Sarpal, R. S., Mopper, K., and Keiber, D. J.: Absorbance properties of dissolved organic matter in Antarctic sea water, Antarc. J., 30, 139–140, 1995.
Soloviev, A. and Lukas, R.: Near-surface layer of the ocean, Structure, dynamics and applications, Springer, 2006.
Stedmon, C. A. and Bro, R.: Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial, Limnol. Oceanogr.-Meth., 6, 572–579, 2008.
Stedmon, C. A. and Markager, S.: Tracing the production and degradation of matter by fluorescence analysis autochthonous fractions of dissolved organic, Limnol. Oceanogr., 50, 1415–1426, https://doi.org/10.4319/lo.2005.50.5.1415, 2005.
Stedmon, C. A. and Nelson, N. B.: The optical properties of DOM in the ocean, in: Biogeochemistry of Marine Dissolved Organic Matter, 2nd Ed., Hansell, edited by: D. A. and Carlson, C. A., Elsevier Science, 481–508, 2015.
Stedmon, C. A., Markager, S., and Kaas, H.: Optical properties and signatures of chromophoric dissolved organic matter (CDOM) in Danish coastal waters, Estuar. Coast. Shelf. S., 51, 267–278, https://doi.org/10.1006/ecss.2000.0645, 2000.
Stedmon, C. A., S. Markager, S., and Bro, R.: Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy, Mar. Chem., 82, 239–254, https://doi.org/10.1016/S0304-4203(03)00072-0, 2003.
Summers, R. S., Cornel, P. K., and Roberts, P. V.: Molecular size distribution and spectroscopic characterization of humic substances, Sci. Total. Environ., 62, 27–37, 1987.
Tilstone, G. H., Airs, R. L., Martinez-Vicente, V., Widdicombe, C., and Llewellyn, C.: High concentrations of mycosporine-like amino acids and colored dissolved organic matter in the sea surface microlayer off the Iberian Peninsula, Limnol. Oceanogr., 55, 1835–1850, https://doi.org/10.4319/lo.2010.55.5.183, 2010.
Timko, S., Maydanov, A., Pittelli, S. L., Conte, M. H., Cooper, W. J., Koch, B. P., Schmitt-Kopplin, P., and Gonsior, M.: Depth-dependent photodegradation of marine dissolved organic matter, Frontiers in Marine Sciences, 2, 1–13, https://doi.org/10.3389/fmars.2015.00066, 2015.
Twardowski, M. S. and Donaghay, P. L.: Separating in situ and terrigenous sources of absorption by dissolved materials in coastal waters, J. Gephys. Res., 106, 2545–2560, https://doi.org/10.1029/1999JC000039, 2001.
Uścinowicz, S.: Geochemistry of Baltic Sea, Surface sediments, edited by: Uścinowicz, S., PIG-PIB, Warsaw, 2011.
Vähätalo, A. V. and Wentzel, R. G.: Photochemical and microbial decomposition of chromophoric dissolved organic matter during long (months-years) exposition, Mar. Chem., 89, 313–326, https://doi.org/10.4319/lo.2008.53.4.1387, 2004.
Vaishaya, A., Jennings, S. G., and O'Dowd, C.: Wind-driven influences on aerosol light scattering in north-east Atlantic air, Geoph. Res. Lett., 39, L05805, https://doi.org/10.1029/2011GL050556, 2012.
Vodacek, A., Blough, N. V., DeGrandpre, M. D., Peltzer, E. T., and Nelson, R. K.: Seasonal variation of CDOM and DOC in the Middle Atlantic Bight: terrestrial inputs and photooxidation, Limnol. Oceanogr., 42, 674–686, https://doi.org/10.4319/lo.1997.42.4.0674, 1997.
Williams, C. J., Yamashita, Y., Wilson, H. F., Jaffé, R., and Xenopoulos, M. A.: Unraveling the role of land use and microbial activity in shaping dissolved organic matter characteristics in stream ecosystems, Limnol. Oceanogr., 55, 1159–1171, https://doi.org/10.4319/lo.2010.55.3.1159, 2010.
Williams, P. M., Carlucci, A. F., Henrichs, S. M., van Vleet, E. S., Horrigan, G. G., Reid, F. M. H., and Robertson, K. J.: Chemical and microbiological studies of sea-surface films in the southern Gulf of California and off the west coast of Baja California, Mar. Chem., 19, 17–98, https://doi.org/10.1016/0304-4203(86)90033-2, 1986.
Wilson, H. F. and Xenopoulos, M. A.: Effects of agricultural land use on the composition of fluvial dissolved organic matter, Nat. Geosci., 2, 37–41, https://doi.org/10.1038/NGEO391, 2009.
Wurl, O., Miller, L., Rottgers, R., and Vagle, S.: The distribution and fate of surface-active substances in the sea-surface microlayer and water column, Mar. Chem., 115, 1–9, https://doi.org/10.1016/j.marchem.2009.04.007, 2009.
Yamashita, Y., Jaffé, R., Maie, N., and Tanoue, E.: Assessing the dynamics of dissolved organic matter (DOM) in coastal environments by excitation emission matrix fluorescence and parallel factor analysis (EEM-PARAFAC), Limnol. Oceanogr, 53, 1900–1908, https://doi.org/10.4319/lo.2008.53.5.1900, 2008.
Ylöstalo, P., Seppälä, J., Kaitala, S., Maunula, P., and Simis, S.: Loadings of dissolved organic matter and nutrients from the Neva River into the Gulf of Finland – Biogeochemical composition and spatial distribution within the salinity gradient, Mar. Chem., 186, 58–71, https://doi.org/10.1016/j.marchem.2016.07.004, 2016.
Zhang, Y., van Dijk, M. A., Liu, M., Zhu, G., and Qin, B.: The contribution of phytoplankton degradation to chromophoric dissolved organic matter (CDOM) in eutrophic shallow lakes: Field and experimental evidence, Water Res., 43, 4685–4697, https://doi.org/10.1016/j.watres.2009.07.024, 2009.
Zhang, Y., Liu, X., Osburn, C. L., Wang, M., Qin, B., and Zhou, Y.: Photobleaching response of different sources of chromophoric dissolved organic matter exposed to natural solar radiation using absorption and excitation–emission matrix spectra, PLOS ONE, 8, e77515, https://doi.org/10.1371/journal.pone.0077515, 2013.
Zsolnay, A.: Dissolved organic matter: artefacts, definitions and functions, Geoderma, 113, 187–209, https://doi.org/10.1016/S0016-7061(02)00361-0, 2003.
Zsolnay, A., Baigar, E., Jimnez, M., Steinweg, B., and Saccomandi, F.: Differentiating with fluorescence spectroscopy the sources of dissolved organic matter in soils subjected to drying, Chemosphere, 38, 45–50, https://doi.org/10.1016/S0045-6535(98)00166-0, 1999.
Short summary
The studies on the absorption and fluorescence properties of the organic molecules included in surface microlayer (SML) and subsurface (SS) waters confirm that (i) the process of the structural changes in molecules of HMW to LMW, due to effects of photo- and biodegradation, occurs faster in the SML than in the SS; (ii) the organic molecules contained in the SML have a smaller molecular mass than in the SS. Hence, SML can specifically modify the physical processes associated with the sea surface.
The studies on the absorption and fluorescence properties of the organic molecules included in...