Articles | Volume 13, issue 3
https://doi.org/10.5194/os-13-465-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/os-13-465-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Small river plumes off the northeastern coast of the Black Sea under average climatic and flooding discharge conditions
Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia
Evgeniya Korshenko
Zubov State Oceanographic Institute, Moscow, Russia
Related authors
Alexander Osadchiev, Igor Medvedev, Sergey Shchuka, Mikhail Kulikov, Eduard Spivak, Maria Pisareva, and Igor Semiletov
Ocean Sci., 16, 781–798, https://doi.org/10.5194/os-16-781-2020, https://doi.org/10.5194/os-16-781-2020, 2020
Short summary
Short summary
The Yenisei and Khatanga rivers are among the largest estuarine rivers that inflow to the Arctic Ocean. Discharge of the Yenisei River is 1 order of magnitude larger than that of the Khatanga River. However, spatial scales of buoyant plumes formed by freshwater runoff from the Yenisei and Khatanga gulfs are similar. This feature is caused by intense tidal mixing in the Khatanga Gulf, which causes formation of the diluted and therefore anomalously deep and large Khatanga plume.
Ivan Zavialov, Alexander Osadchiev, Roman Sedakov, Bernard Barnier, Jean-Marc Molines, and Vladimir Belokopytov
Ocean Sci., 16, 15–30, https://doi.org/10.5194/os-16-15-2020, https://doi.org/10.5194/os-16-15-2020, 2020
Short summary
Short summary
This study is focused on water exchange between the Sea of Azov and the Black Sea. The Sea of Azov is a small freshened sea that receives a large freshwater discharge and, therefore, can be regarded as a large river estuary connected by narrow Kerch Strait with the Black Sea. In this work we show that water transport through the Kerch Strait is governed by wind forcing and does not depend on the river discharge rate to the Sea of Azov on an intra-annual timescale.
A. A. Osadchiev, K. A. Korotenko, P. O. Zavialov, W.-S. Chiang, and C.-C. Liu
Nat. Hazards Earth Syst. Sci., 16, 41–54, https://doi.org/10.5194/nhess-16-41-2016, https://doi.org/10.5194/nhess-16-41-2016, 2016
Short summary
Short summary
This research was motivated by damage of underwater cables and pipelines caused by turbidity flows which regularly take place along the eastern coast of Taiwan. Elevated discharge of terrigenous sediments during typhoons and their subsequent settling on the steep sea floor can cause submarine landslides which induce such turbidity flows. In this article we simulated the fate of sediments discharged from the Peinan River and identified areas which exhibit a high risk of turbidity flows.
K. A. Korotenko, A. A. Osadchiev, P. O. Zavialov, R.-C. Kao, and C.-F. Ding
Ocean Sci., 10, 863–879, https://doi.org/10.5194/os-10-863-2014, https://doi.org/10.5194/os-10-863-2014, 2014
Alexander Osadchiev, Igor Medvedev, Sergey Shchuka, Mikhail Kulikov, Eduard Spivak, Maria Pisareva, and Igor Semiletov
Ocean Sci., 16, 781–798, https://doi.org/10.5194/os-16-781-2020, https://doi.org/10.5194/os-16-781-2020, 2020
Short summary
Short summary
The Yenisei and Khatanga rivers are among the largest estuarine rivers that inflow to the Arctic Ocean. Discharge of the Yenisei River is 1 order of magnitude larger than that of the Khatanga River. However, spatial scales of buoyant plumes formed by freshwater runoff from the Yenisei and Khatanga gulfs are similar. This feature is caused by intense tidal mixing in the Khatanga Gulf, which causes formation of the diluted and therefore anomalously deep and large Khatanga plume.
Ivan Zavialov, Alexander Osadchiev, Roman Sedakov, Bernard Barnier, Jean-Marc Molines, and Vladimir Belokopytov
Ocean Sci., 16, 15–30, https://doi.org/10.5194/os-16-15-2020, https://doi.org/10.5194/os-16-15-2020, 2020
Short summary
Short summary
This study is focused on water exchange between the Sea of Azov and the Black Sea. The Sea of Azov is a small freshened sea that receives a large freshwater discharge and, therefore, can be regarded as a large river estuary connected by narrow Kerch Strait with the Black Sea. In this work we show that water transport through the Kerch Strait is governed by wind forcing and does not depend on the river discharge rate to the Sea of Azov on an intra-annual timescale.
A. A. Osadchiev, K. A. Korotenko, P. O. Zavialov, W.-S. Chiang, and C.-C. Liu
Nat. Hazards Earth Syst. Sci., 16, 41–54, https://doi.org/10.5194/nhess-16-41-2016, https://doi.org/10.5194/nhess-16-41-2016, 2016
Short summary
Short summary
This research was motivated by damage of underwater cables and pipelines caused by turbidity flows which regularly take place along the eastern coast of Taiwan. Elevated discharge of terrigenous sediments during typhoons and their subsequent settling on the steep sea floor can cause submarine landslides which induce such turbidity flows. In this article we simulated the fate of sediments discharged from the Peinan River and identified areas which exhibit a high risk of turbidity flows.
K. A. Korotenko, A. A. Osadchiev, P. O. Zavialov, R.-C. Kao, and C.-F. Ding
Ocean Sci., 10, 863–879, https://doi.org/10.5194/os-10-863-2014, https://doi.org/10.5194/os-10-863-2014, 2014
Cited articles
Alexeevsky, N., Magritsky, D. V., Koltermann, K. P., Krylenko, I., and Toropov, P.: Causes and systematics of inundations of the Krasnodar territory on the Russian Black Sea coast, Nat. Hazards Earth Syst. Sci., 16, 1289–1308, https://doi.org/10.5194/nhess-16-1289-2016, 2016.
Balabanov, I. P., Nikiforov, S. P., and Pashkovskiy, I. S.: Imeretinskaya lowland. Natural and geological conditions, development problems, Nedra, Moscow, Russia, 2011 (in Russian).
Bao, H., Huang, T. Y. L. J. C., Feng, X., Dai, M., and Kao, S. J.: Importance of Oceanian small mountainous rivers (SMRs) in global land-to-ocean output of lignin and modern biospheric carbon, Sci. Rep., 5, 16217, https://doi.org/10.1038/srep16217, 2015.
Beusen, A. H. W., Van Beek, L. P. H., Bouwman, A. F., Mogollón, J. M., and Middelburg, J. J.: Coupling global models for hydrology and nutrient loading to simulate nitrogen and phosphorus retention in surface water – description of IMAGE-GNM and analysis of performance, Geosci. Model Dev., 8, 4045–4067, https://doi.org/10.5194/gmd-8-4045-2015, 2015.
Brodie, J., Schroeder, T., Rohde, K., Faithful, J., Masters, B., Dekker, A., Brando, V., and Maughan, M.: Dispersal of suspended sediments and nutrients in the Great Barrier Reef lagoon during river-discharge events: conclusions from satellite remote sensing and concurrent flood-plume sampling, Mar. Freshwater Res., 61, 651–664, https://doi.org/10.1071/MF08030, 2010.
Danabaoglu, G., Yeager, S. G., Kim, W. M., Behrens, E., Bentsen, M., Bi, D., Biastoch, A., Bleck, R., Böning, C., Bozec, A., Canuto, V. M., Cassou, C., Chassignet, E., Coward, A. C., Danilov, S., Diansky, N., Drange, H., Farneti, R., Fernandez, E., Fogli, P. G., Forget, G., Fujii, Y., Griffies, S. M., Gusev, A., Heimbach, P., Howard, A., Ilicak, M., Jung, T, Karspeck, A. R., Kelley, M., Large, W. G., Leboissetier, A., Lu, J., Madec, G., Marsland, S. J., Masina, S., Navarra, A., Nurser, A. G. J., Pirani, A., Romanou, A., Mélia, D. S., Samuels, B. L., Scheinert, M., Sidorenko, D., Sun, S., Treguier, A.-M., Tsujino, H., Uotila, P., Valcke, S., Voldoire, A., Wang, Q., and Yashayaev, I. :North Atlantic simulations in Coordinated Ocean-ice Reference Experiments phase II (CORE-II). Part II: Inter-annual to decadal variability, Ocean Modell., 97, 65–90, https://doi.org/10.1016/j.ocemod.2015.11.007, 2016.
Diansky, N. A., Fomin, V. V., Zhokhova, N. V., and Korshenko, A. N.: Simulations of currents and pollution transport in the coastal waters of Big Sochi, Izv. Atmos. Oceanic Phys., 49, 611–621, https://doi.org/10.1134/s0001433813060042, 2013.
Doerffer, R. and Schiller, H.: MERIS regional, coastal and lake case 2 water project – atmospheric correction ATBD, Version 1.0, 18 May 2008, GKSS Research Center, Geesthacht, Germany, 2008.
Downes, S. M., Farneti, R., Uotila, P., Griffies, S. M., Marsland, S. J., Bailey, D., Behrens, E., Bentsen, M., Bi, D., Biastoch, A., Böning, C., Bozec, A., Canuto, V. M., Chassignet, E., Danabasoglu, G., Danilov, S., Diansky, N., Drange, H., Fogli, P. G., Gusev, A., Howard, A., Ilicak, M., Jung, T., Kelley, M., Large, W. G., Leboissetier, A., Long, M., Lu, J., Masina, S., Mishra, A., Navarra, A, Nurser, A. G. J., Patara, L., Samuels, B. L., Sidorenko, D., Spence, P., Tsujino, H., Wang, Q., and Yeager, S. G.: An assessment of Southern Ocean water masses and sea ice during 1988–2007 in a suite of interannual CORE-II simulations, Ocean Modell., 94, 67–94, https://doi.org/10.1016/j.ocemod.2015.07.022, 2015.
Emmett, R. L., Krutzikowsky, G. K., and Bentley, P.: Abundance and distribution of pelagic piscivorous fishes in the Columbia River plume during spring/early summer 1998–2003: relationship to oceanographic conditions, forage fishes, and juvenile salmonids, Prog. Oceanogr., 68, 1–26, https://doi.org/10.1016/j.pocean.2005.08.001, 2006.
Enriquez, C. E., Shapiro, G. I., Souza, A. J., and Zatsepin, A. G.: Hydrodynamic modelling of mesoscale eddies in the Black Sea, Ocean Dyn., 55, 476–489, https://doi.org/10.1007/s10236-005-0031-4, 2005.
Farneti, R., Downes, S. M., Griffies, S. M., Marsland, S. J., Behrens, E., Bentsen, M., Bi, D., Biastoch, A., Böning, C., Bozec, A., Canuto, V. M., Chassignet, E., Danabasoglu, G., Danilov, S., Diansky, N., Drange, H., Fogli, P. G., Gusev, A., Hallberg, R. W., Howard, A., Ilicak, M., Jung, T., Kelley, M., Large, W. G., Leboissetier, A., Long, M., Lu, J., Masina, S., Mishra, A., Navarra, A, Nurser, A. G. J., Patara, L., Samuels, B. L., Sidorenko, D., Tsujino, H., Uotila, P., Wang, Q., and Yeager, S. G.: An assessment of Antarctic Circumpolar Current and Southern Ocean meridional overturning circulation during 1958-2007 in a suite of interannual CORE-II simulations, Ocean Modell., 93, 84–120, https://doi.org/10.1016/j.ocemod.2015.07.009, 2015.
Fong, D. A. and Geyer, W. R.: The alongshore transport of freshwater in a surface-trapped river plume, J. Phys. Oceanogr., 32, 957–972. https://doi.org/10.1175/1520-0485(2002)032<0957:TATOFI>2.0.CO;2, 2002.
Garvine, R. W.: Estuary plumes and fronts in shelf waters: A layer model, J. Phys. Oceanogr., 17, 1877–1896, https://doi.org/10.1175/1520-0485(1987)017<1877:epafis>2.0.co;2, 1987.
Ginzburg, A. I., Kostianoy, A. G., Krivosheya, V. G., Nezlin, N. P., Soloviev, D. M., Stanichny, S. V., and Yakubenko, V. G.: Mesoscale eddies and related processes in the northeastern Black Sea, J. Mar. Syst., 32, 71–90, https://doi.org/10.1016/s0422-9894(00)80016-1, 2002.
Gregg, M. C. and Ozsoy, E.: Mixing on the Black Sea shelf north of the Bosphorus, Geophys. Res. Lett., 26, 1869–1872, https://doi.org/10.1029/1999GL900431, 1999.
Hilton, R. G., Galy, A., Hovius, N., Horng, M.-J., and Chen, H.: Efficient transport of fossil organic carbon to the ocean by steep mountain rivers: An orogenic carbon sequestration mechanism, Geology, 39, 71–74, https://doi.org/10.1130/g31352.1, 2011.
Horner-Devine, A. R., Fong, D. A., Monismith, S. G., and Maxworthy, T.: Laboratory experiments simulating a coastal river discharge, J. Fluid Mech., 555, 203–232, https://doi.org/10.1017/s0022112006008937, 2006.
Hrachowitz, M., Savenije, H. H. G., Blöschl, G., McDonnelld, J. J., Sivapalan, M., Pomeroyg, J. W., Arheimer, B., Blume, T., Clark, M. P., Ehret, U., Fenicia, F., Freer, J. E., Gelfan, A., Gupta, D. A., Hughes, R. W., Hut, A., Montanari, S., Pande, D., Tetzlaff, P. A., Troch, S., Uhlenbrook, H. V., Wagener, T., Winsemius, H. C., Woods, R. A., Zehe, E., and Cudennec C.: A decade of Predictions in Ungauged Basins (PUB) – a review, Hydrol. Sci. J., 58, 1198–1255, https://doi.org/10.1080/02626667.2013.803183, 2013.
Ivanov, V. A. and Belokopytov, V. N.: Oceanography of the Black Sea, ECOSY-Gidrofizika, Sevastopol, 17–19, 2013.
Jaoshvili, S.: River sediment and beach formation on the Black Sea coast of Georgia, Sabchota Sakartvelo, Tbilisi, USSR, 1986 (in Russian).
Jaoshvili, S.: The rivers of the Black Sea, European Environmental Agency, eds. I. Chomeriki, G. Gigineishvili, and A. Kordzadze, Technical Report No. 71, 2002.
Johnson, M., Proshutinsky, A., Aksenov, Y., Nguyen, A. T., Lindsay, R., Haas, C., Zhang, J., Diansky, N., Kwok, R., Maslowski, W., Häkkinen, S., Ashik, I., and Cuevas, B.: Evaluation of Arctic sea ice thickness simulated by Arctic Ocean Model Intercomparison Project models, J. Geophys. Res., 117, C00D13, https://doi.org/10.1029/2011JC007257, 2012.
Kniskern, T. A., Warrick, J. A., Farnsworth, K. L., Wheatcroft, R. A., and Goni, M. A.: Coherence of river and ocean conditions along the US West Coast during storms, Cont. Shelf Res., 31, 789–805, https://doi.org/10.1016/j.csr.2011.01.012, 2011.
Korotaev, G., Oguz, T., Nikiforov, A., and Koblinsky, C.: Seasonal, interannual, and mesoscale variability of the Black Sea upper layer circulation derived from altimeter data, J. Geophys. Res., 108, 3122, https://doi.org/10.1029/2002jc001508, 2003.
Korotenko, K. A., Osadchiev, A. A., Zavialov, P. O., Kao, R.-C., and Ding, C.-F.: Effects of bottom topography on dynamics of river discharges in tidal regions: case study of twin plumes in Taiwan Strait, Ocean Sci., 10, 863–879, https://doi.org/10.5194/os-10-863-2014, 2014.
Korotkina, O. A., Zavialov P. O., and Osadchiev A. A.: Submesoscale variability of the current and wind fields in the coastal region of Sochi, Oceanology, 51, 745–754, https://doi.org/10.1134/s0001437011050109, 2011.
Korotkina, O. A., Zavialov P. O., and Osadchiev A. A.: Synoptic variability of currents in the coastal waters of Sochi, Oceanology, 54, 545–556, https://doi.org/10.1134/s0001437014040079, 2014.
Kubryakov, A. A. and Stanichny, S. V.: Mesoscale eddies in the Black Sea from satellite altimetry data, Oceanology, 55, 56–67, https://doi.org/10.1134/s0001437015010105, 2015a.
Kubryakov, A. A. and Stanichny, S. V.: Seasonal and interannual variability of the Black Sea eddies and its dependence on characteristics of the large-scale circulation, Deep Sea Res. Part I, 97, 80–91, https://doi.org/10.1016/j.dsr.2014.12.002, 2015b.
Mayorga, E., Seitzinger, S. P., Harrison, J. A., Dumont, E., Beusen, A. H., Bouwman, A. F., Fekete, B. M., Kroeze, C., and Van Drecht, G.: Global nutrient export from WaterSheds 2 (NEWS 2): model development and implementation, Environ. Modell. Software, 25, 837–853, https://doi.org/10.1016/j.envsoft.2010.01.007, 2010.
Mertes, L. A. K. and Warrick, J. A.: Measuring flood output from 110 coastal watersheds in California with field measurements and SeaWiFS, Geology, 29, 659–662, https://doi.org/10.1130/0091-7613(2001)029<0659:mfofcw>2.0.co;2, 2001.
Meybeck, M., Laroche, L., Dürr, H. H., and Syvitski, J. P. M.: Global variability of daily total suspended solids and their fluxes in rivers, Global Planet. Change, 39, 65–93, https://doi.org/10.1016/s0921-8181(03)00018-3, 2003.
Milliman, J. D. and Syvitski, J. P. M.: Geomorphic-tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers, J. Geol., 100, 525–544, https://doi.org/10.1086/629606, 1992.
Milliman, J. D., Lin, S. W., Kao, S. J., Liu, J. P., Liu, C. S., Chiu, J. K., and Lin, Y. C.: Short-term changes in seafloor character due to flood-derived hyperpycnal discharge: typhoon Mindulle, Taiwan, July 2004, Geology, 35, 779–782, https://doi.org/10.1130/g23760a.1, 2007.
Nardelli, B. B., Colella, S., Santoleri, R., Guarracino, M., and Kholod, A.: A re-analysis of Black Sea Surface Temperature, J. Mar. Sys.., 79, 50–64, https://doi.org/10.1016/j.jmarsys.2009.07.001, 2009.
Nardelli, B. B., Tronconi, C., Pisano, A., and Santoleri, R.: High and Ultra-High resolution processing of satellite Sea Surface Temperature data over Southern European Seas in the framework of MyOcean project, Rem. Sens. Env., 129, 1–16, https://doi.org/10.1016/j.rse.2012.10.012, 2013.
Nezlin, N. P., DiGiacomo, P. M., Diehl, D. W., Jones, B. H., Johnson, S. C., Mengel, M. J., Reifel, K. M., Warrick, J. A., and Wang, M.: Stormwater plume detection by MODIS imagery in the southern California coastal ocean, Estuarine Coast. Shelf Sci., 80, 141–152, https://doi.org/10.1016/j.ecss.2008.07.012, 2008.
O'Donnell J.: The formation and fate of a river plume: A numerical model, J. Phys. Oceanogr., 20, 551–569, https://doi.org/10.1175/1520-0485(1990)020<0551:tfafoa> 2.0.co;2, 1990.
Oguz, T., La Violette, P. E., and Unluata, U.: The upper layer circulation of the Black Sea: its variability as inferred from hydrographic and satellite observations, J. Geophys. Res.-Oceans, 97, 12569–12584, https://doi.org/10.1029/92jc00812, 1992.
Oguz, T., Latun, V. S., Latif, M. A., Vladimirov, V. V., Sur, H. I., Markov, A. A., Ozsoy, E., Kotovshchikov B. B., Eremeev, V. V., and Unluata, U.: Circulation in the surface and intermediate layers of the Black Sea, Deep Sea Res. Part I, 40, 1597–1612, https://doi.org/10.1016/0967-0637(93)90018-X, 1993.
Oguz, T., Malanotte-Rizzoli, P., and Aubrey, D.: Wind and thermohaline circulation of the Black Sea driven by yearly mean climatological forcing, J. Geophys. Res.-Oceans, 100, 6845–6863, https://doi.org/10.1029/95JC00022, 1995.
Osadchiev A. A.: A method for quantifying freshwater discharge rates from satellite observations and Lagrangian numerical modeling of river plumes, Environ. Res. Lett., 10, 085009, https://doi.org/10.1088/1748-9326/10/8/085009, 2015.
Osadchiev, A. A., Korotenko, K. A., Zavialov, P. O., Chiang, W.-S., and Liu, C.-C.: Transport and bottom accumulation of fine river sediments under typhoon conditions and associated submarine landslides: case study of the Peinan River, Taiwan, Nat. Hazards Earth Syst. Sci., 16, 41–54, https://doi.org/10.5194/nhess-16-41-2016, 2016.
Osadchiev, A. A. and Zavialov, P. O.: Lagrangian model for surface-advected river plume, Cont. Shelf Res., 58, 96–106, https://doi.org/10.1016/j.csr.2013.03.010, 2013.
Pacanowsky, R. C. and Philander, G.: Parameterization of vertical mixing in numerical models of the tropical ocean, J. Phys. Oceanogr., 11, 1442–1451, https://doi.org/10.1175/1520-0485(1981)011<1443:povmin>2.0.co;2, 1981.
Palmer, S. C., Pelevin, V. V., Goncharenko, I., Kovacs, A. W., Zlinszky, A., Presing, M., Horvath, H., Nicolas-Perea, V., Balzter, H., and Toth, V. R.: Ultraviolet Fluorescence LiDAR (UFL) as a measurement tool for water quality parameters in turbid lake conditions, Remote Sensing, 5, 4405–4422, https://doi.org/10.3390/rs5094405, 2013.
Rabalais, N. N.: Eutrophication of estuarine and coastal ecosystems, Environmental Microbiology, 2nd edition, edited by: Mitchell, R. and Gu, J.-D., Hoboken, NJ: Wiley, 115–134, 2010.
Saldias, G. S., Sobarzo, M., Largier, J., Moffat, C., and Letelier, R.: Seasonal variability of turbid river plumes off central Chile based on high-resolution MODIS imagery, Remote Sens. Env., 123, 220–233, https://doi.org/10.1016/j.rse.2012.03.010, 2012.
Saldias, G. S., Largier, J. L., Mendes, R., Pérez-Santos, I., Vargas, C. A., and Sobarzo, M.: Satellite-measured interannual variability of turbid river plumes off central-southern Chile: Spatial patterns and the influence of climate variability, Prog. Oceanogr., 146, 212–222, https://doi.org/10.1016/j.pocean.2016.07.007, 2016.
Stanev, E. V., Roussenov, V. M., Rachev, N. H., and Staneva, J. V.: Sea response to atmospheric variability. Model study for the Black Sea, J. Mar. Syst., 6, 241–267, https://doi.org/10.1016/0924-7963(94)00026-8, 1995.
Staneva, J. V., Dietrich, D. E., Stanev, E. V., and Bowman, M. J.: Rim current and coastal eddy mechanisms in an eddy-resolving Black Sea general circulation model, J. Mar. Syst., 31, 137–157, https://doi.org/10.1016/s0924-7963(01)00050-1, 2001.
Titov, V. B.: Characteristics of the Main Black Sea Current and near-shore anticyclonic eddies in the Russian sector of the Black Sea, Oceanology, 42, 637–645, 2002.
Volodin, E. M., Diansky, N. A., and Gusev, A. V.: Simulating present-day climate with the INMCM4.0 coupled model of the atmospheric and oceanic general circulations, Izv., Atmos. Ocean. Phys., 46, 414–431, https://doi.org/10.1134/s000143381004002x, 2010.
Vorosmarty, C., Askew, A., Grabs, W., Barry, R. G., Birkett, C., Doll, P., Goodison, B., Hall, A., Jenne, R., Kitaev, L., Landwehr, J., Keeler, M., Leavesley, G., Schaake, J., Strzepek, K., Sundarvel, S. S., Takeuchi, K., and Webster, F.: Global water data: a newly endangered species, Eos, Trans. Amer. Geophys. Union., 82, 54–58, https://doi.org/10.1029/01eo00031, 2001.
Warrick, J. A. and Farnsworth, K. L.: Coastal river plumes: collisions and coalescence, Prog. Oceanogr., 151, 245–260, https://doi.org/10.1016/j.pocean.2016.11.008, 2017.
Wheatcroft, R. A., Goni, M. A., Hatten, J. A., Pasternack, G. B., and Warrick, J. A.: The role of effective discharge in the ocean delivery of particulate organic carbon by small, mountainous river systems, Limnol. Oceanogr., 55, 161–171, https://doi.org/10.4319/lo.2010.55.1.0161, 2010.
Zalesny, V. B., Diansky, N. A., Fomin, V. V., Moshonkin, S. N., and Demyshev, S. G.: Numerical model of the circulation of the Black Sea and the Sea of Azov, Rus. J. Numer. Anal. Math. Modelling, 27, 95–112, https://doi.org/10.1515/rnam-2012-0006, 2012.
Zalesny, V. B., Gusev, A. V., and Moshonkin, S. N.: Numerical model of the hydrodynamics of the Black Sea and the Sea of Azov with variational initialization of temperature and salinity, Izv., Atmos. Ocean. Phys., 49, 642–658, https://doi.org/10.1134/S0001433813060133, 2013.
Zalesny, V. B., Gusev, A. V., Lukyanova, A. N., and Fomin, V. V.: Numerical modelling of sea currents and tidal waves, Russ. J. Numer. Anal. Math. Modelling, 31, 115–125, https://doi.org/10.1515/rnam-2016-0012, 2016a.
Zalesny, V. B., Gusev, A. V., and Agoshkov, V. I.: Modeling Black Sea circulation with high resolution in the coastal zone, Izv., Atmos. Ocean. Phys., 52, 277–293, https://doi.org/10.1134/S0001433816030142, 2016b.
Zatsepin, A. G., Ginzburg, A. I., Kostianoy, A. G., Kremenetskiy, V. V., Krivosheya, V. G., Poulain, P.- M., and Stanichny, S. V.: Observation of Black Sea mesoscale eddies and associated horizontal mixing, J. Geophys. Res., 108, 1–27, https://doi.org/10.1029/2002jc001390, 2003.
Zavialov, P. O., Makkaveev, P. N., Konovalov, B. V., Osadchiev, A. A., Khlebopashev, P. V., Pelevin, V. V., Grabovskiy, A. B., Izhitskiy, A. S., Goncharenko, I. V., Soloviev, D. M., and Polukhin, A. A.: Hydrophysical and hydrochemical characteristics of the sea areas adjacent to the estuaries of small rivers if the Russian coast of the Black Sea, Oceanology, 54, 265–280, https://doi.org/10.1134/s0001437014030151, 2014.
Zhou, M.-J., Shen, Z.-L., and Yu, R.-C.: Responses of a coastal phytoplankton community to increased nutrient input from the Changjiang (Yangtze) River, Cont. Shelf Res., 28, 1483–1489, https://doi.org/10.1016/j.csr.2007.02.009, 2008.
Short summary
This study shows how intense rainfall at the steep and narrow catchment area of the northeastern part of the Black Sea can cause flash-flooding events and significantly influence coastal water quality. They change the point-source spread of continental discharge, dominated by several large rivers, to the line-source discharge from numerous small rivers located along the coast and induce intense alongshore transport of suspended and dissolved constituents discharged with river waters.
This study shows how intense rainfall at the steep and narrow catchment area of the northeastern...