Articles | Volume 13, issue 1
https://doi.org/10.5194/os-13-145-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/os-13-145-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Seiche excitation in a highly stratified fjord of southern Chile: the Reloncaví fjord
Escuela de Biología Marina, Facultad de Ciencias del
Mar y de Recursos Naturales, Universidad de Valparaíso,
Valparaíso, Chile
COPAS-Sur Austral, Universidad de Concepción,
Concepción, Chile
Oscar Pizarro
COPAS-Sur Austral, Universidad de Concepción,
Concepción, Chile
Departamento de Geofísica, Universidad de
Concepción, Concepción, Chile
Instituto Milenio de Oceanografía, Universidad de
Concepción, Concepción, Chile
Nadin Ramírez
COPAS-Sur Austral, Universidad de Concepción,
Concepción, Chile
Instituto Milenio de Oceanografía, Universidad de
Concepción, Concepción, Chile
Mario Cáceres
Escuela de Biología Marina, Facultad de Ciencias del
Mar y de Recursos Naturales, Universidad de Valparaíso,
Valparaíso, Chile
Related authors
Pamela Linford, Iván Pérez-Santos, Paulina Montero, Patricio A. Díaz, Claudia Aracena, Elías Pinilla, Facundo Barrera, Manuel Castillo, Aida Alvera-Azcárate, Mónica Alvarado, Gabriel Soto, Cécile Pujol, Camila Schwerter, Sara Arenas-Uribe, Pilar Navarro, Guido Mancilla-Gutiérrez, Robinson Altamirano, Javiera San Martín, and Camila Soto-Riquelme
Biogeosciences, 21, 1433–1459, https://doi.org/10.5194/bg-21-1433-2024, https://doi.org/10.5194/bg-21-1433-2024, 2024
Short summary
Short summary
The Patagonian fjords comprise a world region where low-oxygen water and hypoxia conditions are observed. An in situ dataset was used to quantify the mechanism involved in the presence of these conditions in northern Patagonian fjords. Water mass analysis confirmed the contribution of Equatorial Subsurface Water in the advection of the low-oxygen water, and hypoxic conditions occurred when the community respiration rate exceeded the gross primary production.
Julio Salcedo-Castro, Antonio Olita, Freddy Saavedra, Gonzalo S. Saldías, Raúl C. Cruz-Gómez, and Cristian D. De la Torre Martínez
Ocean Sci., 19, 1687–1703, https://doi.org/10.5194/os-19-1687-2023, https://doi.org/10.5194/os-19-1687-2023, 2023
Short summary
Short summary
Considering the relevance and impact of river discharges on the coastal environment, it is necessary to understand the processes associated with river plume dynamics in different regions and at different scales. Modeling studies focused on the eastern Pacific coast under the influence of the Humboldt Current are scarce. Here, we conduct for the first time an interannual modeling study of two river plumes off central Chile and discuss their characteristics.
Iván Pérez-Santos, Leonardo Castro, Lauren Ross, Edwin Niklitschek, Nicolás Mayorga, Luis Cubillos, Mariano Gutierrez, Eduardo Escalona, Manuel Castillo, Nicolás Alegría, and Giovanni Daneri
Ocean Sci., 14, 1185–1206, https://doi.org/10.5194/os-14-1185-2018, https://doi.org/10.5194/os-14-1185-2018, 2018
Short summary
Short summary
Fjord systems play an important role in primary production and carbon export. Acoustic, hydrographic and in situ abundance measurements were used to study macrozooplankton assemblages at 44.7° S. Diel vertical migration of zooplankton stopped at the hypoxic boundary layer and apparently did not tolerate the hypoxic conditions. Turbulence appears to be the oceanographic process that contributes to vertical mixing around the sill, helping the interchange of nutrients, feeding and carbon export.
Manuel I. Castillo, Ursula Cifuentes, Oscar Pizarro, Leif Djurfeldt, and Mario Caceres
Ocean Sci., 12, 533–544, https://doi.org/10.5194/os-12-533-2016, https://doi.org/10.5194/os-12-533-2016, 2016
Short summary
Short summary
The upper layer of the Reloncaví fjord, Chile, shows a continuous stratification year-round. Nevertheless, the vertical salt flux seems to be balanced by the horizontal salt flux, which maintains the amount of salt into the fjord nearly as a steady state. The upper layer shows a flushing time of about 3 days.
Lenna Oriana Ortiz-Castillo, Oscar Pizarro, Marcela Cornejo-D'Ottone, and Boris Dewitte
EGUsphere, https://doi.org/10.5194/egusphere-2024-1290, https://doi.org/10.5194/egusphere-2024-1290, 2024
Short summary
Short summary
Poleward undercurrent eddies (Puddies) transport a source water mass with low oxygen hundreds of kilometers away from the coast. A simulation based on a physical-biogeochemical model was used to characterize the biogeochemical average conditions inside the Puddies during their lifetime while modifying the conditions in the open sea. Our findings show that the biological activity extends the low oxygen core conditions counteracted by advection processes that tend to ventilate the core.
Pamela Linford, Iván Pérez-Santos, Paulina Montero, Patricio A. Díaz, Claudia Aracena, Elías Pinilla, Facundo Barrera, Manuel Castillo, Aida Alvera-Azcárate, Mónica Alvarado, Gabriel Soto, Cécile Pujol, Camila Schwerter, Sara Arenas-Uribe, Pilar Navarro, Guido Mancilla-Gutiérrez, Robinson Altamirano, Javiera San Martín, and Camila Soto-Riquelme
Biogeosciences, 21, 1433–1459, https://doi.org/10.5194/bg-21-1433-2024, https://doi.org/10.5194/bg-21-1433-2024, 2024
Short summary
Short summary
The Patagonian fjords comprise a world region where low-oxygen water and hypoxia conditions are observed. An in situ dataset was used to quantify the mechanism involved in the presence of these conditions in northern Patagonian fjords. Water mass analysis confirmed the contribution of Equatorial Subsurface Water in the advection of the low-oxygen water, and hypoxic conditions occurred when the community respiration rate exceeded the gross primary production.
Julio Salcedo-Castro, Antonio Olita, Freddy Saavedra, Gonzalo S. Saldías, Raúl C. Cruz-Gómez, and Cristian D. De la Torre Martínez
Ocean Sci., 19, 1687–1703, https://doi.org/10.5194/os-19-1687-2023, https://doi.org/10.5194/os-19-1687-2023, 2023
Short summary
Short summary
Considering the relevance and impact of river discharges on the coastal environment, it is necessary to understand the processes associated with river plume dynamics in different regions and at different scales. Modeling studies focused on the eastern Pacific coast under the influence of the Humboldt Current are scarce. Here, we conduct for the first time an interannual modeling study of two river plumes off central Chile and discuss their characteristics.
Iván Pérez-Santos, Leonardo Castro, Lauren Ross, Edwin Niklitschek, Nicolás Mayorga, Luis Cubillos, Mariano Gutierrez, Eduardo Escalona, Manuel Castillo, Nicolás Alegría, and Giovanni Daneri
Ocean Sci., 14, 1185–1206, https://doi.org/10.5194/os-14-1185-2018, https://doi.org/10.5194/os-14-1185-2018, 2018
Short summary
Short summary
Fjord systems play an important role in primary production and carbon export. Acoustic, hydrographic and in situ abundance measurements were used to study macrozooplankton assemblages at 44.7° S. Diel vertical migration of zooplankton stopped at the hypoxic boundary layer and apparently did not tolerate the hypoxic conditions. Turbulence appears to be the oceanographic process that contributes to vertical mixing around the sill, helping the interchange of nutrients, feeding and carbon export.
Oscar Vergara, Boris Dewitte, Ivonne Montes, Veronique Garçon, Marcel Ramos, Aurélien Paulmier, and Oscar Pizarro
Biogeosciences, 13, 4389–4410, https://doi.org/10.5194/bg-13-4389-2016, https://doi.org/10.5194/bg-13-4389-2016, 2016
Short summary
Short summary
The Southeast Pacific hosts one of the most extensive oxygen minimum zone (OMZ), yet the dynamics behind it remain unveiled. We use a high-resolution coupled physical–biogeochemical model to document the seasonal cycle of dissolved oxygen within the OMZ in both the coastal zone and the offshore ocean. The OMZ seasonal variability is driven by the seasonal fluctuations of the dissolved oxygen eddy flux, with a peak in Austral winter (fall) at the northern (southern) boundary and near the coast.
Marcela Cornejo D'Ottone, Luis Bravo, Marcel Ramos, Oscar Pizarro, Johannes Karstensen, Mauricio Gallegos, Marco Correa-Ramirez, Nelson Silva, Laura Farias, and Lee Karp-Boss
Biogeosciences, 13, 2971–2979, https://doi.org/10.5194/bg-13-2971-2016, https://doi.org/10.5194/bg-13-2971-2016, 2016
Manuel I. Castillo, Ursula Cifuentes, Oscar Pizarro, Leif Djurfeldt, and Mario Caceres
Ocean Sci., 12, 533–544, https://doi.org/10.5194/os-12-533-2016, https://doi.org/10.5194/os-12-533-2016, 2016
Short summary
Short summary
The upper layer of the Reloncaví fjord, Chile, shows a continuous stratification year-round. Nevertheless, the vertical salt flux seems to be balanced by the horizontal salt flux, which maintains the amount of salt into the fjord nearly as a steady state. The upper layer shows a flushing time of about 3 days.
Cited articles
Aiken, C. M.: Barotropic tides of the Chilean Inland Sea and their sensitivity to basin geometry, J. Geophys. Res., 113, C08024, https://doi.org/10.1029/2007JC004593, 2008.
Allen, G. L. and Simpson, J. H: Reflection of the internal tide in Upper Loch Linnhe, a Scottish fjord, Estuar. Coast. Shelf Sci., 46, 683–701, 1998.
Arneborg, L. and Liljebladh, B.: The internal seiches in Gullmar fjord part I – dynamics, J. Phys. Oceanogr., 31, 2549–2566, 2001a.
Arneborg, L. and Liljebladh, B.: The internal seiches in Gullmar fjord part II – contribution to basin water mixing, J. Phys. Oceanogr., 31, 2567–2574, 2001b.
Cáceres, M., Valle-Levinson, A., Sepúlveda, H., and Holderied, K.: Transverse variability of flow and density in a Chilean fjord, Cont. Shelf Res., 22, 1683–1698, 2002.
Castillo, M. I., Pizarro, O., Cifuentes, U., Ramirez, N., and Djurfeldt, L.: Subtidal dynamics in a deep fjord of southern Chile, Cont. Shelf Res., 49, 73–89, 2012.
Castillo, M. I., Cifuentes, U., Pizarro, O., Djurfeldt, L., and Caceres, M.: Seasonal hydrography and surface outflow in a fjord with a deep sill: the Reloncaví fjord, Chile, Ocean Sci., 12, 533–544, https://doi.org/10.5194/os-12-533-2016, 2016.
COPAS-Sur Austral: Oceanografía del fiordo Reloncaví, Universidad de Concepción, available at: http://www.reloncavi.udec.cl/ (last access: 6 June 2016), 2012.
Cossu, R. and Wells, M. G.: The Interaction of Large Amplitude Internal Seiches with a Shallow Sloping Lakebed: Observations of Benthic Turbulence in Lake Simcoe, Ontario, Canada, PLOS One, 8, e57444, https://doi.org/10.1371/journal.pone.0057444, 2013.
Dirección General de Aguas: Datos hidrológicos en tiempo real, Chile, available at: http://dgasatel.mop.cl/, last access: 1 July 2016.
Djurfeldt, L.: On the response of the Fjord Gullmaren under ice cover, J. Geophys. Res., 92, 5157–5167, https://doi.org/10.1029/JC092iC05p05157, 1987.
Dyer, K. R.: Estuaries: A Physical Introduction, John Wiley and Sons Inc, UK, 140 pp., 1997.
Emery, W. J. and Thomson, R. E.: Data Analysis Methods in Physical Oceanography, Elsevier, New York, USA, 634 pp., 1998.
Farmer, D. M. and Freeland, H. J.: The physical oceanography of Fjords, Prog. Oceanogr., 12, 147–194, https://doi.org/10.1016/0079-6611(83)90004-6, 1983.
Farmer, D. M. and Smith, J.: Tidal interaction of stratified flow with a sill in Knight Inlet, Deep-Sea Res. Pt. I, 27, 239–254, https://doi.org/10.1016/0198-0149(80)90015-1, 1980.
Gill, A.: Atmosphere-Ocean Dynamics, Academics Press, USA, 662 pp., 1982.
Goudsmit, G.-H., Burchard, H., Peeters, F., and Wüest, A.: Application of k-ϵ turbulence models to enclosed basins: The role of internal seiches, J. Geophys. Res., 107, 3230, https://doi.org/10.1029/2001JC000954, 2002.
Grinsted, A., Moore, J. C., and Jevrejeva, S.: Application of the cross wavelet transform and wavelet coherence to geophysical time series, Nonlin. Processes Geophys., 11, 561–566, https://doi.org/10.5194/npg-11-561-2004, 2004.
Inall, M. E. and. Rippeth, T. P.: Dissipation of Tidal Energy and Associated Mixing in a Wide Fjord, Environ. Fluid Mech., 2, 219–240, https://doi.org/10.1023/A:1019846829875, 2002.
Iriarte, J. L., Pantoja, S., and Daneri, G.: Oceanographic Processes in Chilean Fjords of Patagonia: from small to large-scale studies, Prog. Oceanogr., 129, 1–7, https://doi.org/10.1016/j.pocean.2014.10.004, 2014.
Large, W. G. and Pond, S.: Open-ocean momentum flux measurements in moderate to strong winds, J. Phys. Oceanogr., 11, 324–336, 1981.
Lemmin, U.: The structure and dynamics of internal waves in Baldeggersee, Limnol. Oceanogr., 32, 43–61, https://doi.org/10.4319/lo.1987.32.1.0043, 1987.
León-Muñoz, J., Marcé, R., and Iriarte, J. L.: Influence of hydrological regime of an Andean river on salinity, temperature and oxygen in a Patagonia fjord, Chile, New Zeal. J. Mar. Fresh, 47, 515–528, https://doi.org/10.1080/00288330.2013.802700, 2013.
Letelier, J., Soto-Mardones, L., Salinas, S., Osuna, P., López, D., Sepúlveda, H. H., Pinilla, E., and Rodrigo, C.: Variabilidad del viento, oleaje y corrientes en la región norte de los fiordos Patagónicos de Chile, Revista de Biologia Marina y Oceanografía, 46, 363–377, 2011.
Mans, C., Bramato, S., Baquerizo, A., and Losada, M.: Surface Seiche Formation on a Shallow Reservoir in Complex Terrain, J. Hydraul. Eng.-Asce, 137, 517–529, 2011.
Maas, L. R. M. and Lam, F.-P. A.: Geometric focusing of internal waves, J. Fluid Mech., 300, 1–41, https://doi.org/10.1017/S0022112095003582, 1995.
Monismith, S.: An experimental study of the upwelling response of stratified reservoirs to surface shear stress, J. Fluid Mech., 171, 407–439, https://doi.org/10.1017/S0022112086001507, 1986.
Montero, P., Daneri, G., Gonzalez, H., Iriarte, J. L., Tapia, F. J., Lizarraga, L., Sanchez, N., and Pizarro, O.: Seasonal variability of primary production in a fjord ecosystem of the Chilean Patagonia: Implications for the transfer of carbon within pelagic food webs, Cont. Shelf Res., 31, 202–215, https://doi.org/10.1016/j.csr.2010.09.003, 2011.
Mortimer, C. H.: Water movements in lakes during summer stratification; evidence from distribution of temperature in Windermere, Philos. T. R. Soc. London, 236, 355–404, https://doi.org/10.1098/rstb.1952.0005, 1952.
Münnich, M., Wuest, A., and Imboden, D. M.: Observations of the 2nd Vertical-Mode of the Internal Seiche in an Alpine Lake, Limnol. Oceanogr., 37, 1705–1719, https://doi.org/10.4319/lo.1992.37.8.1705, 1992.
Niemeyer, H. and Cereceda, P.: Hidrografía, Geografía de Chile, Tomo VIII, Instituto Geográfico Militar, Chile, 320 pp., 1984.
Palma, S. and Silva, N.: Distribution of siphonophores, chaetognaths, euphausiids and oceanographic conditions in the fjords and channels of southern Chile, Deep-Sea Res. Pt. II, 51, 513–553, https://doi.org/10.1016/j.dsr2.2004.05.001, 2004.
Pantoja, S., Iriarte, J. L., and Daneri, G.: Oceanography of the Chilean Patagonia, Cont. Shelf Res., 31, 149–153, https://doi.org/10.1016/j.csr.2010.10.013, 2011.
Parsmar, R. and Stigebrandt, A.: Observed damping of barotropic seiches through baroclinic wave drag in the Gullmar Fjord, J. Phys. Oceanogr., 27, 849–857, 1997.
Pawlowicz, R., Beardsley, B., Lentz, S.: Classical tidal harmonic analysis including error estimates in MATLAB using T-TIDE, Comput. Geosci., 28, 929–937, 2002.
Pickard, G. L.: Some Physical Oceanographic Features of Inlets of Chile, J. Fish. Res. Board Can., 28, 1077–1106, 1971.
Rabinovich, A.: Seiches and Harbor Oscillations, in: Handbook of Coastal and Ocean Engineering, edited by: Kim, Y., World Scientific Publishing Co, US, 193–236, 2010.
Ross, L., Pérez-Santos, I., Valle-Levinson, A., and Schneider, W.: Semidiurnal internal tides in a Patagonian fjord, Prog. Oceanogr., 129, 19–34, https://doi.org/10.1016/j.pocean.2014.03.006, 2014.
Ross, L., Valle-Levinson, A., Pérez-Santos, I., Tapia, F. J., and Schneider, W.: Baroclinic annular variability of internal motions in a Patagonian fjord, J. Geophys. Res., 120, 5668–5685, https://doi.org/10.1002/2014JC010669, 2015.
Schneider, W., Pérez-Santos, I., Ross, L., Bravo, L., Seguel, R., and Hernández, F.: On the hydrography of Puyuhuapi Channel, Chilean Patagonia, Prog. Oceanogr., 129, 8–18, https://doi.org/10.1016/j.pocean.2014.03.007, 2014.
Simpson, J. H., Wiles, P. J., and Lincoln, B. J.: Internal seiche modes and bottom boundary-layer dissipation in a temperate lake from acoustic measurements, Limnol. Oceanogr., 56, 1893–1906, 2011.
Stevens, C. and Imberger, J.: The initial response of a stratified lake to a surface shear stress, J. Fluid Mech., 312, 39–66, https://doi.org/10.1017/S0022112096001917, 1996.
Stigebrandt, A.: Vertical diffusion driven by internal waves in a sill Fjord, J. Phys. Oceanogr., 6, 486–495, 1976.
Stigebrandt, A.: Some aspects of tidal interaction with fjord constrictions, Estuar. Coast. Mar. Sci., 11, 151–166, https://doi.org/10.1016/S0302-3524(80)80038-7, 1980.
Stigebrandt, A. and Aure, J.: Vertical Mixing in Basin Waters of Fjords, J. Phys. Oceanogr., 19, 917–926, 1989.
Svendsen, H.: Exchange processes above sill level between fjords and coastal water, in: Fjord Oceanography, edited by: Freeland, H., Farmer, D., and Levings, C., Plenum Press, USA, 355–361, 1980.
Thompson, R. O. R. Y. and Imberger, J.: Response of a numerical model of a stratified lake to a wind stress, in Proceedings of the 2nd International Symposium on Stratified Flows, Trondheim, Norway, 24–27 June 1980, 562–570, 1980.
Thorpe, S.: Near-resonant forcing in a shallow two-layer fluid: a model for the internal surge in Loch New?, J. Fluid Mech., 63, 509–527, https://doi.org/10.1017/S0022112074001753, 1974.
Torrence, C. and Compo, G. P.: A practical guide to wavelet analysis, B. Am. Meteorol. Soc., 79, 61–78, 1998.
Valle-Levinson, A., Sarkar, N., Sanay, R., Soto, D., and León, J.: Spatial structure of hydrography and flow in a chilean fjord, Estuario Reloncaví, Estuar. Coast., 30, 113–126, https://doi.org/10.1007/BF02782972, 2007.
van der Lee, E. M. and Umlauf, L.: Internal wave mixing in the Baltic Sea: Near-inertial waves in the absence of tides, J. Geophys. Res-Oceans, 116, C10016, https://doi.org/10.1029/2011jc007072, 2011.
Watson, E. R.: Movements of the waters of Loch Ness, as indicated by temperature observations, Geogr. J., 24, 430–437, https://doi.org/10.2307/1775951, 1904.
Weddernburn, E. M.: An experimental investigation of the temperature changes occurring in fresh-water lochs, P. Roy. Soc. Edinb., 28, 2–20, https://doi.org/10.1017/S0370164600011524, 1907.
Weddernburn, E. M. and Young, A.: Temperature observations in Loch Earn, Part II, Trans. R. Sot. Edinb., 50, 741–767, https://doi.org/10.1017/S0080456800017026, 1915.
Wiegand, R. C. and Chamberlain, V.: Internal waves of the second vertical mode in a stratified lake, Limnol. Oceanogr., 32, 29–42, 1987.
Short summary
Here we present the results of an intensive physical oceanography study conducted in the Reloncavi fjord (41.5º S, 72.5º W) which was focused on the sub-inertial timescale. The along-fjord currents presented 3-day oscillations which were consistent with the natural internal period of oscillation of the fjord basin (internal seiche). This oscillation could explain more than 44 % of the 3-day variability and contributed with kinetic energy levels as large as the tidal currents.
Here we present the results of an intensive physical oceanography study conducted in the...