Supplement of Ocean Sci., 13, 145–160, 2017 http://www.ocean-sci.net/13/145/2017/doi:10.5194/os-13-145-2017-supplement © Author(s) 2017. CC Attribution 3.0 License.

Supplement of

Seiche excitation in a highly stratified fjord of southern Chile: the Reloncaví fjord

Manuel I. Castillo et al.

Correspondence to: Manuel I. Castillo (manuel.castillo@uv.cl)

The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence.

1 Supporting Information

S1 Figure: Relationship between wind stress and currents. The upper-left insert presents the rotary spectrum of the wind stress. Here, the red line indicates clockwise rotations (CW) and the black line counter-clockwise (CCW) rotations. The bar indicates the 95% confidence interval. The coherence and phase spectra between τ_y and the along-fjord component in the upper 10 m are presented in contour plots. In the coherence, black lines indicate coherences over 80% (thin) and 99% (wide) confidence levels. In the phase spectra, only phases with coherences over 80% confidence levels were plotted (the thin black line obtained from the coherence spectra). To emphasize the changes in phase, we included the 0° contour (wide black line) in the phase spectra. The mean profile of the along-fjord currents and the mean τ_y were included in the right inserts. Dashed vertical lines denote the three-day, one-day, inertial (f), and 12-hour periods.

S2 Table: Locations of the ADCP and sealevel moorings and the meteorological station. Here

3 presents details of the time series measured on the Reloncavi fjord. You must notice that the error

(*) on the ADCP, results from the measurement configuration whereas the accuracy and

5 resolution came from factory.

			Lat	Lon		interval	depth	error*	accuracy	resolution
site	Instrument	depth	[°S]	[°W]	dates	[min.]	cell			
		[m]					[m]			
Cochamo	ADCP	15	41.47	72.32	6 Aug. –	10	1.0	< 2	± 0.5	0.1
	300 kHz				10 Oct. 2008			[cm s ⁻¹]	[cm s ⁻¹]	[cm s ⁻¹]
	НОВО	14	41.51	72.30	14 Aug. –	10			± 1.5	0.21
	U-20				13 Nov. 2008				[cm]	[cm]
Puelo	ADCP	28		72.37	16 Aug. – 11 Nov. 2008	20	0.5	< 2	± 0.3	0.1
	600 kHz		41.65					[cm s ⁻¹]	[cm s ⁻¹]	[cm s ⁻¹]
	ADCP	34			16 Aug. –	10	1.0	< 2	± 0.5	0.1
	300 kHz				11 Nov 2008			[cm s ⁻¹]	[cm s ⁻¹]	[cm s ⁻¹]
	Davis	10	41.68	72.38	7 Jul. 2008 –	10			direction: 3°	1°
	Vantage	height			18 Feb. 2009				speed: 1 [m	$0.4 [m s^{-1}]$
	Pro2								s ⁻¹]	
mouth	ADCP	11			8 Aug. –	10	1.0	< 2	± 0.5	0.1
	300 kHz		41.72	72.62				[cm s ⁻¹]	[cm s ⁻¹]	[cm s ⁻¹]
	ADCP	430				20	8.0	< 2	± 0.5	0.1
	75 kHz				6 Nov. 2008			[cm s ⁻¹]	[cm s ⁻¹]	[cm s ⁻¹].
	SBE-26	25	41.71	72.58	5 Sep. –	10			± 2.5	0.02
					11 Nov.2008				[cm]	[cm]

S3 Table: Summary of the along-fjord CTD stations in the Reloncavi fjord. In addition to the position, the bottom depth of each station is indicated.

CTD	Lat	Lon	Н	CTD	Lat	Lon	H
Nº	[°S]	$[^{o}W]$	[m]	N^{o}	[°S]	$[^{o}W]$	[m]
1	41° 24.51'	72° 17.57'	43	11	41° 37.86'	72° 20.95'	177
2	41° 25.33'	72° 17.34'	59	12	41° 39.22'	72° 21.89'	152
3	41° 26.15'	72° 18.10'	62	13	41° 41.01'	72° 24.16'	220
4	41° 26.77'	72° 18.49'	63	14	41° 41.90'	72° 26.12'	266
5	41° 27.66'	72° 19.01'	76	15	41° 42.87'	72° 28.22'	268
6	41° 28.76'	72° 19.16'	92	16	41° 42.90'	72° 31.24'	440
7	41° 29.83'	72° 19.10'	104	17	41° 43.48'	72° 33.95'	450
8	41° 31.59'	72° 19.28'	190	18	41° 43.28'	72° 36.69'	457
9	41° 33.39'	72° 19.71'	200	19	41° 42.73'	72° 39.28'	457
10	41° 35.63'	72° 20.36'	197				