Articles | Volume 13, issue 1
https://doi.org/10.5194/os-13-105-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/os-13-105-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Synoptic fluctuation of the Taiwan Warm Current in winter on the East China Sea shelf
Jiliang Xuan
CORRESPONDING AUTHOR
State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, State Oceanic Administration, Hangzhou, China
Daji Huang
CORRESPONDING AUTHOR
State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, State Oceanic Administration, Hangzhou, China
Ocean College, Zhejiang University, Zhoushan, China
Thomas Pohlmann
Institute of Oceanography, University of Hamburg, Hamburg, Germany
Jian Su
Institute of Oceanography, University of Hamburg, Hamburg, Germany
Bernhard Mayer
Institute of Oceanography, University of Hamburg, Hamburg, Germany
Ruibin Ding
Ocean College, Zhejiang University, Zhoushan, China
State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, State Oceanic Administration, Hangzhou, China
Feng Zhou
State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, State Oceanic Administration, Hangzhou, China
Ocean College, Zhejiang University, Zhoushan, China
Related authors
No articles found.
Zheen Zhang, Thomas Pohlmann, and Xueen Chen
Ocean Sci., 17, 393–409, https://doi.org/10.5194/os-17-393-2021, https://doi.org/10.5194/os-17-393-2021, 2021
Short summary
Short summary
In this study, we found that the interannual subsurface temperature and salinity variability of the Bay of Bengal (BoB) shows a remarkable delayed correlation with the Indian Ocean Dipole mode. We employed a regional model and determined the contributions of the coastal Kelvin waves and the westward-moving Rossby waves to this correlation. An analysis of the salinity budget revealed that the advection terms dominate the subsurface salinity changes in the BoB.
B. Mayer, T. Stacke, I. Stottmeister, and T. Pohlmann
Ocean Sci. Discuss., https://doi.org/10.5194/osd-12-863-2015, https://doi.org/10.5194/osd-12-863-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
The Indonesian Sunda Shelf (average depth 48 m) is subject to many physical and biogeochemical processes with a strong impact from human activities. For investigation of marine environmental water properties, it is important to know characteristic water exchange rates. With realistic computer model results, analytical flushing rates and tracer residence times were compared for different shelf regions. Only the latter give detailed 3D pictures with times of less than 30 days to more than 2 years.
X. Y. Guo, X.-H. Zhu, Y. Long, and D. J. Huang
Biogeosciences, 10, 6403–6417, https://doi.org/10.5194/bg-10-6403-2013, https://doi.org/10.5194/bg-10-6403-2013, 2013
Cited articles
Bai, Y., Pan, D., Cai, W. J., He, X., Wang, D., Tao, B., and Zhu, Q.: Remote sensing of salinity from satellite-derived CDOM in the Changjiang River dominated East China Sea, J. Geophys. Res.-Oceans, 118, 227–243, 2013.
Bleck, R.: An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates, Ocean Model., 37, 55–88, 2002.
Brink, K. H.: Costal trapped waves and wind-induced currents over the continental shelf, Ann. Rev. Fluid Mech., 23, 389–412, 1991.
Carnes, M. R.: Description and evaluation of GDEM-V3.0, NRL Rep. NRL/MR/7330-09-9165, Nav. Res. Lab., Washington, D.C., 2009.
Chen, C., Beardsley, R. C., Limeburner, R., and Kim, K.: Comparison of winter and summer hydrographic observations in the Yellow and East China seas and adjacent Kuroshio during 1986, Cont. Shelf Res., 14, 909–929, 1994.
Chen, C., Liu, H., and Beardsley, R. C.: An unstructured, finite-volume, three-dimensional, primitive equation ocean model: application to coastal ocean and estuaries, J. Atmos. Ocean. Tech., 20, 159–186, 2003.
Chen, C., Xue, P., Ding, P., Beardsley, R. C., Xu, Q., Mao, X., Gao, G., Qi, J., Li, C., Lin, H., Cowles, G., and Shi, M.: Physical mechanisms for the offshore detachment of Changjiang Diluted Water in the East China Sea, J. Geophys. Res., 113, C02002, https://doi.org/10.1029/2006JC003994, 2008.
Chen, C. T. A. and Wang, S. L.: Carbon, alkalinity and nutrient budget on the East China Sea continental shelf, J. Geophys. Res.-Oceans, 104, 20675–20686, 1999.
Chuang, W. S. and Liang, W. D.: Seasonal variability of intrusion of the Kuroshio water across the continental shelf northeast of Taiwan, J. Oceanogr., 50, 531–542, 1994.
Cui, M., Hu, D., and Wu, L.: Seasonal and intraseasonal variations of the surface Taiwan Warm Current, Chin. J. Oceanol. Limnol., 22, 271–277, 2004.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q. J. Roy. Meteorol. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011.
Egbert, G. D. and Erofeeva, S. Y.: Efficient inverse modeling of barotropic ocean tides, J. Atmos. Ocean. Tech., 19, 183–204, 2002.
Egbert, G. D., Bennett, A., and Foreman, M.: TOPEX/Poseidon tides estimated using a global inverse model, J. Geophys. Res., 99, 24821–24852, https://doi.org/10.1029/94JC01894, 1994.
Emery, W. J. and Thomson, R. E.: Data analysis methods in physical oceanography, Second and revised version, Elsevier Science B.V., Ameterdam, the Netherlands, 658 pp., 2001.
Fang, G., Zhao, B., and Zhu, Y.: Water volume transport through the Taiwan Strait and the continental shelf of the East China Sea measured with current meters, in: Oceanography of Asian Marginal Seas, edited by: Takano, K., Elsevier, New York, 345–358, https://doi.org/10.1016/S0422-9894(08)70107-7, 1991.
Feng, M., Mitsudera, H., and Yoshikawa, Y.: Structure and Variability of the Kuroshio Current in Tokara Strait, J. Phys. Oceanogr., 30, 2257–2276, 2000.
Godin, G.: The Analysis of Tides, University of Toronto Press, Toronto, 264 pp., 1972.
Grachev, A. A., Andreas, E. L., Fairall, C. W., Guest, P. S., and Persson, P. O. G.: The critical Richardson number and limits of applicability of local similarity theory in the stable boundary layer, Bound.-Lay. Meteorol., 147, 51–82, 2013.
Guan, B. and Fang, G.: Winter counter-wind currents off the southeastern China coast: A review, J. Oceanogr., 62, 1–24, 2006.
Guan, B. and Mao, H.: A note on circulation of the East China Sea, Chin. J. Oceanol. Limnol., 1, 5–16, 1982.
Guan, B. X.: A sketch of the current system of the East China Sea, in: Collected Papers of the Continental Shelf of the East China Sea, Inst. of Oceanol., Chin. Acad. of Sci., Qingdao, China, 126–133, 1978.
Guo, X. Y., Hukuda, H., Miyazawa, Y., and Yamagata, T.: A triply nested ocean model for simulating the Kuroshio – Roles of horizontal resolution on JEBAR, J. Phys. Oceanogr., 33, 146–169, 2003.
Guo, X. Y., Miyazawa, Y., and Yamagata, T.: The Kuroshio onshore intrusion along the shelf break of the East China Sea: The origin of the Tsushima Warm Current, J. Phys. Oceanogr., 36, 2205–2231, https://doi.org/10.1175/JPO2976.1, 2006.
He, L., Li, Y., Zhou, H., and Yuan, D.: Variability of cross-shelf penetrating fronts in the East China Sea, Deep-Sea Res., 57, 1820–1826, 2010.
Hong, H., Chai, F., Zhang, C., Huang, B., Jiang, Y., and Hu, J.: An overview of physical and biogeochemical processes and ecosystem dynamics in the Taiwan Strait, Cont. Shelf Res., 31, 3–12, 2011.
Hsin, Y. C., Qiu, B., Chiang, T. L., and Wu, C. R.: Seasonal to interannual variations in the intensity and central position of the surface Kuroshio east of Taiwan, J. Geophys. Res.-Oceans, 118, 4305–4316, 2013.
Hu, J., Kawamura, H., Li, C., Hong, H., and Jiang, Y.: Review on current and seawater volume transport through the Taiwan Strait, J. Oceanogr., 66, 591–610, 2010.
Huang, D., Zeng, D., Ni, X., Zhang, T., Xuan, J., Zhou, F., Li, J., and He, S.: Alongshore and cross-shore circulations and their response to winter monsoon in the western East China Sea, Deep-Sea Res. Pt. II, 124, 6–18, https://doi.org/10.1016/j.dsr2.2015.01.001, 2016.
Hung, J. J., Chen, C. H., Gong, G. C., Sheu, D. D., and Shiah, F. K.: Distributions, stoichiometric patterns and cross-shelf exports of dissolved organic matter in the East China Sea, Deep-Sea Res. Pt. II, 50, 1127–1145, 2003.
Huthnance, J. M., Mysak, L. A., and Wang, D. P.: Coastal trapped waves, in: Baroclinic Processes on Continental Shelves, Coastal and Estuarine Sciences, edited by: Mooers, C. N. K., American Geophysical Union, Washington, D.C., 1–18, 1986.
Huyer, A.: Shelf circulation, in: The Sea, Vol. 9: Ocean Engineering Science, edited by: Mehaute, B. L. and Hames, D. M., Wiley, New York, 423–466, 1990.
Isobe, A.: Recent advances in ocean-circulation research on the Yellow Sea and East China Sea shelves, J. Oceanogr., 64, 569–584, https://doi.org/10.1007/s10872-008-0048-7, 2008.
Johns, W. E., Lee, T. N., Zhang, D., Zantopp, R., Liu, C. T., and Yang, Y.: The Kuroshio east of Taiwan: Moored transport observations from the WOCE PCM-1 array, J. Phys. Oceanogr., 31, 1031–1053, 2001.
Ledwell, J. R., Watson, A. J., and Law, C. S.: Mixing of a tracer in the pycnocline, J. Geophys. Res., 103, 21499–21529, https://doi.org/10.1029/98JC01738, 1998.
Lee, J. S. and Matsuno, T.: Intrusion of Kuroshio water onto the continental shelf of the East China Sea, J. Oceanogr., 63, 309–325, 2007.
Liu, C., Wang, F., Chen, X., and VonStorch, J. S.: Interannual variability of the Kuroshio onshore intrusion along the East China Sea shelf break: Effect of the Kuroshio volume transport, J. Geophys. Res.-Oceans, 119, 6190–6209, https://doi.org/10.1002/2013JC009653, 2014.
Liu, T., Xu, J., He, Y., Lü, H., Yao, Y., and Cai, S.: Numerical simulation of the Kuroshio intrusion into the South China Sea by a passive tracer, Acta Oceanol. Sin., 35, 1–12, https://doi.org/10.1007/s13131-016-0930-x, 2016.
Liu, X., Dong, C., Chen, D., and Su, J.: The pattern and variability of winter Kuroshio intrusion northeast of Taiwan, J. Geophys. Res.-Oceans, 119, 5380–5394, https://doi.org/10.1002/2014JC009879, 2014.
Mellor, G. L. and Durbin, P. A.: The structure and dynamics of the ocean surface mixed layer, J. Phys. Oceanogr., 5, 718–728, 1975.
Oey, L. Y., Hsin, Y. C., and Wu, C. R.: Why does the Kuroshio northeast of Taiwan shift shelfward in winter?, Ocean Dynam., 60, 413–426, 2010.
Qiu, B. and Imasato, N.: A numerical study on the formation of the Kuroshio countercurrent and the Kuroshio Branch Current in the East China Sea, Cont. Shelf Res., 10, 165–184, https://doi.org/10.1016/0278-4343(90)90028-K, 1990.
Ren, J. L., Xuan, J., Wang, Z. W., Huang, D., and Zhang, J.: Cross-shelf transport of terrestrial Al enhanced by the transition of northeasterly to southwesterly monsoon wind over the East China Sea, J. Geophys. Res.-Oceans, 120, 5054–5073, https://doi.org/10.1002/2014JC010655, 2015.
Richardson, H., Basu, S., and Holtslag, A. A. M.: Improving stable boundary-layer height estimation using a stability-dependent critical bulk Richardson number, Bound.-Lay. Meteorol., 148, 93–109, 2013.
Smith, W. H. F. and Sandwell, D. T.: Global sea floor topography from satellite altimetry and ship depth soundings, Science, 277, 1956–1962, 1997.
Su, J. L. and Pan, Y. Q.: On the shelf circulation north of Taiwan, Acta Oceanol. Sin., 6, 1–20, 1987.
Su, J. L., Pan, Y. Q., and Liang, X. S.: Kuroshio intrusion and Taiwan warm current, Oceanology of China Seas, Springer Netherlands, 59–70, 1994.
Takahashi, D. and Morimoto, A.: Mean field and annual variation of surface flow in the East China Sea as revealed by combining satellite altimeter and drifter data, Prog. Oceanogr., 111, 125–139, https://doi.org/10.1016/j.pocean.2013.01.007, 2013.
Teague, W., Jacobs, G., Ko, D., Tang, T., Chang, K. I., and Suk, M. S.: Connectivity of the Taiwan, Cheju, and Korea straits, Cont. Shelf Res., 23, 63–77, 2003.
Wang, Y., Jan, S., and Wang, D.: Transports and tidal current estimates in the Taiwan Strait from shipboard ADCP observations (1999–2001), Estuar. Coast. Shelf Sci., 57, 193–199, 2003.
Wei, Y., Huang, D., and Zhu, X. H.: Interannual to decadal variability of the Kuroshio Current in the east china sea from 1955 to 2010 as indicated by in-situ hydrographic data, J. Oceanogr., 69, 571–589, 2013.
Wu, C. R. and Hsin, Y. C.: Volume transport through the Taiwan Strait: a numerical study, Terr. Atmos. Ocean. Sci., 16, 377–391, 2005.
Wu, H.: Cross-shelf penetrating fronts: A response of buoyant coastal water to ambient pycnocline undulation, J. Geophys. Res., 120, 5101–5119, https://doi.org/10.1002/2014JC010686, 2015.
Xuan, J., Huang, D., Zhou, F., Zhu, X. H., and Fan, X.: The role of wind on the detachment of low salinity water in the Changjiang Bank in summer, J. Geophys. Res.-Oceans, 117, C10004, https://doi.org/10.1029/2012JC008121, 2012a.
Xuan, J., Zhou, F., Huang, D., Zhu, X. H., Xing, C., and Fan, X.: Modelling the timing of major spring bloom events in the central Yellow Sea, Estuar. Coast. Shelf Sci., 113, 283–292, 2012b.
Xuan, J., Yang, Z., Huang, D., Wang, T., and Zhou, F.: Tidal residual current and its role in the mean flow on the Changjiang Bank, J. Mar. Syst., 154, 66–81, https://doi.org/10.1016/j.jmarsys.2015.04.005, 2016.
Yang, D., Yin, B., Liu, Z., and Feng, X.: Numerical study of the ocean circulation on the East China Sea shelf and a Kuroshio bottom branch northeast of Taiwan in summer, J. Geophys. Res.-Oceans, 116, C05015, https://doi.org/10.1029/2010JC006777, 2011.
Yang, D., Yin, B., Liu, Z., Bai, T., Qi, J., and Chen, H.: Numerical study on the pattern and origins of Kuroshio branches in the bottom water of southern East China Sea in summer, J. Geophys. Res.-Oceans, 117, C02014, https://doi.org/10.1029/2011JC007528, 2012.
Yu, L. and Weller, R. A.: Objectively Analyzed air–sea heat Fluxes (OAFlux) for the global oceans, B. Am. Meteorol. Soc., 88, 527–539, 2007.
Yuan, D., Qiao, F., and Su, J.: Cross-shelf penetrating fronts off the southeast coast of China observed by MODIS, Geophys. Res. Lett., 32, L19603, https://doi.org/10.1029/2005GL023815, 2005.
Zeng, D. Y., Ni, X., and Huang, D.: Temporal and spatial variability of the Zhe-Min Coastal Current and the Taiwan Warm Current in winter in the southern Zhejiang coastal sea, Sci. Sin. Terrae., 42, 1123–1134, 2012.
Zhao, L. and Guo, X.: Influence of cross-shelf water transport on nutrients and phytoplankton in the East China Sea: A model study, Ocean Sci., 7, 27–43, https://doi.org/10.5194/os-7-27-2011, 2011.
Zhou, F., Xue, H., Huang, D., Xuan, J., Ni, X., Xiu, P., and Hao, Q.: Cross shelf exchange in the shelf of the East China Sea, J. Geophys. Res.-Oceans, 120, 1545–1572, https://doi.org/10.1002/2014JC010567, 2015.
Zhu, J., Chen, C., Ding, P., Li, C., and Lin, H.: Does the Taiwan Warm Current exist in winter?, Geophys. Res. Lett., 31, L12302, https://doi.org/10.1029/2004GL019997, 2004.
Short summary
Research on the summer TWC has been conducted previously; however, the spatial structure and temporal variation of the winter TWC are less known due to its weak mean velocity. Therefore, FVCOM was used to evaluate the spatial patterns of TWC synoptic fluctuations. We observed that the TWC fluctuations appear mainly to the north of Taiwan and in the inshore area. Our results will be useful in the dynamical understanding of the winter TWC and its impact on cross-shore transport.
Research on the summer TWC has been conducted previously; however, the spatial structure and...