Articles | Volume 12, issue 3
https://doi.org/10.5194/os-12-647-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/os-12-647-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Analyses of altimetry errors using Argo and GRACE data
Jean-François Legeais
CORRESPONDING AUTHOR
Collecte Localisation Satellites, Parc Technologique du canal, 8–10
rue Hermès, 31520 Ramonville Saint-Agne, France
Pierre Prandi
Collecte Localisation Satellites, Parc Technologique du canal, 8–10
rue Hermès, 31520 Ramonville Saint-Agne, France
Stéphanie Guinehut
Collecte Localisation Satellites, Parc Technologique du canal, 8–10
rue Hermès, 31520 Ramonville Saint-Agne, France
Related authors
Jean-François Legeais, Michaël Ablain, Lionel Zawadzki, Hao Zuo, Johnny A. Johannessen, Martin G. Scharffenberg, Luciana Fenoglio-Marc, M. Joana Fernandes, Ole Baltazar Andersen, Sergei Rudenko, Paolo Cipollini, Graham D. Quartly, Marcello Passaro, Anny Cazenave, and Jérôme Benveniste
Earth Syst. Sci. Data, 10, 281–301, https://doi.org/10.5194/essd-10-281-2018, https://doi.org/10.5194/essd-10-281-2018, 2018
Short summary
Short summary
Sea level is one of the best indicators of climate change and has been listed as one of the essential climate variables. Sea level measurements have been provided by satellite altimetry for 25 years, and the Climate Change Initiative (CCI) program of the European Space Agency has given the opportunity to provide a long-term, homogeneous and accurate sea level record. It will help scientists to better understand climate change and its variability.
Graham D. Quartly, Jean-François Legeais, Michaël Ablain, Lionel Zawadzki, M. Joana Fernandes, Sergei Rudenko, Loren Carrère, Pablo Nilo García, Paolo Cipollini, Ole B. Andersen, Jean-Christophe Poisson, Sabrina Mbajon Njiche, Anny Cazenave, and Jérôme Benveniste
Earth Syst. Sci. Data, 9, 557–572, https://doi.org/10.5194/essd-9-557-2017, https://doi.org/10.5194/essd-9-557-2017, 2017
Short summary
Short summary
We have produced an improved monthly record of mean sea level for 1993–2015. It is developed by careful processing of the records from nine satellite altimeter missions, making use of the best available orbits, instrumental corrections and geophysical corrections. This paper details the selection process and the processing method. The data are suitable for investigation of sea level changes at scales from seasonal to long-term sea level rise, including interannual variations due to El Niño.
M. Ablain, A. Cazenave, G. Larnicol, M. Balmaseda, P. Cipollini, Y. Faugère, M. J. Fernandes, O. Henry, J. A. Johannessen, P. Knudsen, O. Andersen, J. Legeais, B. Meyssignac, N. Picot, M. Roca, S. Rudenko, M. G. Scharffenberg, D. Stammer, G. Timms, and J. Benveniste
Ocean Sci., 11, 67–82, https://doi.org/10.5194/os-11-67-2015, https://doi.org/10.5194/os-11-67-2015, 2015
Short summary
Short summary
This paper presents various respective data improvements achieved within the European Space Agency (ESA) Climate Change Initiative (ESA CCI) project on sea level during its first phase (2010-2013), using multi-mission satellite altimetry data over the 1993-2010 time span.
J.-F. Legeais, M. Ablain, and S. Thao
Ocean Sci., 10, 893–905, https://doi.org/10.5194/os-10-893-2014, https://doi.org/10.5194/os-10-893-2014, 2014
Gerald Dibarboure, Cécile Anadon, Frédéric Briol, Emeline Cadier, Robin Chevrier, Antoine Delepoulle, Yannice Faugère, Alice Laloue, Rosemary Morrow, Nicolas Picot, Pierre Prandi, Marie-Isabelle Pujol, Matthias Raynal, Anaelle Treboutte, and Clément Ubelmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-1501, https://doi.org/10.5194/egusphere-2024-1501, 2024
Short summary
Short summary
The Surface Water and Ocean Topography (SWOT) mission delivers unprecedented swath altimetry products. In this paper, we describe how we extended the Level-3 algorithms to handle SWOT’s unique swath-altimeter data. We also illustrate and discuss the benefits, relevance, and limitations of Level-3 swath-altimeter products for various research domains.
Adrien Guérou, Benoit Meyssignac, Pierre Prandi, Michaël Ablain, Aurélien Ribes, and François Bignalet-Cazalet
Ocean Sci., 19, 431–451, https://doi.org/10.5194/os-19-431-2023, https://doi.org/10.5194/os-19-431-2023, 2023
Short summary
Short summary
Based on the latest satellite observations published by the French space agency CNES, we present the current state of the sea level at the scale of the planet and assess its rise and acceleration over the past 29 years. To support scientific research we provide updated estimations of our confidence in our estimations and highlight key technological and scientific fields. Making progress on that will help to better characterize the sea level in the future.
Maxime Ballarotta, Clément Ubelmann, Pierre Veillard, Pierre Prandi, Hélène Etienne, Sandrine Mulet, Yannice Faugère, Gérald Dibarboure, Rosemary Morrow, and Nicolas Picot
Earth Syst. Sci. Data, 15, 295–315, https://doi.org/10.5194/essd-15-295-2023, https://doi.org/10.5194/essd-15-295-2023, 2023
Short summary
Short summary
We present a new gridded sea surface height and current dataset produced by combining observations from nadir altimeters and drifting buoys. This product is based on a multiscale and multivariate mapping approach that offers the possibility to improve the physical content of gridded products by combining the data from various platforms and resolving a broader spectrum of ocean surface dynamic than in the current operational mapping system. A quality assessment of this new product is presented.
Marie-Isabelle Pujol, Stéphanie Dupuy, Oscar Vergara, Antonio Sánchez-Román, Yannice Faugère, Pierre Prandi, Mei-Ling Dabat, Quentin Dagneaux, Marine Lievin, Emeline Cadier, Gérald Dibarboure, and Nicolas Picot
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-292, https://doi.org/10.5194/essd-2022-292, 2022
Manuscript not accepted for further review
Short summary
Short summary
An altimeter sea level along-track level-3 product with a 5 Hz (~1.2 km) sampling is proposed. It takes advantage of recent advances in radar altimeter processing, and improvements made to different stages of the processing chain. Compared to the conventional 1 Hz (~7 km) product, it significantly improves the observability of the short wavelength signal in open ocean and near coast areas (> 5 km). It also contributes to improving high resolution numerical model outputs via data assimilation.
Pierre Prandi, Jean-Christophe Poisson, Yannice Faugère, Amandine Guillot, and Gérald Dibarboure
Earth Syst. Sci. Data, 13, 5469–5482, https://doi.org/10.5194/essd-13-5469-2021, https://doi.org/10.5194/essd-13-5469-2021, 2021
Short summary
Short summary
We investigate how mapping sea level in the Arctic Ocean can benefit from combining data from three satellite radar altimeters: CryoSat-2, Sentinel-3A and SARAL/AltiKa. A dedicated processing for SARAL/AltiKa provides a baseline for the cross-referencing of CryoSat-2 and Sentinel-3A before mapping. We show that by combining measurements coming from three missions, we are able to increase the resolution of gridded sea level fields in the ice-covered Arctic Ocean.
Jean-François Legeais, Michaël Ablain, Lionel Zawadzki, Hao Zuo, Johnny A. Johannessen, Martin G. Scharffenberg, Luciana Fenoglio-Marc, M. Joana Fernandes, Ole Baltazar Andersen, Sergei Rudenko, Paolo Cipollini, Graham D. Quartly, Marcello Passaro, Anny Cazenave, and Jérôme Benveniste
Earth Syst. Sci. Data, 10, 281–301, https://doi.org/10.5194/essd-10-281-2018, https://doi.org/10.5194/essd-10-281-2018, 2018
Short summary
Short summary
Sea level is one of the best indicators of climate change and has been listed as one of the essential climate variables. Sea level measurements have been provided by satellite altimetry for 25 years, and the Climate Change Initiative (CCI) program of the European Space Agency has given the opportunity to provide a long-term, homogeneous and accurate sea level record. It will help scientists to better understand climate change and its variability.
Graham D. Quartly, Jean-François Legeais, Michaël Ablain, Lionel Zawadzki, M. Joana Fernandes, Sergei Rudenko, Loren Carrère, Pablo Nilo García, Paolo Cipollini, Ole B. Andersen, Jean-Christophe Poisson, Sabrina Mbajon Njiche, Anny Cazenave, and Jérôme Benveniste
Earth Syst. Sci. Data, 9, 557–572, https://doi.org/10.5194/essd-9-557-2017, https://doi.org/10.5194/essd-9-557-2017, 2017
Short summary
Short summary
We have produced an improved monthly record of mean sea level for 1993–2015. It is developed by careful processing of the records from nine satellite altimeter missions, making use of the best available orbits, instrumental corrections and geophysical corrections. This paper details the selection process and the processing method. The data are suitable for investigation of sea level changes at scales from seasonal to long-term sea level rise, including interannual variations due to El Niño.
Antonio Sánchez-Román, Simón Ruiz, Ananda Pascual, Baptiste Mourre, and Stéphanie Guinehut
Ocean Sci., 13, 223–234, https://doi.org/10.5194/os-13-223-2017, https://doi.org/10.5194/os-13-223-2017, 2017
Short summary
Short summary
In this work we investigate the capability of the Argo array in the Mediterranean Sea to capture mesoscale circulation structures (diameter of around 150 km). To do that we conduct several experiments to simulate different spatial sampling configurations of the Argo array in the basin. Results show that the actual Argo array in the Mediterranean (2° × 2°) might be enlarged until a spatial resolution of nearly 75 × 75 km (450 floats) in order to capture the mesoscale signal.
M. Ablain, A. Cazenave, G. Larnicol, M. Balmaseda, P. Cipollini, Y. Faugère, M. J. Fernandes, O. Henry, J. A. Johannessen, P. Knudsen, O. Andersen, J. Legeais, B. Meyssignac, N. Picot, M. Roca, S. Rudenko, M. G. Scharffenberg, D. Stammer, G. Timms, and J. Benveniste
Ocean Sci., 11, 67–82, https://doi.org/10.5194/os-11-67-2015, https://doi.org/10.5194/os-11-67-2015, 2015
Short summary
Short summary
This paper presents various respective data improvements achieved within the European Space Agency (ESA) Climate Change Initiative (ESA CCI) project on sea level during its first phase (2010-2013), using multi-mission satellite altimetry data over the 1993-2010 time span.
J.-F. Legeais, M. Ablain, and S. Thao
Ocean Sci., 10, 893–905, https://doi.org/10.5194/os-10-893-2014, https://doi.org/10.5194/os-10-893-2014, 2014
Related subject area
Approach: Remote Sensing | Depth range: All Depths | Geographical range: All Geographic Regions | Phenomena: Sea Level
Sea level budget over 2005–2013: missing contributions and data errors
H. B. Dieng, A. Cazenave, K. von Schuckmann, M. Ablain, and B. Meyssignac
Ocean Sci., 11, 789–802, https://doi.org/10.5194/os-11-789-2015, https://doi.org/10.5194/os-11-789-2015, 2015
Cited articles
Ablain, M., Cazenave, A., Valladeau, G., and Guinehut, S.: A new assessment of the error budget of global mean sea level rate estimated by satellite altimetry over 1993–2008, Ocean Sci., 5, 193–201, https://doi.org/10.5194/os-5-193-2009, 2009.
Ablain, M., Cazenave, A., Larnicol, G., Balmaseda, M., Cipollini, P., Faugère, Y., Fernandes, M. J., Henry, O., Johannessen, J. A., Knudsen, P., Andersen, O., Legeais, J., Meyssignac, B., Picot, N., Roca, M., Rudenko, S., Scharffenberg, M. G., Stammer, D., Timms, G., and Benveniste, J.: Improved sea level record over the satellite altimetry era (1993–2010) from the Climate Change Initiative project, Ocean Sci., 11, 67–82, https://doi.org/10.5194/os-11-67-2015, 2015.
Arnault, S., Pujol, I., and Mélice, J. L.: In situ validation of Jason-1 and Jason-2 altimetry missions in the tropical Atlantic Ocean, Mar. Geod., 34, 319–339, 2011.
AVISO: Ssalto/Duacs user Handbook: (M)SLA and (M)ADT near-real time and delayed time products, SALP-MU-P-EA-21065-CLS ed. 4.1, 72 pp., 2014.
AVISO: Sea Surface Height from radar altimetry, AVISO SSALTO/DUACS, available at: http://www.aviso.altimetry.fr/en/data/products/ocean-indicators-products/mean-sea-level/processing-corrections.html, last access: 20 November 2015.
Biancale R., Lemoine, J.-M., Balmino, G., Bruinsma, S., Perosanz, F., Marty, J.-C., Loyer, S., Bourgogne, S., and Gégout, P.: 10 years of gravity variations from GRACE and LAGEOS data from CNES/GRGS, available at: http://grgs.obs-mip.fr/grace/variable-models-grace-lageos (last access: 18 June 2015), 2014.
Bonnefond, P., Exertier, P., Laurain, O., Menard, Y., Orsoni, A., Jan, G., and Jeansou, E.: Absolute calibration of Jason-1 and TOPEX/Poseidon altimeters in Corsica. Special Issue on Jason-1 calibration/validation, Mar. Geod., 26, 261–284, 2003.
Carval, T., Keeley, R., Takatsuki, Y., Yoshida, T., Schmid, C., Goldsmith, R., Wong, A., Thresher, A., Tran, A., Loch, S., and Mccreadie, R.: Argo user's manual V3.2., https://doi.org/10.13155/29825, 2015.
Cazenave, A. and Sea Level CCI Team: ESA Sea Level Climate Change Initiative (ESA SL_cci): SEA LEVEL ESSENTIAL CLIMATE VARIABLE PRODUCTS, Version 1.1., December 2014, https://doi.org/10.5270/esa-sea_level_cci-1993_2013-v_1.1-201412, 2014a.
Cazenave, A., Dieng, H., Meyssignac, B., von Schuckmann, K., Decharme, B., and Berthier, E.: The rate of sea level rise, Nature Climate Change, 4, 358–361, https://doi.org/10.1038/NCLIMATE2159, 2014b.
Chambers, D. P., Wahr, J., and Nerem, R. S.: Preliminary observations of global ocean mass variations with GRACE, Geophys. Res. Lett., 31, L13310, https://doi.org/10.1029/2004GL020461, 2004.
Chambers, D. P., Tamisiea, M. E., Nerem, R. S., and Ries, J. C.: Effects of ice melting on GRACE observations of ocean mass trends, Geophys. Res. Lett., 34, L05610, https://doi.org/10.1029/2006GL029171, 2007.
Chambers, D. P., Wahr, J., Tamisiea, M. E., and Nerem, R. S.: Ocean mass from GRACE and glacial isostatic adjustment, J. Geophys. Res., 115, B11415, https://doi.org/10.1029/2010JB007530, 2010.
Chambers, D. P., Cazenave, A., Champollion, N., Dieng, H., Llovel, W., Forsberg, R., Von Schukmann, K., and Wada, Y.: Evaluation of the Global Mean Sea Level Budget between 1993 and 2014, Surv. Geophys., special issue on integrative study of the mean sea level and its components, under review, 2016.
Chen J. L., Wilson, C. R., Chambers, D. P., Nerem, R. S., and Tapley, B. D.: Seasonal Global Water Mass Budget and Mean Sea Level Variations, Geophys. Res. Lett., 25, 3555–3558, 1998.
Couhert, A., Cerri, L., Legeais, J. F., Ablain, M., Zelensky, P., Haines, N. P., Lemoine, B. J., Bertiger, F. G., Desai, D., and Otten, M.: Towards the 1mm/y stability of the radial orbit error at regional scales, Adv. Space Res., https://doi.org/10.1016/j.asr.2014.06.041, online first, 2014.
CORIOLIS: Temperature and Salinity profiles from Argo floats, The CORIOLIS data service consortium, available at: http://www.coriolis.eu.org, last access: 20 November 2015.
Dhomps, A. -L., Guinehut, S., Le Traon, P.-Y., and Larnicol, G.: A global comparison of Argo and satellite altimetry observations, Ocean Sci., 7, 175–183, https://doi.org/10.5194/os-7-175-2011, 2011.
Dieng H. B., Palanisamy, H., Cazenave, A., Meyssignac, B., and von Schuckmann, K.: The Sea Level Budget Since 2003: Inference on the Deep Ocean Heat Content, Sur. Geophys., 36, 209–229, https://doi.org/10.1007/s10712-015-9314-6, 2015a.
Dieng, H. B., Cazenave, A., von Schuckmann, K., Ablain, M., and Meyssignac, B.: Sea level budget over 2005–2013: missing contributions and data errors, Ocean Sci., 11, 789–802, https://doi.org/10.5194/os-11-789-2015, 2015b.
E-AIMS D2.221: deliverable report on deep float experiment design, available at: http://www.euro-argo.eu/content/download/85564/1064777/file/E-AIMS_D2.221.pdf (last access: 24 June 2015), 2013.
England, M. H., McGregor, S.,Spence, P. , Meehl, G. A., Timmermann, A., Cai, W., Sen Gupta, A., McPhaden, M. J., Purich, A., and Santoso, A.: Recent intensification of wind-driven circulation in the pacific and the ongoing warming hiatus, Nature Climate Change, 4, 222–227, 2014.
ESA: The Sea Level Climate Change Initiative (SL_cci) v1.1, Essential Climate Variable Cazenave et al. and Sea Level CCI team, available at: http://www.esa-sealevel-cci.org, last access: 20 November 2015.
Fasullo, J. T., Boening, C., Landerer, F. W., and Nerem, R. S.: Australia's unique influence on global mean sea level in 2010–2011, Geophys. Res. Lett., 40, 4368–4373, https://doi.org/10.1002/grl.50834, 2013.
Fernandes, M. J., Lázaro, C., Ablain, M., and Pires, N.: Improved Wet Path Delays for all ESA and Reference altimetric missions, Remote Sens. Environ., 169, 50–74, 2015.
GCOS: Systematic Observation Requirements For Satellite-Based Data Products for Climate, available at: https://www.wmo.int/pages/prog/gcos/Publications/gcos-154.pdf (last access: 20 November 2015), 2011.
Geruo, A., Wahr, J., and Zhong, S.: Computations of the viscoelastic response of a 3-D compressible Earth to surface loading: an application to Glacial Isostatic Adjustment in Antarctica and Canada, Geophys. J. Int., 192, 557–572, https://doi.org/10.1093/gji/ggs030, 2013.
Guinehut, S., Le Traon, P.-Y., and Larnicol, G.: What can we learn from global altimetry/hydrography comparisons?, Geophys. Res. Lett., 33, L10604, https://doi.org/10.1029/2005GL025551, 2006.
Guinehut S., Coatanoan, C., Dhomps, A.-L., Le Traon, P.-Y., and Larnicol, G.: On the use of satellite altimeter data in Argo quality control, J. Atmos. Ocean. Tech., 26, 395–402, 2009.
Johnson, G. C. and Chambers, D. P.: Ocean bottom pressure seasonal cycles and decadal trends from GRACE Release-05: Ocean circulation implications, J. Geophys. Res.-Oceans, 118, 1–13, https://doi.org/10.1002/jgrc.20307, 2013.
Legeais, J.-F., Ablain, M., and Thao, S.: Evaluation of wet troposphere path delays from atmospheric reanalyses and radiometers and their impact on the altimeter sea level, Ocean Sci., 10, 893–905, https://doi.org/10.5194/os-10-893-2014, 2014.
Legeais J.-F., Guinehut, S., Prandi, P., Ablain, M., and Picot, N.: Analysis of altimetry errors using Argo and GRACE data, Poster presentation, 3658, European Geophysical Union, 2015a.
Legeais J.-F., Guinehut, S., Prandi, P., Ablain, M., and Desjonquères, J.-D.: Analysis of altimetry errors using Argo and GRACE data, Poster presentation, OSTST meeting, availaible at: http://meetings.aviso.altimetry.fr/fileadmin/user_upload/tx_ausyclsseminar/files/Poster_OSTST15_AltimetryErrorsArgoGRACE_Legeais.pdf, last access: 20 November 2015b.
Llovel, W., Willis J. K., Landerer F. W., and Fukumori, I.: Deep-ocean contribution to sea level and energy budget not detectable over the past decade, Nature Climate Change, 4, 1031–1035, https://doi.org/10.1038/NCLIMATE2387, 2014.
Luyten, J. R., Pedlosky, J., and Stommel, H.: The Ventilated Thermocline, J. Phys. Oceanogr., 13, 292–309, https://doi.org/10.1175/1520-0485(1983)013<0292:TVT>2.0.CO;2, 1983.
Mitchum, G. T.: Monitoring the stability of satellite altimeters with tide gauges, J. Atmos. Ocean. Tech., 15, 721–730, 1998.
Mitchum, G. T.: An improved calibration of satellite altimetric heights using tide gauge sea levels with adjustment for land motion, Mar. Geod., 23, 145–166, 2000.
Nerem, R. S., Chambers, D., Choe, C., and Mitchum, G.: Estimating mean sea level change from the TOPEX and Jason altimeter missions, Mar. Geod., 33, 435–446, 2010.
Ollivier A., Faugere, Y., Picot, N., Ablain, M., Femenias, P., and Benveniste, J.: Envisat Ocean Altimeter Becoming Relevant for Mean Sea Level Trend Studies, Mar. Geod., 35, Supplement 1, 118–136, https://doi.org/10.1080/01490419.2012.721632, 2012.
Ponte, R. M., Quinn, K. J., Wunsch, C., and Heimbach, P.: A comparison of model and GRACE estimates of the large-scale seasonal cycle in ocean bottom pressure, Geophys. Res. Lett., 34, L09603, https://doi.org/10.1029/2007GL029599, 2007.
Prandi P., Valladeau, G., Legeais, J. F., Ablain, M., and Picot, N.: Analysis of altimetry errors using in-situ measurements: Tide gauges and Argo profiles, Proceedings of the OSTST meeting, Boulder, available at: http://www.aviso.altimetry.fr/fileadmin/documents/OSTST/2013/oral/prandi_ InSitu_PP.pdf (last access: 20 November 2015), 2013.
Pujol, M.-I., Faugère, Y., Taburet, G., Dupuy, S., Pelloquin, C., Ablain, M., and Picot, N.: DUACS DT2014 : the new multi-mission altimeter dataset reprocessed over 20 years, Ocean Sci. Discuss., https://doi.org/10.5194/os-2015-110, in review, 2016.
Roemmich, D. and Gilson, J.: The 2004–2008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the Argo Program, Prog. Oceanogr., 82, 81–100, 2009.
Roemmich, D. and Team, A. S.: Argo: The Challenge of Continuing 10 Years of Progress, Oceanography, 22, 46–55, 2009.
Rudenko, S., Dettmering, D., Esselborn, S., Schöne, T., Förste, C., Lemoine, J.-M., Ablain, M., Alexandre, D., and Neumayer, K.-H.: Influence of time variable geopotential models on precise orbits of altimetry satellites, global and regional mean sea level trends, Adv. Space Res., 54, 92–118, https://doi.org/10.1016/j.asr.2014.03.010, 2014.
Schaeffer, P., Faugère, Y., Legeais, J. F., Ollivier, A., Guinle, T., and Picot, N.: The CNES-CLS11 Global Mean Sea Surface computed from 16 years of satellite altimeter data, Mar. Geod., 35, 3–19, 2012.
Stammer, D., Ray, R. D., Andersen, O. B., Arbic, B. K., Bosch, W., Carrièe, L., Cheng, Y., Chinn, D. S., Dushaw, B. D., Egbert, G. D., Erofeeva, S. Y., Fok, H. S., Green, J. A. M., Griffiths, S., King, M. A., Lapin, V., Lemoine, F. G., Luthcke, S. B., Lyard, F., Morison, J., Müller, M., Padman, L., Richman, J. G., Shriver, J. F., Shum, C. K., Taguchi, E., and Yi, Y.: Accuracy assessment of global barotropic ocean tide models, Rev. Geophys., 52, 243–282, https://doi.org/10.1002/2014RG000450, 2014.
Swenson, S., Chambers, D., and Wahr, J.: Estimating geocenter variations from a combination of GRACE and ocean model output, J. Geophys. Res., 113, B08410, https://doi.org/10.1029/2007JB005338, 2008.
Tamisiea, M. E. and Mitrovica, J. X.: The moving boundaries of sea level change: Understanding the origins of geographic variability, Oceanography, 24, 24–39, https://doi.org/10.5670/oceanog.2011.25, 2011.
Tapley, B. D., Bettadpur, S., Watkins, M., and Reigber, C.: The gravity recovery and climate experiment: Mission overview and early results, Geophys. Res. Lett., 31, L09607, https://doi.org/10.1029/2004GL019920, 2004.
Taylor, K. E.: Summarizing multiple aspects of model performance in a single diagram, J. Geophys. Res., 106, 7183–7192, https://doi.org/10.1029/2000JD900719, 2001.
Trenberth, K. E. and Fasullo, J. T.: An apparent hiatus in global warming?, Earth's Future, 1, 19–32, https://doi.org/10.1002/2013EF000165, 2013.
Valladeau G., Legeais, J. F., Ablain, M., Guinehut, S., and Picot, N.: Comparing Altimetry with Tide Gauges and Argo Profiling Floats for Data Quality Assessment and Mean Sea Level Studies, Mar. Geod., 35, Supplement 1, 42–60, https://doi.org/10.1080/01490419.2012.718226, 2012.
Watanabe, M., Kamae, Y., Yoshimori, M., Oka, A., Sato, M., Ishii, M., Mochizuki, T., and Kimoto, M.: Strengthening of ocean heat uptake efficiency associated with the recent climate hiatus, Geophys. Res. Lett., 40, 3175–3179, https://doi.org/10.1002/grl.50541, 2013.
Short summary
Sea level is a key indicator of climate change and has been monitored by satellite altimetry for more than 2 decades. The evaluation of the performances of the altimeter missions can be performed by comparison with in situ-independent measurements from Argo profiling floats. This allows for the detection of altimeter drift and the estimation of the impact of a new altimeter standard. This study aims at characterizing the errors of the method thanks to sensitivity analyses to different parameters.
Sea level is a key indicator of climate change and has been monitored by satellite altimetry for...