Articles | Volume 12, issue 2
Ocean Sci., 12, 561–575, 2016
https://doi.org/10.5194/os-12-561-2016
Ocean Sci., 12, 561–575, 2016
https://doi.org/10.5194/os-12-561-2016

Research article 18 Apr 2016

Research article | 18 Apr 2016

Carbon-based phytoplankton size classes retrieved via ocean color estimates of the particle size distribution

Tihomir S. Kostadinov et al.

Related authors

AstroGeoVis v1.0: Astronomical Visualizations and Scientific Computing for Earth Science Education
Tihomir S. Kostadinov
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-12,https://doi.org/10.5194/gmd-2021-12, 2021
Revised manuscript has not been submitted
Short summary
Earth Orbit v2.1: a 3-D visualization and analysis model of Earth's orbit, Milankovitch cycles and insolation
T. S. Kostadinov and R. Gilb
Geosci. Model Dev., 7, 1051–1068, https://doi.org/10.5194/gmd-7-1051-2014,https://doi.org/10.5194/gmd-7-1051-2014, 2014

Related subject area

Depth range: Surface | Approach: Remote Sensing | Geographical range: All Geographic Regions | Phenomena: Biological Processes
Estimation of phytoplankton pigments from ocean-color satellite observations in the Senegalo–Mauritanian region by using an advanced neural classifier
Khalil Yala, N'Dèye Niang, Julien Brajard, Carlos Mejia, Mory Ouattara, Roy El Hourany, Michel Crépon, and Sylvie Thiria
Ocean Sci., 16, 513–533, https://doi.org/10.5194/os-16-513-2020,https://doi.org/10.5194/os-16-513-2020, 2020
Short summary
Ocean colour opportunities from Meteosat Second and Third Generation geostationary platforms
Ewa J. Kwiatkowska, Kevin Ruddick, Didier Ramon, Quinten Vanhellemont, Carsten Brockmann, Carole Lebreton, and Hans G. Bonekamp
Ocean Sci., 12, 703–713, https://doi.org/10.5194/os-12-703-2016,https://doi.org/10.5194/os-12-703-2016, 2016
Short summary
Assessment of MERIS ocean color data products for European seas
G. Zibordi, F. Mélin, J.-F. Berthon, and E. Canuti
Ocean Sci., 9, 521–533, https://doi.org/10.5194/os-9-521-2013,https://doi.org/10.5194/os-9-521-2013, 2013
MERIS-based ocean colour classification with the discrete Forel–Ule scale
M. R. Wernand, A. Hommersom, and H. J. van der Woerd
Ocean Sci., 9, 477–487, https://doi.org/10.5194/os-9-477-2013,https://doi.org/10.5194/os-9-477-2013, 2013
Improvement to the PhytoDOAS method for identification of coccolithophores using hyper-spectral satellite data
A. Sadeghi, T. Dinter, M. Vountas, B. B. Taylor, M. Altenburg-Soppa, I. Peeken, and A. Bracher
Ocean Sci., 8, 1055–1070, https://doi.org/10.5194/os-8-1055-2012,https://doi.org/10.5194/os-8-1055-2012, 2012

Cited articles

Agawin, N. S. R., Duarte, C. M., and Agusti, S.: Nutrient and temperature control of the contribution of picoplankton to phytoplankton biomass and production, Limnol. Oceanogr., 45, 591–600, 2000.
Alvain, S., Moulin, C., Dandonneau, Y., and Loisel, H.: Seasonal distribution and succession of dominant phytoplankton groups in the global ocean: A satellite view, Global Biogeochem. Cy., 22, GB3001, https://doi.org/10.1029/2007GB003154, 2008.
Antoine, D., André, J. M., and Morel, A.: Oceanic primary production 2. Estimation at global scale from satellite (coastal zone color scanner) chlorophyll, Global Biogeochem. Cy., 10, 57–69, 1996.
Behrenfeld, M. J. and Falkowski, P. G.: A consumer's guide to phytoplankton primary productivity models, Limnol. Oceanogr., 42, 1479–1491, 1997a.
Behrenfeld, M. J. and Falkowski, P. G.: Photosynthetic rates derived from satellite-based chlorophyll concentration, Limnol. Oceanogr., 42, 1–20, 1997b.
Download
Short summary
Recent advances in ocean color remote sensing have allowed the quantification of the particle size distribution (and thus volume) of suspended particles in surface waters, using their backscattering signature. Here, we leverage these developments and use volume-to-carbon allometric relationships to quantify phytoplankton carbon globally using SeaWiFS ocean color data. Phytoplankton carbon concentrations are partitioned among three size classes: picoplankton, nanoplankton and microplankton.