Articles | Volume 12, issue 2
https://doi.org/10.5194/os-12-561-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/os-12-561-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Carbon-based phytoplankton size classes retrieved via ocean color estimates of the particle size distribution
Tihomir S. Kostadinov
CORRESPONDING AUTHOR
Department of Geography and the Environment, 28 Westhampton Way,
University of Richmond, Richmond, VA 23173, USA
Svetlana Milutinović
Department of Earth & Environmental Science, Hayden Hall, University
of Pennsylvania, 240 South 33rd St., Philadelphia, PA 19104, USA
Irina Marinov
Department of Earth & Environmental Science, Hayden Hall, University
of Pennsylvania, 240 South 33rd St., Philadelphia, PA 19104, USA
Anna Cabré
Department of Earth & Environmental Science, Hayden Hall, University
of Pennsylvania, 240 South 33rd St., Philadelphia, PA 19104, USA
Related authors
Tihomir S. Kostadinov, Lisl Robertson Lain, Christina Eunjin Kong, Xiaodong Zhang, Stéphane Maritorena, Stewart Bernard, Hubert Loisel, Daniel S. F. Jorge, Ekaterina Kochetkova, Shovonlal Roy, Bror Jonsson, Victor Martinez-Vicente, and Shubha Sathyendranath
Ocean Sci., 19, 703–727, https://doi.org/10.5194/os-19-703-2023, https://doi.org/10.5194/os-19-703-2023, 2023
Short summary
Short summary
We present a remote sensing algorithm to estimate the size distribution of particles suspended in natural near-surface ocean water using ocean color data. The algorithm can be used to estimate the abundance and carbon content of phytoplankton, photosynthesizing microorganisms that are at the basis of the marine food web and play an important role in Earth’s carbon cycle and climate. A merged, multi-sensor satellite data set and the model scientific code are provided.
Tihomir S. Kostadinov
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-12, https://doi.org/10.5194/gmd-2021-12, 2021
Preprint withdrawn
Short summary
Short summary
Here, I introduce and describe AstroGeoVis v1.0: open-source software that calculates the position of the Sun in the sky and produces astronomical visualizations relevant to the Earth and climate sciences. The code also calculates the amount of solar energy falling on a tilted flat solar panel. The code and the dynamically generated figures are intended for educational applications, in a wide variety of fields and levels; research use is also envisioned.
T. S. Kostadinov and R. Gilb
Geosci. Model Dev., 7, 1051–1068, https://doi.org/10.5194/gmd-7-1051-2014, https://doi.org/10.5194/gmd-7-1051-2014, 2014
Tihomir S. Kostadinov, Lisl Robertson Lain, Christina Eunjin Kong, Xiaodong Zhang, Stéphane Maritorena, Stewart Bernard, Hubert Loisel, Daniel S. F. Jorge, Ekaterina Kochetkova, Shovonlal Roy, Bror Jonsson, Victor Martinez-Vicente, and Shubha Sathyendranath
Ocean Sci., 19, 703–727, https://doi.org/10.5194/os-19-703-2023, https://doi.org/10.5194/os-19-703-2023, 2023
Short summary
Short summary
We present a remote sensing algorithm to estimate the size distribution of particles suspended in natural near-surface ocean water using ocean color data. The algorithm can be used to estimate the abundance and carbon content of phytoplankton, photosynthesizing microorganisms that are at the basis of the marine food web and play an important role in Earth’s carbon cycle and climate. A merged, multi-sensor satellite data set and the model scientific code are provided.
Tihomir S. Kostadinov
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-12, https://doi.org/10.5194/gmd-2021-12, 2021
Preprint withdrawn
Short summary
Short summary
Here, I introduce and describe AstroGeoVis v1.0: open-source software that calculates the position of the Sun in the sky and produces astronomical visualizations relevant to the Earth and climate sciences. The code also calculates the amount of solar energy falling on a tilted flat solar panel. The code and the dynamically generated figures are intended for educational applications, in a wide variety of fields and levels; research use is also envisioned.
S. Leung, A. Cabré, and I. Marinov
Biogeosciences, 12, 5715–5734, https://doi.org/10.5194/bg-12-5715-2015, https://doi.org/10.5194/bg-12-5715-2015, 2015
Short summary
Short summary
Using the latest earth system models, we find that shifts in nutrient and light availability with future climate warming drive latitudinally banded changes in Southern Ocean phytoplankton distributions, which have the potential to significantly alter nutrient cycling as well as higher trophic level productivity throughout the global ocean. Spatial patterns in the modelled mechanisms driving these predicted phytoplankton trends qualitatively agree with recent observations.
A. Cabré, I. Marinov, R. Bernardello, and D. Bianchi
Biogeosciences, 12, 5429–5454, https://doi.org/10.5194/bg-12-5429-2015, https://doi.org/10.5194/bg-12-5429-2015, 2015
Short summary
Short summary
We analyze simulations of the Pacific Ocean oxygen minimum zones (OMZs) from 11 Earth system model contributions to the Coupled Model Intercomparison Project Phase 5, focusing on the mean state, climate change projections, and interannual variability. We analyse biases with respect to observations and consistency of results across simulations.
T. S. Kostadinov and R. Gilb
Geosci. Model Dev., 7, 1051–1068, https://doi.org/10.5194/gmd-7-1051-2014, https://doi.org/10.5194/gmd-7-1051-2014, 2014
Related subject area
Approach: Remote Sensing | Depth range: Surface | Geographical range: All Geographic Regions | Phenomena: Biological Processes
Estimation of phytoplankton pigments from ocean-color satellite observations in the Senegalo–Mauritanian region by using an advanced neural classifier
Ocean colour opportunities from Meteosat Second and Third Generation geostationary platforms
Assessment of MERIS ocean color data products for European seas
MERIS-based ocean colour classification with the discrete Forel–Ule scale
Improvement to the PhytoDOAS method for identification of coccolithophores using hyper-spectral satellite data
Comparison of global ocean colour data records
Khalil Yala, N'Dèye Niang, Julien Brajard, Carlos Mejia, Mory Ouattara, Roy El Hourany, Michel Crépon, and Sylvie Thiria
Ocean Sci., 16, 513–533, https://doi.org/10.5194/os-16-513-2020, https://doi.org/10.5194/os-16-513-2020, 2020
Short summary
Short summary
The paper is a contribution to the study of phytoplankton pigment climatology from satellite ocean-color observations in the Senegalo–Mauritanian upwelling, which is a very productive region where in situ observations are lacking. We processed the satellite data with an efficient new neural network classifier. We were able to provide the climatological cycle of diatoms. This study may have an economic impact on fisheries thanks to better knowledge of phytoplankton dynamics.
Ewa J. Kwiatkowska, Kevin Ruddick, Didier Ramon, Quinten Vanhellemont, Carsten Brockmann, Carole Lebreton, and Hans G. Bonekamp
Ocean Sci., 12, 703–713, https://doi.org/10.5194/os-12-703-2016, https://doi.org/10.5194/os-12-703-2016, 2016
Short summary
Short summary
Copernicus operational services include ocean colour applications from medium-resolution polar-orbiting satellite sensors. The goal is to satisfy EU reporting on the quality of marine, coastal and inland waters, as well as to support climate, fisheries, environmental monitoring, and sediment transport applications. Ocean colour data from polar platforms, however, suffer from fractional coverage. This effort is in developing water turbidity services from Meteosat geostationary instruments.
G. Zibordi, F. Mélin, J.-F. Berthon, and E. Canuti
Ocean Sci., 9, 521–533, https://doi.org/10.5194/os-9-521-2013, https://doi.org/10.5194/os-9-521-2013, 2013
M. R. Wernand, A. Hommersom, and H. J. van der Woerd
Ocean Sci., 9, 477–487, https://doi.org/10.5194/os-9-477-2013, https://doi.org/10.5194/os-9-477-2013, 2013
A. Sadeghi, T. Dinter, M. Vountas, B. B. Taylor, M. Altenburg-Soppa, I. Peeken, and A. Bracher
Ocean Sci., 8, 1055–1070, https://doi.org/10.5194/os-8-1055-2012, https://doi.org/10.5194/os-8-1055-2012, 2012
S. Djavidnia, F. Mélin, and N. Hoepffner
Ocean Sci., 6, 61–76, https://doi.org/10.5194/os-6-61-2010, https://doi.org/10.5194/os-6-61-2010, 2010
Cited articles
Agawin, N. S. R., Duarte, C. M., and Agusti, S.: Nutrient and temperature control of the contribution of picoplankton to phytoplankton biomass and production, Limnol. Oceanogr., 45, 591–600, 2000.
Alvain, S., Moulin, C., Dandonneau, Y., and Loisel, H.: Seasonal distribution and succession of dominant phytoplankton groups in the global ocean: A satellite view, Global Biogeochem. Cy., 22, GB3001, https://doi.org/10.1029/2007GB003154, 2008.
Antoine, D., André, J. M., and Morel, A.: Oceanic primary production 2. Estimation at global scale from satellite (coastal zone color scanner) chlorophyll, Global Biogeochem. Cy., 10, 57–69, 1996.
Behrenfeld, M. J. and Falkowski, P. G.: A consumer's guide to phytoplankton primary productivity models, Limnol. Oceanogr., 42, 1479–1491, 1997a.
Behrenfeld, M. J. and Falkowski, P. G.: Photosynthetic rates derived from satellite-based chlorophyll concentration, Limnol. Oceanogr., 42, 1–20, 1997b.
Behrenfeld, M. J., Boss, E., Siegel, D. A., and Shea, D. M.: Carbon-based ocean productivity and phytoplankton physiology from space, Global Biogeochem. Cy., 19, GB1006, https://doi.org/10.1029/2004GB002299, 2005.
Behrenfeld, M. J., O'Malley, R. T., Siegel, D. A., McClain, C. R., Sarmiento, J. L., Feldman, G. C., Milligan, A. J., Falkowski, P. G., Letelier, R. M., and Boss, E. S.: Climate-driven trends in contemporary ocean productivity, Nature, 444, 752–755, 2006.
Boss, E., Twardowski, M. S., and Herring, S.: The shape of the particulate beam attenuation spectrum and its relation to the size distribution of oceanic particles, Appl. Optics, 40, 4885–4893, 2001.
Bracher, A., Vountas, M., Dinter, T., Burrows, J. P., Röttgers, R., and Peeken, I.: Quantitative observation of cyanobacteria and diatoms from space using PhytoDOAS on SCIAMACHY data, Biogeosciences, 6, 751–764, https://doi.org/10.5194/bg-6-751-2009, 2009.
Brewin, R. J. W., Sathyendranath, S., Hirata, T., Lavender, S. J., Barciela, R., and Hardman-Mountford, N. J.: A three-component model of phytoplankton size class for the Atlantic Ocean, Ecol. Model., 221, 1472–1483, 2010.
Cabré, A., Marinov, I., and Leung, S.: Consistent global responses of marine ecosystems to future climate change across the IPCC AR5 earth system models, Clim. Dynam., 1–28, https://doi.org/10.1007/s00382-014-2374-3, 2014.
Carr, M.-E., Marjorie, A. M., Friedrichs, M., Schmeltz, M., Aita, N., Antoine, D., Arrigo, K. R., Asanuma, I., Aumont, O., Barber, R., Behrenfeld, M., Bidigare, R., Buitenhuis, E. T., Campbell, J., Ciotti, A., Dierssen, H., Dowell, M., Dunne, J., Esaias, W., Gentili, B., Gregg, W., Groom, S., Hoepffner, N., Ishizaka, J., Kameda, T., Le Quéré, C., Lohrenz, S., Marra, J., Mélin, F., Moore, K., Morel, A., Reddy, T. E., Ryan, J., Scardi, M., Smyth, T., Turpie, K., Tilstone, G., Waters, K., and Yamanaka, Y.: A comparison of global estimates of marine primary production from ocean color, Deep-Sea Res. Pt II, 53, 741–770, https://doi.org/10.1016/j.dsr2.2006.01.028, 2006.
Chisholm, S. W.: Phytoplankton Size, in: Primary productivity and biogeochemical cycles in the sea, edited by: Falkowski, P. G. and Woodhead, A. D., Plenum Press, New York, USA, 213–237, 1992.
Ciotti, A. and Bricaud, A.: Retrievals of a size parameter for phytoplankton and spectral light absorption by colored detrital matter from water-leaving radiances at SeaWiFS channels in a continental shelf region off Brazil, Limnol. Oceanogr.-Meth., 4, 237–253, 2006.
Dugdale, R. C. and Wilkerson, F. P.: Low specific nitrate uptake rate: A common feature of high-nutrient, low-chlorophyll marine ecosystems, Limnol. Oceanogr., 36, 1678–1688, 1991.
Dunne, J. P., John, J. G., Shevliakova, E., Stouffer, R. J., Krasting, J. P., Malyshev, S. L., Milly, P. C. D., Sentman, L. T., Adcroft, A. J., Cooke, W., Dunne, K. A., Griffies, S. M., Hallberg, R. W., Harrison, M. J., Levy, H., Wittenberg, A. T., Phillips, P. J., and Zadeh, N.: GFDL's ESM2 Global Coupled Climate-Carbon Earth System Models. Part II: Carbon System Formulation and Baseline Simulation Characteristics, J. Climate, 26, 2247–2267, https://doi.org/10.1175/jcli-d-12-00150.1, 2013.
DuRand, M. D., Olson, R. J., and Chisholm, S. W.: Phytoplankton population dynamics at the Bermuda Atlantic Time-series station in the Sargasso Sea, Deep-Sea Res. Pt. II, 48, 1983–2003, 2001.
Eppley, R. W. and Peterson, B. J.: Particulate organic matter flux and planktonic new production in the deep ocean, Nature, 282, 677–680, 1979.
Eppley, R. W., Chavez, F. P., and Barber, R. T.: Standing stocks of particulate carbon and nitrogen in the equatorial Pacific at 150° W, J. Geophys. Res.-Oceans, 97, 655–661, 1992.
Falkowski, P. G. and Oliver, M. J.: Mix and match: how climate selects phytoplankton, Nat. Rev. Microbiol., 5, 813–819, 2007.
Falkowski, P. G., Barber, R. T., and Smetacek, V.: Biogeochemical Controls and Feedbacks on Ocean Primary Production, Science, 281, 200–206, 1998.
Fay, A. R. and McKinley, G. A.: Global open-ocean biomes: mean and temporal variability, Earth Syst. Sci. Data, 6, 273–284, https://doi.org/10.5194/essd-6-273-2014, 2014.
Field, C. B., Behrenfeld, M. J., Randerson, J. T., and Falkowski, P.: Primary production of the biosphere: integrating terrestrial and oceanic components, Science, 281, 237–240, 1998.
Fujiwara, A., Hirawake, T., Suzuki, K., and Saitoh, S.-I.: Remote sensing of size structure of phytoplankton communities using optical properties of the Chukchi and Bering Sea shelf region, Biogeosciences, 8, 3567–3580, https://doi.org/10.5194/bg-8-3567-2011, 2011.
Geider, R. J.: Light and Temperature Dependence of the Carbon to Chlorophyll a Ratio in Microalgae and Cyanobacteria: Implications for Physiology and Growth of Phytoplankton, New Phytol., 106, 1–34, 1987.
Geider, R. J., MacIntyre, H. L., and Kana, T. M.: A dynamic regulatory model of phytoplanktonic acclimation to light, nutrients, and temperature, Limnol. Oceanogr., 43, 679–694, 1998.
Graff, J. R., Milligan, A. J., and Behrenfeld, M. J.: The measurement of phytoplankton biomass using flow-cytometric sorting and elemental analysis of carbon, Limnol. Oceanogr.-Meth., 10, 910–920, 2012.
Graff, J. R., Westberry, T. K., Milligan, A. J., Brown, M. B., Dall'Olmo, G., van Dongen-Vogels, V., Reifel, K. M., and Behrenfeld, M. J.: Analytical phytoplankton carbon measurements spanning diverse ecosystems, Deep-Sea Res. Pt. I, 102, 16–25, 2015.
Gregg, W. W.: Assimilation of SeaWiFS ocean chlorophyll data into a three-dimensional global ocean model, J. Marine Syst., 69, 205–225, https://doi.org/10.1016/j.jmarsys.2006.02.015, 2008.
Gregg, W. W., Casey, N. W., O'Reilly, J. E., and Esaias, W. E.: An empirical approach to ocean color data: Reducing bias and the need for post-launch radiometric re-calibration, Remote Sens. Environ., 113, 1598–1612, 2009.
Gundersen, K., Orcutt, K. M., Purdie, D. A., Michaels, A. F., and Knap, A. H.: Particulate organic carbon mass distribution at the Bermuda Atlantic Time-series Study (BATS) site, Deep-Sea Res. Pt. II, 48, 1697–1718, 2001.
Hirata, T.: Satellite Phytoplankton Functional Type Algorithm Intercomparison Project, available at: http://pft.ees.hokudai.ac.jp/satellite/index.shtml, last access: 11 March 2015.
Hirata, T., Hardman-Mountford, N. J., Brewin, R. J. W., Aiken, J., Barlow, R., Suzuki, K., Isada, T., Howell, E., Hashioka, T., Noguchi-Aita, M., and Yamanaka, Y.: Synoptic relationships between surface Chlorophyll-a and diagnostic pigments specific to phytoplankton functional types, Biogeosciences, 8, 311–327, https://doi.org/10.5194/bg-8-311-2011, 2011.
Hirata, T., Hardman-Mountford, N., and Brewin, R. J. W.: Comparing satellite-based phytoplankton classification methods, Eos Trans. AGU, 93, 2012.
IOCCG: Phytoplankton Functional Types from Space, edited by: Sathyendranath, S., Reports of the International Ocean-Colour Coordinating Group, No. 15, IOCCG, Dartmouth, Canada, 2014
Jennings, B. R. and Parslow, K.: Particle Size Measurement: The Equivalent Spherical Diameter, Proc. R. Soc. Lon. Ser.-A, 419, 137–149, 1988.
Junge, C. E.: Air Chemistry and Radioactivity, Academic Press Inc., New York, USA, and London, UK, 382 pp., 1963.
Kostadinov, T. S.: Satellite retrieval of phytoplankton functional types and carbon via the particle size distribution, PhD dissertation, University of California, Santa Barbara, CA, USA, 2009.
Kostadinov, T. S., Siegel, D. A., Maritorena, S., and Guillocheau, N.: Ocean color observations and modeling for an optically complex site: Santa Barbara Channel, California, USA, J. Geophys. Res. 112, C07011, https://doi.org/10.1029/2006JC003526, 2007.
Kostadinov, T. S., Siegel, D. A., and Maritorena, S.: Retrieval of the particle size distribution from satellite ocean color observations, J. Geophys. Res.-Oceans, 114, C09015, https://doi.org/10.1029/2009JC005303, 2009.
Kostadinov, T. S., Siegel, D. A., and Maritorena, S.: Global variability of phytoplankton functional types from space: assessment via the particle size distribution, Biogeosciences, 7, 3239–3257, https://doi.org/10.5194/bg-7-3239-2010, 2010.
Kostadinov, T. S., Siegel, D. A., Maritorena, S., and Guillocheau, N.: Optical assessment of particle size and composition in the Santa Barbara Channel, California, Appl. Optics, 51, 3171–3189, 2012.
Kostadinov, T. S., Cabré, A., Vedantham, H., Marinov, I., Bracher, A., Brewin, R., Bricaud, A., Hirata, T., Hirawake, T., Hardman-Mountford, N., Mouw, C., Roy, S., and Uitz, J. Inter-Comparison of Phytoplankton Functional Types Derived from Ocean Color Algorithms and Earth System Models: Phenology, Remote Sens. Environ., submitted, 2016a.
Kostadinov, T. S., Milutinovic, S., Marinov, I., and Cabré, A.: Size-partitioned phytoplankton carbon concentrations retrieved from ocean color data, links to data in netCDF format, https://doi.org/10.1594/PANGAEA.859005, 2016b.
Le Quéré, C., Harrison, S. P., Prentice, I. C., Buitenhuis, E. T., Aumont, O., Bopp, L., Claustre, H., Cunha, L. C. D., Geider, R., Giraud, X., Klaas, C., Kohfeld, K. E., Legendre, L., Manizza, M., Platt, T., Rivkin, R. B., Sathyendranath, S., Uitz, J., Watson, A. J., and Wolf-Gladrow, D.: Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models, Glob. Change Biol., 11, 2016–2040, 2005.
Loisel, H. and Stramski, D.: Estimation of the inherent optical properties of natural waters from irradiance attenuation coefficient and reflectance in the presence of Raman scattering, Appl. Optics., 39, 3001–3011, 2000.
Loisel, H., Nicolas, J.-M., Sciandra, A, Stramski, D., and Poteau, A.: Spectral dependency of optical backscattering by marine particles from satellite remote sensing of the global ocean, J. Geophys. Res., 111, C09024, https://doi.org/10.1029/2005JC003367, 2006.
Longhurst, A. R.: Ecological Geography of the Sea, 2nd ed., Academic Press, Burlington, USA, 560 pp., 2007.
Marañon, E.: Cell Size as a Key Determinant of Phytoplankton Metabolism and Community Structure, Annu. Rev. Mar. Sci., 7, 241–264, https://doi.org/10.1146/annurev-marine-010814-015955, 2015.
Marinov, I., Doney, S., Lima, I., Lindsey, K., Moore, K. and Mahowald, N.: North-South asymmetry in the modeled phytoplankton community response to climate change over the 21st century, Global Biogeochem. Cyc., 27, 1274–1290, https://doi.org/10.1002/2013GB004599, 2013.
Maritorena, S., Siegel, D. A., and Peterson, A. R.: Optimization of a semianalytical ocean color model for global-scale applications, Appl. Optics, 41, 2705–2714, 2002.
Menden-Deuer, S. and Lessard, E.: Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton, Limnol. Oceanogr., 45, 569–579, 2000.
Mie, G.: Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen, Annalen der Physik, 330, 377–445, 1908.
Mouw, C. B. and Yoder, J. A.: Optical determination of phytoplankton size composition from global SeaWiFS imagery, J. Geophys. Res.-Oceans, 115, C12018, https://doi.org/10.1029/2010JC006337, 2010.
NASA Goddard Space Flight Center: Ocean Biology Distributed Active Archive Center, Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Ocean Color Data, NASA OB.DAAC, Greenbelt, MD, USA, Reprocessing R2010.0, last access: 30 January 2012, Maintained by NASA Ocean Biology Distributed Active Archive Center (OB.DAAC), Goddard Space Flight Center, Greenbelt MD, 2010.
O'Reilly, J. E., Maritorena, S., Mitchell, B. G., Siegel, D. A., Carder, K. L., Garver, S. A., Kahru, M., and McClain, C. R.: Ocean color chlorophyll algorithms for SeaWiFS, J. Geophys. Res., 103, 24937–24953, 1998.
Otero, M. and Siegel, D. A.: Spatial and temporal characteristics of sediment plumes and phytoplankton blooms in the Santa Barbara Channel, Deep-Sea Res. Pt. II, 51, 1129–1149, 2004.
Oubelkheir, K. J., Claustre, H., Sciandra, A., and Babin, M.: Bio-optical and biogeochemical properties of different trophic regimes in oceanic waters, Limnol. Oceanogr., 50, 1795–1809, 2005.
Raitsos, D. E., Lavender, S. J., Maravelias, C. D., Haralabous, J., Richardson, A. J., and Reid, P.: Identifying four phytoplankton functional types from space: An ecological approach, Limnol. Oceanogr., 53, 605–613, 2008.
Reynolds, R. A., Stramski, D., Wright, V. M., and Woźniak, S. B.: Measurements and characterization of particle size distributions in coastal waters, J. Geophys. Res., 115, C08024, https://doi.org/10.1029/2009JC005930, 2010.
Roy, S., Sathyendranath, S., Bouman, H., and Platt, T.: The global distribution of phytoplankton size spectrum and size classes from their light-absorption spectra derived from satellite data, Remote Sens. Environ., 139, 185–197, 2013.
Sathyendranath, S.: General Introduction, in: Remote Sensing of Ocean Colour in Coastal, and Other Optically-Complex, Waters, edited by: Sathyendranath, S., International Ocean-Colour Coordinating Group, Dartmouth, Canada, 5–21, 2000.
Sieburth, J. M., Smetacek, V., and Lenz, J.: Pelagic ecosystem structure: heterotrophic compartments of the plankton and their relationship to plankton size fractions, Limnol. Oceanogr., 23, 1256–1263, 1978.
Siegel, D. A., Behrenfeld, M. J., Maritorena, S., McClain, C. R., Antoine, D., Bailey, S. W., Bontempi, P. S., Boss, E. S., Dierssen, H. M., Doney, S. C., Eplee Jr., R. E., Evans, R. H., Feldman, G. C., Fields, E., Franz, B. A., Kuring, N. A., Mengelt, C., Nelson, N. B., Patt, F. S., Robinson, W. D., Sarmiento, J. L., Swan, C. M., Werdell, P. J., Westberry, T. K., Wilding, J. G., and Yoder, J. A.: Regional to global assessments of phytoplankton dynamics from the SeaWiFS mission, Remote Sens. Environ., 135, 77–91, 2013.
Siegel, D. A., Buesseler, K. O., Doney, S. C., Sailley, S. F., Behrenfeld, M. J., and Boyd, P. W.: Global assessment of ocean carbon export by combining satellite observations and food-web models, Global Biogeochem. Cy., 28, 181–196, https://doi.org/10.1002/2013GB004743, 2014.
Stramski, D. and Kiefer, D. A.: Light scattering by microorganisms in the open ocean, Prog. Oceanogr., 28, 343–383, 1991.
Stramski, D., Reynolds, R. A., Babin, M., Kaczmarek, S., Lewis, M. R., Röttgers, R., Sciandra, A., Stramska, M., Twardowski, M. S., Franz, B. A., and Claustre, H.: Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans, Biogeosciences, 5, 171–201, https://doi.org/10.5194/bg-5-171-2008, 2008.
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An overview of CMIP5 and the experiment design, B. Am. Meteorol. Soc., 93, 485–498, https://doi.org/10.1175/bams-d-11-00094.1, 2012.
Toole, D. A. and Siegel, D. A.: Modes and mechanisms of ocean color variability in the Santa Barbara Channel, J. Geophys. Res., 160, 26985–27000, 2001.
Uitz, J., Claustre, H., Morel, A., and Hooker, S. B.: Vertical distribution of phytoplankton communities in open ocean: An assessment based on surface chlorophyll, J. Geophys. Res.-Oceans, 111, 2006.
Uitz, J., Claustre, H., Gentili, B., and Stramski, D.: Phytoplankton class specific primary production in the world's oceans: Seasonal and interannual variability from satellite observations, Global Biogeochem. Cy., 24, GB3016, https://doi.org/10.1029/2009GB003680, 2010.
Werdell, P. J., Bailey, S. W., Fargion, G. S., Pietras, C., Knobelspiesse, K. D., Feldman, G. C., and McClain C. R.: Unique data repository facilitates ocean color satellite validation, EOS Trans. AGU, 84, 377, 2003.
Westberry, T., Behrenfeld, M. J., Siegel, D. A., and Boss, E.: Carbon-based primary productivity modeling with vertically resolved photoacclimation, Global Biogeochem. Cy., 22, GB2024, https://doi.org/10.1029/2007GB003078, 2008.
Short summary
Recent advances in ocean color remote sensing have allowed the quantification of the particle size distribution (and thus volume) of suspended particles in surface waters, using their backscattering signature. Here, we leverage these developments and use volume-to-carbon allometric relationships to quantify phytoplankton carbon globally using SeaWiFS ocean color data. Phytoplankton carbon concentrations are partitioned among three size classes: picoplankton, nanoplankton and microplankton.
Recent advances in ocean color remote sensing have allowed the quantification of the particle...