Articles | Volume 12, issue 2
https://doi.org/10.5194/os-12-561-2016
https://doi.org/10.5194/os-12-561-2016
Research article
 | 
18 Apr 2016
Research article |  | 18 Apr 2016

Carbon-based phytoplankton size classes retrieved via ocean color estimates of the particle size distribution

Tihomir S. Kostadinov, Svetlana Milutinović, Irina Marinov, and Anna Cabré

Related authors

Ocean color algorithm for the retrieval of the particle size distribution and carbon-based phytoplankton size classes using a two-component coated-sphere backscattering model
Tihomir S. Kostadinov, Lisl Robertson Lain, Christina Eunjin Kong, Xiaodong Zhang, Stéphane Maritorena, Stewart Bernard, Hubert Loisel, Daniel S. F. Jorge, Ekaterina Kochetkova, Shovonlal Roy, Bror Jonsson, Victor Martinez-Vicente, and Shubha Sathyendranath
Ocean Sci., 19, 703–727, https://doi.org/10.5194/os-19-703-2023,https://doi.org/10.5194/os-19-703-2023, 2023
Short summary
AstroGeoVis v1.0: Astronomical Visualizations and Scientific Computing for Earth Science Education
Tihomir S. Kostadinov
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-12,https://doi.org/10.5194/gmd-2021-12, 2021
Preprint withdrawn
Short summary
Earth Orbit v2.1: a 3-D visualization and analysis model of Earth's orbit, Milankovitch cycles and insolation
T. S. Kostadinov and R. Gilb
Geosci. Model Dev., 7, 1051–1068, https://doi.org/10.5194/gmd-7-1051-2014,https://doi.org/10.5194/gmd-7-1051-2014, 2014

Related subject area

Approach: Remote Sensing | Depth range: Surface | Geographical range: All Geographic Regions | Phenomena: Biological Processes
Estimation of phytoplankton pigments from ocean-color satellite observations in the Senegalo–Mauritanian region by using an advanced neural classifier
Khalil Yala, N'Dèye Niang, Julien Brajard, Carlos Mejia, Mory Ouattara, Roy El Hourany, Michel Crépon, and Sylvie Thiria
Ocean Sci., 16, 513–533, https://doi.org/10.5194/os-16-513-2020,https://doi.org/10.5194/os-16-513-2020, 2020
Short summary
Ocean colour opportunities from Meteosat Second and Third Generation geostationary platforms
Ewa J. Kwiatkowska, Kevin Ruddick, Didier Ramon, Quinten Vanhellemont, Carsten Brockmann, Carole Lebreton, and Hans G. Bonekamp
Ocean Sci., 12, 703–713, https://doi.org/10.5194/os-12-703-2016,https://doi.org/10.5194/os-12-703-2016, 2016
Short summary
Assessment of MERIS ocean color data products for European seas
G. Zibordi, F. Mélin, J.-F. Berthon, and E. Canuti
Ocean Sci., 9, 521–533, https://doi.org/10.5194/os-9-521-2013,https://doi.org/10.5194/os-9-521-2013, 2013
MERIS-based ocean colour classification with the discrete Forel–Ule scale
M. R. Wernand, A. Hommersom, and H. J. van der Woerd
Ocean Sci., 9, 477–487, https://doi.org/10.5194/os-9-477-2013,https://doi.org/10.5194/os-9-477-2013, 2013
Improvement to the PhytoDOAS method for identification of coccolithophores using hyper-spectral satellite data
A. Sadeghi, T. Dinter, M. Vountas, B. B. Taylor, M. Altenburg-Soppa, I. Peeken, and A. Bracher
Ocean Sci., 8, 1055–1070, https://doi.org/10.5194/os-8-1055-2012,https://doi.org/10.5194/os-8-1055-2012, 2012

Cited articles

Agawin, N. S. R., Duarte, C. M., and Agusti, S.: Nutrient and temperature control of the contribution of picoplankton to phytoplankton biomass and production, Limnol. Oceanogr., 45, 591–600, 2000.
Alvain, S., Moulin, C., Dandonneau, Y., and Loisel, H.: Seasonal distribution and succession of dominant phytoplankton groups in the global ocean: A satellite view, Global Biogeochem. Cy., 22, GB3001, https://doi.org/10.1029/2007GB003154, 2008.
Antoine, D., André, J. M., and Morel, A.: Oceanic primary production 2. Estimation at global scale from satellite (coastal zone color scanner) chlorophyll, Global Biogeochem. Cy., 10, 57–69, 1996.
Behrenfeld, M. J. and Falkowski, P. G.: A consumer's guide to phytoplankton primary productivity models, Limnol. Oceanogr., 42, 1479–1491, 1997a.
Behrenfeld, M. J. and Falkowski, P. G.: Photosynthetic rates derived from satellite-based chlorophyll concentration, Limnol. Oceanogr., 42, 1–20, 1997b.
Download
Short summary
Recent advances in ocean color remote sensing have allowed the quantification of the particle size distribution (and thus volume) of suspended particles in surface waters, using their backscattering signature. Here, we leverage these developments and use volume-to-carbon allometric relationships to quantify phytoplankton carbon globally using SeaWiFS ocean color data. Phytoplankton carbon concentrations are partitioned among three size classes: picoplankton, nanoplankton and microplankton.