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1Department of Geography and the Environment, 28 Westhampton Way, University of Richmond, Richmond, VA 23173, USA
2Department of Earth & Environmental Science, Hayden Hall, University of Pennsylvania,

240 South 33rd St., Philadelphia, PA 19104, USA

Correspondence to: Tihomir S. Kostadinov (kostadinov.t@gmail.com)

Received: 12 March 2015 – Published in Ocean Sci. Discuss.: 6 May 2015

Revised: 16 March 2016 – Accepted: 30 March 2016 – Published: 18 April 2016

Abstract. Owing to their important roles in biogeochemi-

cal cycles, phytoplankton functional types (PFTs) have been

the aim of an increasing number of ocean color algorithms.

Yet, none of the existing methods are based on phytoplankton

carbon (C) biomass, which is a fundamental biogeochemical

and ecological variable and the “unit of accounting” in Earth

system models. We present a novel bio-optical algorithm to

retrieve size-partitioned phytoplankton carbon from ocean

color satellite data. The algorithm is based on existing meth-

ods to estimate particle volume from a power-law particle

size distribution (PSD). Volume is converted to carbon con-

centrations using a compilation of allometric relationships.

We quantify absolute and fractional biomass in three PFTs

based on size – picophytoplankton (0.5–2 µm in diameter),

nanophytoplankton (2–20 µm) and microphytoplankton (20–

50 µm). The mean spatial distributions of total phytoplank-

ton C biomass and individual PFTs, derived from global

SeaWiFS monthly ocean color data, are consistent with cur-

rent understanding of oceanic ecosystems, i.e., oligotrophic

regions are characterized by low biomass and dominance of

picoplankton, whereas eutrophic regions have high biomass

to which nanoplankton and microplankton contribute rela-

tively larger fractions. Global climatological, spatially in-

tegrated phytoplankton carbon biomass standing stock esti-

mates using our PSD-based approach yield ∼ 0.25 Gt of C,

consistent with analogous estimates from two other ocean

color algorithms and several state-of-the-art Earth system

models. Satisfactory in situ closure observed between PSD

and POC measurements lends support to the theoretical ba-

sis of the PSD-based algorithm. Uncertainty budget analy-

ses indicate that absolute carbon concentration uncertainties

are driven by the PSD parameter No which determines parti-

cle number concentration to first order, while uncertainties in

PFTs’ fractional contributions to total C biomass are mostly

due to the allometric coefficients. The C algorithm presented

here, which is not empirically constrained a priori, partitions

biomass in size classes and introduces improvement over the

assumptions of the other approaches. However, the range

of phytoplankton C biomass spatial variability globally is

larger than estimated by any other models considered here,

which suggests an empirical correction to the No parameter

is needed, based on PSD validation statistics. These corrected

absolute carbon biomass concentrations validate well against

in situ POC observations.

1 Introduction

Oxygenic photosynthesis by marine phytoplankton is re-

sponsible for fixing ∼ 50 Gt C yr−1 (Field et al., 1998; Carr

et al., 2006) and powers the biological pump, which is

an important part of the carbon cycle (e.g., Siegel et al.,

2014). Phytoplankton are grouped into phytoplankton func-

tional types (PFTs) according to their differing biogeochem-

ical roles (IOCCG, 2014). Since size is a master trait (e.g.,

Marañon, 2015), phytoplankton size classes (PSCs) are of-

ten used to define the PFTs (e.g., Le Quéré et al., 2005).

Commonly, three PSCs are defined (Sieburth et al., 1978)

– picophytoplankton (< 2 µm in diameter), nanophytoplank-

ton (2–20 µm) and microphytoplankton (> 20 µm), referred

to as pico-, nano- and microplankton henceforth for brevity.

The global spatiotemporal distribution of the PFTs both in-
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fluences (e.g., Falkowski and Oliver, 2007) and can be in-

fluenced by (e.g., Marinov et al., 2013; Cabré et al., 2014)

climate (and shorter-term processes such as seasonality; e.g.,

Kostadinov et al., 2016a). Therefore, detailed characteriza-

tion of the structure and function of oceanic ecosystems (i.e.,

descriptive and predictive understanding of the PFTs) is re-

quired as a crucial component of Earth system and climate

modeling.

Operational quantification of the PFTs on the required spa-

tiotemporal scales can only be achieved via remote sens-

ing. Remote-sensing reflectance as a function of wavelength,

Rrs(λ), quantifies ocean color; the canonical derived variable

has been chlorophyll concentration (Chl) in surface waters

(e.g., O’Reilly et al., 1998; Maritorena et al., 2002), inter-

preted as a proxy for phytoplankton biomass. However, to-

tal Chl does not provide a full description of the state of

the ecosystem, since physiological acclimation to differing

light levels can cause the ratio of intracellular Chl to car-

bon (C) concentrations to change, confounding interpretation

of changes in Chl (Geider et al., 1987, 1998; Behrenfeld et

al., 2005). It is carbon biomass in the living phytoplankton

that is the variable of more direct relevance to the carbon

cycle, other biogeochemical cycles and climate. It is also

the tracer variable most commonly used in biogeochemical

routines of climate models (e.g., Gregg, 2008; Dunne et al.,

2013). In addition, a more complete characterization of an

oceanic ecosystem also necessitates partitioning of the car-

bon biomass into the different PFTs comprising the ecosys-

tem. The Chl :C ratio itself can be used as a proxy for phys-

iological status and independent assessments of Chl and C

allow for the building of carbon-based productivity models

(Behrenfeld et al., 2005; Westberry et al., 2008).

In light of the above, recent ocean color algorithm devel-

opments have provided products beyond Chl. First, multi-

ple algorithms for the estimation of various PFTs have been

developed (IOCCG, 2014). Some algorithms retrieve multi-

ple PFT groups using differential absorption (Bracher et al.,

2009) or second-order anomalies of the reflectance spectra

(Alvain et al., 2008). Others (e.g., Brewin et al., 2010; Hi-

rata et al., 2011; Uitz et al., 2006) are based on total (Chl)

abundance and the ecological premise that smaller cells are

associated with oligotrophic conditions whereas larger cells

are associated with eutrophic conditions (Chisholm, 1992).

Yet another class of algorithms relies on various spectral fea-

tures, either absorption (Ciotti and Bricaud, 2006; Mouw and

Yoder, 2010; Roy et al., 2013), or backscattering (Kostadinov

et al., 2009, 2010) or both (Fujiwara et al., 2011). A summary

of the available algorithms and their technical basis can be

found in IOCCG (2014) and Hirata (2015). Of particular im-

portance is that none of the existing algorithms retrieve C or

base their PFT/PSC retrievals on total or fractional C content

per PFT. Second, algorithms have been developed to retrieve

particulate organic carbon (POC, e.g., Stramski et al., 2008

– henceforth, S08). However, these are empirical band–ratio

algorithms the output of which is expected to be tightly cor-

related to Chl, which is derived in a similar way. The retrieval

of just the living phytoplankton carbon concentration repre-

sents significant progress (Behrenfeld et al., 2005 – hence-

forth, B05). However, the B05 method is based on a constant

empirical scaling with particulate backscattering at 440 nm

(bbp(440)) which does not take into account the effects of

variable particle size distributions (PSDs). Changes in the

PSD will change the backscattering per unit C biomass due

to different scattering efficiencies (e.g., Stramski and Kiefer,

1991; Kostadinov et al., 2009).

Recent advances allow for the quantification of the PSD

from ocean color satellite data and thus the estimation of

particulate volume in any size class (Kostadinov et al., 2009

– henceforth, KSM09; Kostadinov et al., 2010). Hence-

forth, this PSD algorithm is referred to as the KSM09 algo-

rithm. Here, we leverage the KSM09 algorithm and an exist-

ing compilation of allometric relationships that link cellular

C content to cellular volume (Menden-Deuer and Lessard,

2000 – henceforth, MDL2000), in order to (1) estimate to-

tal phytoplankton C biomass using the power-law PSD pa-

rameters as input and (2) recast the volume-based PSCs of

the KSM09 algorithm in terms of C biomass instead of bio-

volume. The effects of variable PSD have been taken into

account for the first time, relaxing the assumption of a con-

stant backscattering to carbon relationship. Importantly, to

our knowledge this is the first attempt to provide size class

partitioning of phytoplankton C biomass from space. We

first present the methodology and apply the algorithm to

SeaWiFS global monthly reflectance data, focusing on clima-

tological patterns and comparison with existing phytoplank-

ton carbon estimates and Earth system model results. We

then assess global mixed-layer phytoplankton biomass stock

and compare to existing estimates. We quantify partial un-

certainties on a per-pixel basis by propagating existing input

parameter uncertainties to the C-based products. In addition,

we present an in situ POC–PSD closure analysis as verifi-

cation of the method, propose an empirical correction to the

algorithm to improve absolute carbon estimates and validate

our results using in situ POC measurements.

2 Data and methods

2.1 Estimation of carbon biomass using PSD retrievals

2.1.1 Step 1: retrieval of suspended particulate volume

from ocean color remote sensing data

We first quantify the volume concentration of suspended par-

ticulate matter from ocean color data by applying the KSM09

algorithm to estimate the parameters of an assumed power-

law particle size distribution. These parameters are retrieved

using lookup tables (LUTs) constructed using Mie theory of

scattering (Mie, 1908). The LUTs relate the spectral shape

and magnitude of the particulate backscattering coefficient

at blue–green wavelengths (bbp(λ) (m−1)) to the power-law
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slope ξ (unitless) of the PSD and the differential number

concentration of suspended particles at a reference diameter

(here,Do = 2 µm),No (m−4) (Junge, 1963; Boss et al., 2001;

KSM09):

N(D)=No

(
D

Do

)−ξ
. (1)

In Eq. (1), D (m) is the equivalent spherical diameter (ESD)

(Jennings and Parslow, 1988) and N(D) (m−4) is the dif-

ferential number concentration of particles of diameter D.

Volume concentration (m3 of particles/m3 seawater) can be

computed from the PSD as (Kostadinov et al., 2010):

V =

Dmax∫
Dmin

(
πD3

6

)
No

(
D

Do

)−ξ
dD. (2)

Note that Eq. (2) is an estimate of the volume of all backscat-

tering in-water constituents in a given size range because the

KSM09 algorithm uses total backscattering for the retrieval.

Even though the power-law PSD is considered a simple two-

parameter model, in reality it has four parameters, because

in practical applications the upper and lower limits of inte-

grals such as Eq. (2) need to be known (Boss et al., 2001).

Assuming biogenic origin of scattering particles, Kostadinov

et al. (2010) developed a novel method of estimating three

PSCs, defining each class as its fractional contribution to to-

tal biovolume.

2.1.2 Step 2: retrieval of size-partitioned absolute and

fractional phytoplankton carbon biomass

Estimation of carbon concentration follows the methodology

first outlined in Kostadinov (2009). The volume-to-carbon

allometric relationships compiled by MDL2000 are used to

quantify POC by converting the volume estimates of Eq. (2)

to C concentration. The relationships in MDL2000 have the

general form:

Ccell = aV
b
cell, (3)

where Ccell is cellular carbon content (pg C cell−1), a and b

are group-specific constants and Vcell is cell volume (µm3).

Incorporating the allometric relationship of Eq. (3) into

Eq. (2) yields an estimate of particulate carbon mass concen-

tration (i.e., POC) in a given size range, Dmin to Dmax. The

carbon biomass of living phytoplankton only (C, (mg m−3))

can then be estimated by multiplication by 1/3:

C =
1

3

Dmax∫
Dmin

10−9a

(
1018πD3

6

)b
No

(
D

Do

)−ξ
dD. (4)

The factor of 1/3 is used because it is approximately in

the middle of the published range for the phytoplankton

C :POC ratio in ocean regions of variable trophic status

(0.14–0.49) (B05; DuRand et al., 2001; Eppley et al., 1992;

Gundersen et al., 2001; Oubelkheir et al., 2005). The fac-

tors 10−9 and 1018 are applied in Eq. (4) for conversion

from picogram (Eq. 3) to milligram of C and from m3 to

µm3, respectively. The formulation of Eq. (4) allows phyto-

plankton carbon biomass to be estimated for any size range.

Here, we partition the biomass in three classical phytoplank-

ton size classes (PSCs, Sieburth et al., 1978): picoplank-

ton (0.5 µm≤D ≤ 2 µm), nanoplankton (2 µm≤D ≤ 20 µm)

and microplankton (20 µm≤D ≤ 50 µm). The three PSCs

are expressed as relative fractions of total phytoplankton C

biomass, by dividing the PSC’s biomass by total biomass

in the 0.5–50 µm range. This expression of the PSCs is

a recast of the volume-fraction-based PSCs of KSM09 in

terms of carbon biomass. Further details of application of the

MDL2000 allometric relationships are given in Sect. S1.1 in

the Supplement.

2.2 Input ocean color satellite data

Global mapped monthly composites of remote sensing

reflectance Rrs(λ) (sr−1) nominally at 412, 443, 490,

510 and 555 nm, measured by the Sea-viewing Wide

Field-of-view Sensor (SeaWiFS) (reprocessing R2010.0)

were downloaded from the NASA Ocean Biology Pro-

cessing Group (OBPG) Ocean Biology Distributed Ac-

tive Archive Center (OB.DAAC) at http://oceandata.sci.

gsfc.nasa.gov/SeaWiFS/Mapped/Monthly/9km/Rrs/ (NASA

Goddard Spaceflight Center, 2010). The data have a nominal

resolution of ∼ 9 km and are mapped to an equidistant cylin-

drical projection. Measurements were available for the pe-

riod September 1997–December 2010, with the exception of

a few months after 2007, when technical problems occurred.

The monthly Rrs(λ) maps were used to retrieve the spec-

tral particulate backscattering coefficient (bbp(λ), (m−1), λ

same as for the input reflectances), using the algorithm of

Loisel and Stramski (2000) and Loisel et al. (2006) (hence-

forth, the LAS2006 algorithm), with a solar zenith angle

(SZA) of 0◦ because the input Rrs(λ) are fully normalized.

The spectral slope of bbp(λ),η, was calculated using a lin-

ear regression on the log-transformed data at the 490, 510

and 555 nm bands. The KSM09 algorithm (Sect. 2.1.1) was

then applied to η and bbp at 443 nm in order to obtain the

PSD parameters ξand No, which were subsequently used in

Eq. (4) (specifically as shown in Eq. (S1) in the Supplement)

to obtain monthly 9 km maps of total and PSC-partitioned

absolute and fractional C biomass.

2.3 Additional methods information

Additional details of the methodology are provided in the

Supplement Sect. S1. Specifically, Sect. S1.1 presents details

of the application of the MDL2000 allometric relationships.

Total phytoplankton carbon was also derived from the output
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of a group of Earth system simulations from the recent Cou-

pled Model Intercomparison Project CMIP5 (Taylor et al.,

2012). Details of the methods are provided in Sect. S1.2. Sec-

tion S1.3 presents the methods for an entirely in situ POC–

PSD closure analysis. Section S1.4 details the propagation

of uncertainty to the carbon-based products and the compos-

ite (averaged) images calculated from monthly input data.

Section S1.5 provides details of algorithm output analyses

and additional ancillary data sets used. Importantly, details

are presented on the computation of global carbon biomass

stock within the mixed layer, using the PSD/allometric phy-

toplankton carbon retrievals presented here. Section S1.6 de-

scribes the methodology used for validation of total phyto-

plankton carbon using matchups between empirically cor-

rected (see Sect. 3.7) SeaWiFS retrievals and in situ POC

measurements provided by the SEABASS database. Results

of this validation are discussed in Sect. 3.7.

3 Results and discussion

3.1 Global phytoplankton carbon biomass from

SeaWiFS observations and CMIP5 models

The mission climatology of total phytoplankton carbon (C)

(Fig. 1a) indicates that biomass is lowest in the oligotrophic

subtropical gyres, while higher values occur in more eu-

trophic regions, such as the equatorial and eastern-boundary

currents, other upwelling regions and high-latitude oceans.

This general pattern corresponds to first order to the climato-

logical Chl spatial patterns (Fig. S2 in the Supplement) and

is consistent with current oceanic ecosystem understanding

(e.g., Longhurst, 2007). Comparisons with two existing satel-

lite methods (the B05 values, Fig. 1b; the S08 POC retrievals

divided by 3, Fig. 1c) reveal that the PSD-based approach for

quantifying C biomass results in a significantly wider range

of spatial variability, as illustrated also by the histograms in

Fig. S3. The PSD-based biomass estimates are the lowest in

the subtropical oligotrophic gyres (by about an order of mag-

nitude) and generally highest (generally by less than an order

of magnitude) in more productive areas. The three methods

are in relatively good agreement in the Pacific equatorial up-

welling region. A considerable difference also exists between

the B05 and the S08-based values – the former vary the least

spatially, mostly due to relatively high biomass estimates in

the subtropical oligotrophic gyres.

While it is likely that the PSD-based values in the olig-

otrophic gyres are underestimated and values in some eu-

trophic areas are overestimated, a global validation with con-

current field measurements of phytoplankton C biomass (to-

tal or partitioned) is not feasible at present since in situ ana-

lytical measurements of phytoplankton carbon are difficult

and made possible only recently by emerging techniques

(Graff et al., 2012, 2015). The S08 method is developed with

in situ POC and reflectance data, and the constant conversion

factor in B05 is picked empirically, so these algorithms are

Figure 1. SeaWiFS mission composite mean (September 1997–

December 2010) of total phytoplankton carbon biomass (mg C m−3

in log10 space), derived from monthly data using (a) the allomet-

ric PSD method presented here, (b) the method of Behrenfeld et

al. (2005) and (c) the Stramski et al. (2008) POC retrieval, mul-

tiplied by 1/3. (d) Ensemble mean of the CMIP5 models’ (Ta-

ble S3) climatologies (1990–2010) of the surface phytoplankton

carbon biomass (mg m−3). The white contours are the 0.08 mg m−3

isoline of Chl. Both model and satellite composite means are com-

puted from monthly data in linear space.
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designed a priori to match in situ measurements. The method

presented here is derived mostly from theory (apart from the

allometric relationships) and is not subject to such constraints

(Sect. 3.6). Importantly, even if the absolute carbon concen-

tration values are inaccurate, the PSCs expressed as percent

contribution to C biomass should still be reliable and subject

to much less uncertainty (Sects. 3.3 and 3.6). The PSC frac-

tions can also be used with other absolute carbon estimates.

An empirical correction to address the spatial exaggeration

of absolute carbon concentrations is presented in Sect. 3.7

together with a validation for corrected total phytoplankton

carbon estimates using in situ POC measurements.

Some degree of exaggeration of the global range of values

of the PSD-based mean algal biomass field (Fig. 1a) as com-

pared to the approach of B05 (Fig. 1b) is expected because

the former relaxes the assumption of a constant conversion

factor in B05 by taking into account the varying backscat-

tering per unit cell volume and carbon. According to Mie

theory calculations, bbp(λ) normalized to volume of parti-

cles in the 0.5–50 µm range is 3 orders of magnitude higher

when the PSD slope ξ = 6, as compared to when ξ = 3 (not

shown). Thus, the same backscattering coefficient will be at-

tributed to less particle total volume if the particles are rela-

tively smaller in size (higher ξ). Since PSD slopes are highest

in the oligotrophic gyres (KSM09), the PSD-based approach

is expected to exhibit smaller total volume of particles and

thus smaller carbon concentrations as compared to the direct

scaling with bbp(443) in B05.

The CMIP5 models’ ensemble mean of phytoplankton C

biomass (Fig. 1d) is independent of the satellite data sets

(refs. in Table S3) and resembles the S08 POC-based esti-

mate the most in spatial patterns and values, with somewhat

lower values in the subtropical gyres, but not quite as low as

the PSD-based method (Fig. 1a). Notably, the models yield

higher values in the Pacific equatorial upwelling zone than

any of the satellite data sets.

3.2 Global phytoplankton biomass stock

Estimates of total global phytoplankton biomass stock

(Sect. S1.5) from the three satellite methods and the CMIP5

models (using the SeaWiFS mission climatological fields)

are remarkably consistent (Fig. 2), yielding ∼ 0.2–0.3 Gt C

standing biomass stock (1 gigaton (Gt)= 1012 kg). Biomass

in open ocean areas (with the continental shelves excluded)

accounts for most global biomass according to all estimates.

However, the models attribute very little biomass to the

shelves as compared to the satellite methods, which is proba-

bly due to the lower underlying spatial resolution of the mod-

els. Since satellite algorithms are generally subject to higher

uncertainties in coastal zones, it is best to develop technology

to measure C biomass in situ (Graff et al., 2012, 2015) and

inform both satellite algorithms and biogeochemical models.

The satellite estimates in Fig. 2 are based on mission com-

posites and are globally representative since 99–100 % of the

Allometric Behrenfeld Stramski CMIP5 models
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Figure 2. Global spatially integrated mixed-layer phytoplankton

carbon biomass stock (Gt C), as estimated with three different satel-

lite algorithms (as in Fig. 1a–c) from the SeaWiFS mission com-

posite and from the CMIP5 model ensemble mean (Fig. 1d), using

the same climatological MLD estimate for all estimates. Horizon-

tal black lines within each bar on all panels represent the estimate

when continental shelves (< 200 m depth) are excluded. The sum of

the areas of valid pixels used in the estimates is given as a percent-

age of total ocean area (3.608× 108 km2) and area excluding the

shelves (∼ 3.4× 108 km2), respectively.

respective ocean areas participate in the estimate (Fig. 2).

However, some bias remains because high latitudes are ob-

servable only in summer months (Fig. S4). Monthly esti-

mates of the global phytoplankton carbon stock are discussed

in Supplement Sect. S2. It is notable that the novel PSD-

based method is not empirically restricted or tuned a priori

and yields reasonable estimates. Admittedly, this global spa-

tially integrated result may be fortuitous due to cancellation

of uncertainties with opposite signs in the oligotrophic vs.

eutrophic areas, so it is not claimed that this result necessar-

ily constitutes algorithm verification (also see Sect. 3.7 and

Fig. S7). Previous estimates of global phytoplankton C stock

use different methodologies and range from 0.30 to 0.86 Gt C

(Antoine et al., 1996; Behrenfeld and Falkowski, 1997b; Le

Quéré et al., 2005). Further discussion of these estimates and

the effects of MLD assumptions is provided in Sect. S2.

3.3 Size-partitioned biomass

Maps of absolute C biomass partitioned among picoplankton

(Fig. 3a), nanoplankton (Fig. 3b) and microplankton (Fig. 3c)

reveal a general global spatial pattern for all three size classes

similar to the global total distribution (Fig. 1a), namely the

lowest biomass values are encountered in the oligotrophic

gyres, whereas higher latitudes, coastal and upwelling areas

exhibit higher biomass. According to contemporary under-

standing of oceanic ecosystems (e.g., Uitz et al., 2010) we

www.ocean-sci.net/12/561/2016/ Ocean Sci., 12, 561–575, 2016
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Figure 3. SeaWiFS mission composite (September 1997–

December 2010) of size-partitioned phytoplankton carbon biomass,

C (mg C m−3 in log10 space) estimated with the PSD/allometric

method for (a) picoplankton, (b) nanoplankton and (c) microplank-

ton. The white contours are the 0.08 mg m−3 isoline of Chl. Note

that the color scale is different from that of Fig. 1.

expect large cells (such as diatoms) to be opportunistic, re-

sponding via strong localized blooms to changes in nutrient

inputs or grazing. This opportunistic response, which con-

trasts the smaller picoplankton adaptation to constant envi-

ronmental conditions, explains the widely different spatial

and temporal variability of these groups. Accordingly, we

find that the range of spatial variability of carbon for pi-

coplankton (< 3 orders of magnitude) is a lot smaller than

the range of variability for nanoplankton (∼ 4) and espe-

cially microplankton (∼ 5 orders of magnitude) (Fig. S5).

Negligible biomass is found in microplankton for most of the

ocean area, except for eutrophic areas characterized by sea-

sonal blooms and/or higher overall productivity such as the

Equatorial Upwelling, whereas picoplankton are more glob-

ally ubiquitous.

The fractional contribution of each PSC to total C biomass

reveals the climatological dominance of each group in the

Figure 4. SeaWiFS mission composite (September 1997–

December 2010) of percentage contributions of three PSCs to total

phytoplankton carbon biomass, estimated with the PSD/allometric

method: (a) picoplankton, (b) nanoplankton and (c) microplank-

ton. This mission composite is computed by averaging the fractional

contributions to C biomass for each available month (Fig. S4). The

white contours are the 0.08 mg m−3 isoline of Chl.

various oceanic regions (Fig. 4). Picoplankton emerge as the

dominant size group in oligotrophic areas (Fig. 4a), because

their large cellular surface-area-to-volume ratio enables them

to acquire scarce nutrients very efficiently (Agawin et al.,

2000; Falkowski and Oliver, 2007). By contrast, larger phy-

toplankton contribute relatively more biomass in the regions

where nutrients are generally more abundant, because they

can take up nutrients at a faster rate and store them in-

side vacuoles as a reserve for less favorable spells (e.g.,

Eppley and Peterson, 1979; Chisholm, 1992; Falkowski et

al., 1998; Falkowski and Oliver, 2007). Together, nano- and

microplankton achieve dominance (between 50 and 90 %)

along the Antarctic coastline, in much of the zone between

∼ 40◦ S and ∼ 50◦ S (in the South Atlantic, the southwest-

ern Indian Ocean, southeast of Australia and east of New

Zealand), along the eastern boundaries of the Pacific and At-

Ocean Sci., 12, 561–575, 2016 www.ocean-sci.net/12/561/2016/
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lantic oceans, in the northwestern Arabian Sea and almost

everywhere north of ∼ 40◦ N.

The total biomass patterns in the Southern Ocean (Fig. 1a)

are characterized by more or less continuous bands of high

biomass (a) along the frontal structures around 40–45◦ S, a

transitional region from the iron-limited upwelling regime

in the south to the nitrate-limited downwelling subtropical

gyres in the north and (b) in the marginal sea ice regions

next to the Antarctic continent, where continental iron (Fe)

inputs likely result in biomass and production spikes during

the spring and summer. Both these large-biomass bands tend

to be dominated by the larger opportunistic groups of nano-

and microplankton (Fig. 4b–c). In between these two bands

of high production we find a relatively lower biomass band

from roughly 50–60◦ S, where picoplankton thrive (Fig. 4a).

The lower total biomass here is probably due to a combina-

tion of iron limitation and deep summertime mixed layers,

resulting in strong light limitation during the growing sea-

son. Large areas in the Southern Hemisphere are character-

ized by lower total (Fig. 1a) and group-specific C biomass

(Fig. 3a–c), as compared to the Northern Hemisphere. This

interhemispheric disproportionality is dominated by high-

latitude summer values (not shown) and is in agreement with

findings that the Southern Ocean sustains relatively low phy-

toplankton biomass, in spite of high ambient macronutrient

concentrations (e.g., Dugdale and Wilkerson, 1991).

We emphasize that our methodology is unique in its ability

to partition phytoplankton carbon biomass in any desired size

classes. It essentially represents a recast of the biovolume-

based PSC/PFT definition of Kostadinov et al. (2010) that is

also based on the KSM09 PSD retrieval. The effect of re-

casting to carbon using the allometric relationships is illus-

trated in Fig. 5, and further discussion is provided in Sect. S3.

Comparison with other PFT algorithms is outside the scope

of this work, but summaries of the available algorithms can

be found in IOCCG, 2014 and Hirata, 2015. Kostadinov et

al. (2016a) compare phenological parameters among 10 PFT

algorithms and 7 CMIP5 models as part of the PFT Intercom-

parison Project (Hirata et al., 2012; Hirata, 2015).

3.4 In situ POC–PSD closure

As a verification of the phytoplankton C retrieval methodol-

ogy presented here, we test the closure between in situ deter-

minations of POC and the PSD; specifically, we compare two

different ways to compute phytoplankton carbon: (1) using a

chemical POC determination, divided by 1/3, and (2) using

Coulter counter PSD measurements in the same way as satel-

lite PSDs (Sect. 2.1). Two different sets of integration limits

(Eq. 4) for the power-law PSD are tested: 0.5–50 µm (Fig. 6a)

and 0.7–200 µm (Fig. 6b). The first set of limits matches the

operational satellite carbon algorithm (Table S1), and the sec-

ond – the operational POC measurement. Both closure re-

gressions are highly significant (p < 0.01), indicating that the

PSD method can reasonably predict carbon content of parti-
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Figure 5. Fractional contribution of the three PSCs, picoplankton

(red), nanoplankton (green) and microplankton (blue), to total phy-

toplankton carbon biomass (solid lines) and to total biovolume con-

centration (dashed lines), as functions of the PSD slope ξ . Limits of

integration are the operational limits as indicated in Figs. 3 and 4,

and Sect. 2.1.2 (also see Sect. S1.1). Also shown is the histogram of

PSD slopes ξ from the mapped image of SeaWiFS mission climatol-

ogy (September 1997–December 2010), normalized to the highest

count bin.

cles in natural seawater samples. However, the smaller size

limits (Fig. 6a) exhibit a better R2 value (in log10 space),

while the slope, bias and rms are better for the larger limits

(Fig. 6b). Clearly, the PSD method is sensitive to the chosen

limits of integration, and the satellite operational limits un-

derestimate the POC values. Better agreement is found when

the 0.7–200 µm limits are used, (matching the nominal pore

size of the filters used for the POC measurements).

Kostadinov et al. (2012) similarly found a relatively good

agreement between in situ POC and PSD measurements for

a semi-arid coastal site – the Santa Barbara Channel (SBC)

off the coast of California. Both sets of results suggest that

reasonable internal agreement exists between these two very

different methods of in situ assessment of living carbon, even

in optically complex coastal sites such as the SBC, where

terrigenous material can contribute to the PSD and affect op-

tical properties (Toole and Siegel, 2001; Otero and Siegel,

2004; Kostadinov et al., 2007). This PSD-POC closure anal-

ysis uses no satellite data or bio-optical algorithms and is

thus is not subject to the associated uncertainties, e.g., mis-

match of the scales of measurement. However, the estimation

of phytoplankton carbon from the total PSD or from POC

in situ does share some uncertainties and limitations as the

satellite algorithm, e.g., the PSD does not always have to con-

form closely to a power law (Reynolds et al., 2010), although

this is assumed here. Section 3.6 discusses such assumptions

and uncertainties in detail.
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Figure 6. Matchups between phytoplankton carbon estimated by

applying allometric relationships to in situ measurements of the

PSD (x axis) and by multiplying in situ chemical POC determi-

nations by 1/3 (y axis). Measurements are coincident in time and

space and were conducted on AMT cruises 2, 3 and 4. Two differ-

ent limits of integration are used for the allometric estimate: (a) 0.5–

50 µm, as in the operational satellite algorithm presented here, and

(b) 0.7–200 µm, matching the GF /F filter pore size used in POC

measurements.

3.5 Relationship between phytoplankton carbon

biomass and chlorophyll concentration

The spatial distributions of Chl (Fig. S2) and total C biomass

(Fig. 1a) and nano- and microplankton fractions (Fig. 4b–c)

suggest strong positive correlations between these variables,

whereas the picoplankton fraction (Fig. 4a) is negatively cor-

related with Chl. The bivariate histogram of Chl vs. total C

biomass (Fig. 7a) confirms this strong correlation. However,

for a given Chl value, total biomass can vary considerably

Figure 7. Smoothed bivariate histograms of chlorophyll concen-

tration and (a) total phytoplankton C biomass, (b) picoplankton,

(c) nanoplankton and (d) microplankton fractional contributions

to the total algal C biomass. The histograms were computed from

the global mission composite of standard mapped SeaWiFS obser-

vations (September 1997–December 2010). The colors indicate the

number of pixels that fall into each bivariate bin. The counts are

shown in linear space, whereas the bins themselves are in logarith-

mic space. Data from continental shelf regions (< 200 m depth) are

excluded.

(rarely, over an order of magnitude). For example, for the

common Chl value of ∼ 0.25 mg m−3, biomass frequently

varies between 10 and 30 mg m−3 and less frequently be-

tween 1 and 100 mg m−3. Although some of this spread may

stem from underlying uncertainties in C biomass (Sect. 3.6)

and Chl (Gregg et al., 2009; Sathyendranath, 2000), some of

it is likely attributable to ecological variability that is cap-

tured by estimating C biomass and taking into account the

PSD, indicating that the biomass retrieval contains new in-

formation and is not merely a deterministic function of Chl.

Indeed to first order Chl can serve as an indicator of phyto-

plankton C biomass (e.g., Behrenfeld and Falkowski, 1997a),

but their relationship can also be affected by physiologi-

cal changes in Chl without accompanying biomass changes

(Behrenfeld et al., 2005, 2006) in response to variability in

the ambient levels of light (i.e., photoacclimation), nutrients

and temperature (e.g., Geider et al., 1998). Notably, the his-

togram of Fig. 7a exhibits a pronounced sigmoidal shape in

logarithmic space. At low and medium Chl values, increases

in Chl do not lead to large biomass increases, which is consis-

tent with the idea that Chl variability in oligotrophic areas is

due mostly to physiological adaptation, rather than biomass

growth and loss. Conversely at higher Chl values in more

eutrophic areas, Chl variability is accompanied by biomass

changes (B05; Behrenfeld et al. (2006); Siegel et al., 2013).

B05 also observe that for low Chl, “background” low values

of bbp(440) do not covary strongly with Chl; then for higher

Chl values there is a positive linear correlation which tends
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to level off a bit for high Chl values (see their Fig. 1), broadly

consistent with the sigmoid curve of Fig. 7a. This confirms

their (and our) choice to use backscattering as a first order

proxy of biomass.

Bivariate histograms between Chl and the fractional

PSCs (Fig. 7b–d) indicate that the picoplankton fraction

(Fig. 7b) decreases with increasing Chl, whereas nanoplank-

ton (Fig. 7c) and microplankton (Fig. 7d) fractions increase.

The pico- and nanoplankton relationships also exhibit the

sigmoidal shape. The considerable noise in these relation-

ships is likely due to natural ecosystem variability that oc-

curs for a given Chl value, illustrating that PFT algorithms

based on Chl abundance (IOCCG, 2014, e.g., Brewin et al.,

2010; Hirata et al., 2011; Uitz et al., 2006) may miss this

variability. In spite of that, to first order the relationships of

Fig. 7b–d are broadly consistent with the observations of Hi-

rata et al. (2011) who use global in situ HPLC measurements

to also derive Chl–PSC relationships. Further details of com-

parison with Hirata et al. (2011) are provided in Sect. S4.

3.6 Algorithm assumptions and uncertainty budget

There are multiple steps involved in the retrieval of the

carbon-based biomass products presented here. Namely,

Rrs(λ) is obtained from top of the atmosphere radiance af-

ter atmospheric correction, then spectral bbp(λ) is retrieved

and used to estimate the power-law PSD parameters; the

PSD is then used to estimate particle volume, which is fi-

nally converted to phytoplankton carbon. Each of the above

steps is associated with a set of assumptions and uncertain-

ties which combine and propagate to the final products. Only

some of these uncertainties are quantifiable at present. Be-

low, we (1) make a quantitative assessment of propagated

partial uncertainties of the retrieved carbon-based products,

and (2) offer a general discussion of algorithm assumptions

and other unquantified uncertainties. In addition, in Sect. S.5,

we assess the sensitivity of the carbon products to the input

PSD parameters (including the limits of integration of Eq. 4).

Quantified uncertainties propagated (Sect. S1.4, Eqs. S2

and S3) to the final C products include: (1) partial uncer-

tainties of the PSD algorithm products (ξ and No) that are

due to natural variability of the complex index of refrac-

tion and the maximum diameter of the particles consid-

ered (KSM09), and (2) uncertainties in the allometric coef-

ficients of MDL2000. The resulting partial uncertainty esti-

mate for the total phytoplankton C biomass mission compos-

ite (Fig. 8a) is generally less than 1 mg C m−3 in the olig-

otrophic subtropics, higher in more productive regions, and

exceeds ∼ 10 mg C m−3 only in some limited high-latitude

and coastal areas. Examination of relative uncertainty for the

global composite image indicates that it rarely exceeds 20 %,

except for the very high latitudes (prominently south of 60◦ S

and in the Arctic Ocean), and in the oligotrophic gyres, where

some pixels exceed ∼ 50 % relative uncertainty (not shown).

The gyres are characterized by noisy uncertainty patterns

Figure 8. (a) Propagated uncertainty in the mission mean of to-

tal phytoplankton carbon concentration (1 standard deviation in

mg C m−3, shown in log10 space). This is a partial uncertainty

estimate due to the quantifiable PSD parameter uncertainties and

the uncertainties of the allometric coefficients. Uncertainties are

propagated to the individual monthly images using Eq. (S2) and

then composite imagery uncertainty is estimated using Eq. (S3)

(Sect. S1.4). Panel (b) is the same as (a) but shows uncertainty for

the mission mean of percent picoplankton contribution to carbon

biomass (1 standard deviation in percent).

(large variability on the pixel scale, not shown). The relative

uncertainty of a typical individual monthly image is between

85 % and 115 % globally, illustrating the significant uncer-

tainty reduction for the mission composite product (Eq. S3).

The uncertainty of the mission composite fractional pi-

coplankton contribution to carbon biomass is very low

(Fig. 8b), less than ∼ 1 % over most of the ocean, and

not exceeding ∼ 7 % anywhere. The uncertainties for the

other PSCs are similar (somewhat higher for microplank-

ton, but only at the very high latitudes, not shown). Indi-

vidual imagery uncertainty for the fractional picoplankton

vary between ∼ 3 % to ∼ 8 % (1–7 % for nanoplankton frac-

tions, and ∼ 0–2 % for microplankton, higher in eutrophic

areas), illustrating that even for individual images fractional

PSC uncertainties are quite low. This result is expected be-

cause the No parameter, which is a large source of error

(Sects. 3.6 and S6), cancels in the computation of fractional

PSCs (Eq. S1) and thus does not contribute to error in the

PSCs. Thus, the carbon-based PSCs are likely to be a reli-

able product even if absolute carbon concentrations are not

accurate. In fact, these PSCs can readily be used to partition

other, independent estimates of phytoplankton carbon, such

www.ocean-sci.net/12/561/2016/ Ocean Sci., 12, 561–575, 2016



570 T. S. Kostadinov et al.: Carbon-based phytoplankton size classes

Figure 9. SeaWiFS mission composite mean (September 1997–

December 2010) of total phytoplankton carbon biomass (mg C m−3

in log10 space) calculated with the PSD method described here, as

in Fig. 1a, but with an empirical correction applied to the No pa-

rameter first (see Sect. 3.7).

as those from the algorithms of B05 and S08, or even climate

model data.

Analytical error propagation (Eq. S2) permits tracing the

relative contribution of the various input variables to the un-

certainty (variance) of the dependent variable. Calculations

for the example month of May 2004 indicate that almost the

entire variance (> 95 % nearly everywhere) in total carbon

is driven by uncertainties in No (Fig. S6a). The remainder is

mostly due to the allometric coefficients in oligotrophic areas

(Fig. S6b), and only in some eutrophic areas the PSD slope ξ

has a non-negligible contribution to total C variance. For the

oligotrophic gyres and some transitional areas around them,

most of the uncertainty in picoplankton fractional contribu-

tion to carbon biomass is due to the allometric coefficients

(Fig. S6c), whereas for the higher latitudes and more pro-

ductive areas∼ 80 % of the variance is due to the PSD slope.

For the nanoplankton fraction, almost everywhere the uncer-

tainty is due primarily to the allometric coefficients. For the

microplankton fraction in oligotrophic areas, the error is due

almost exclusively to the allometric coefficients, but in eu-

trophic areas it is usually about equally due to the allometric

coefficients and the PSD slope.

The propagated quantified uncertainties presented above

are only partial estimates. There are other (not necessarily

quantifiable) factors that contribute to the total uncertainty

budget. For example, uncertainties in the spectral bbp(λ) re-

trieval are not taken into account. The assumptions of a

single-slope power-law PSD (that applies across a wide range

of particle sizes) and the sphericity and homogeneity as-

sumptions of the KSM09 algorithm contribute to uncertainty

as well and are discussed elsewhere (KSM09). For absolute

C retrievals, we assume that all particles belong to the POC

pool (i.e., that they are biogenic in origin), that the propor-

tion of phytoplankton in POC is constant (i.e., equal to 1/3

of POC by mass), and that the allometric coefficients apply

to the heterotrophic and nonliving (detrital) pools as well.

The assumption of biogenic nature of the particle assem-

blage is most likely to be violated in shallow coastal waters

where processes such as river discharge, wind-driven dust de-

position and tidal mixing can introduce large and variable

amounts of inorganic particles into the water column (e.g.,

Otero and Siegel, 2004). Additional uncertainties also exist

that are external to the MDL2000 data set and therefore not

included in their variance estimates. Finally, the assumption

of equal contributions of diatoms and non-diatoms to the to-

tal carbon pool for cells larger than 3000 µm3 is not expected

to hold globally everywhere, and should be relaxed in the

future by combining with other PFT methods capable of de-

tecting diatoms (e.g., Hirata et al., 2011) and/or integrated

ecosystem approaches based on regional knowledge (Raitsos

et al., 2008; Fay and McKinley, 2014). A more detailed dis-

cussion of algorithm assumptions and additional uncertainty

sources is provided in Sect. S6.

3.7 Empirical correction of absolute carbon

concentrations. Validation with in situ total POC

As discussed in Sects. 3.1 and S6, underestimates of abso-

lute carbon concentrations in oligotrophic gyres and overes-

timates in eutrophic areas (Figs. 1 and S3) seem likely and

are probably due to the treatment of the index of refraction

in the KSM09 model, which likely leads to underestimates

of No in the oligotrophic gyres. The validation regression for

No in KSM09 indeed has a slope significantly larger than

unity, suggesting that satellite retrievals are underestimates

at low No values (typical in oligotrophic waters) and are

overestimates at high No values, typical for eutrophic wa-

ters. This suggests a lack of full optical closure between the

in situ Coulter counter determinations of the No parameter

and the satellite retrievals. Comparison with more empirical

determinations of POC and phytoplankton carbon (Fig. 1; see

also Graff et al., 2015) and the validation regression statistics

of the KSM09 model suggest a simple empirical correction

needs to be applied to satellite No data in order to achieve

more realistic values of absolute carbon concentrations on a

per pixel basis. Using the slope and intercept of the KSM09

No validation (KSM09, their Fig. 14b), satellite No values

can be corrected as follows:

log10(No_corr)=
log10(No)

2.0475
+

16.7353

2.0475
. (5)

Application of Eq. (5) to No before absolute carbon calcula-

tions leads to global climatological values from the SeaWiFS

mission that are indeed much more realistic and resemble the

S08-based estimates (Figs. 9 and S3). Using the empirically

corrected values to estimate total global phytoplankton car-

bon stock yields a value of∼ 0.17 Gt of C from the SeaWiFS

mission climatology. This value is lower than the S08, B05

and CMIP5 model estimates, and it is also lower than the

value using the uncorrected No (Fig. S7). This is an indica-

tion that the lowered values of the more eutrophic regions

dominate the global biomass result. Indeed the contribution
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Figure 10. Validation of the total phytoplankton carbon satellite estimates discussed here, using SeaWiFS matchups of in situ POC measure-

ments from the SeaBASS database. The three methods compared are: the allometric PSD method with the No empirical correction applied

(Sect. 3.7) (green circles and line), the S08 POC retrieval multiplied by 1/3 (red crosses and line) and the B05 retrieval (blue triangles and

line). All available matchups are used, including those from shallow waters (< 200 m depth).

by the shallow shelf regions is considerably reduced com-

pared to the uncorrected estimate.

The empirically corrected allometric/PSD-based determi-

nations of phytoplankton carbon validate well against in situ

POC measurements from the SeaBASS data set (Werdell et

al., 2003) that are multiplied by 1/3 (Fig. 10). The valida-

tion statistics are highly significant in log10 space (p < 0.01).

Compared to the validation results for the S08 and B05 meth-

ods, the PSD methods exhibits similar results. Namely, the

PSD method slope is somewhat worse than the others, the

R2 value is about as good as that of S08 and better than

the one for B05, and the same holds for the rms values. The

PSD method exhibits no overall bias, but a few of the lowest

POC values still exhibit underestimation. In addition, about

10 % fewer retrievals are available from the PSD/allometric

method. The same validation performed on PSD/allometric

retrievals using uncorrected No values yields a slope of 2.20,

an rms of 0.48 and a bias of 0.25 (not shown), indicating

that the proposed empirical correction greatly improves al-

gorithm performance for total absolute phytoplankton C con-

centrations. Because these empirically corrected values are

more realistic and validate much better at the POC level, they

are used in the published data set (see ”Data availability and

archival” below). Importantly, this is a validation of only total

phytoplankton carbon, and uses in situ POC measurements as

a proxy for it. The fractional contributions to the total phyto-

plankton carbon by the PSCs do not depend on the value of

No and are thus not affected by the empirical No correction.

Finally, Eq. (5) is based on PSD validation in KSM09 which

has few matchups (N = 22) from a single type of PSD mea-

surement. Many more measurements of the PSD are needed

to make this empirical correction robust and possibly region-

alize it.

4 Summary and Conclusions

We presented a novel method to retrieve phytoplankton car-

bon biomass from ocean color satellite data, based on com-

bining volume determinations using backscattering-based

PSD retrievals of Kostadinov et al. (2009) with carbon-to-

volume allometric relationships compiled by Menden-Deuer

and Lessard (2000). We use monthly SeaWiFS data to es-

timate total and size-partitioned absolute and fractional C

biomass in three PSCs: pico-, nano- and microplankton.

These PSCs can be treated as PFTs to first order. The clima-

tological spatial patterns of the C-based PSCs broadly agree

with current knowledge of phytoplankton biogeography and

ecology.

While there are other remote sensing methods capable of

producing algal biomass or PFT estimates, our methodology

is unique and novel in the following key ways: (1) ability to

partition algal community biomass into any number of de-

sired size classes in terms of absolute or fractional carbon

concentration, which is the most relevant variable of interest

in terms of biogeochemistry and is the unit of quantification

of phytoplankton in Earth system models; (2) it is overall less

empirical in nature and is based more on first principles of

bio-optics, i.e., it builds on the concept of constant backscat-
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tering to carbon relationship of Behrenfeld et al. (2005) by

explicitly taking into account the underlying PSD that pro-

duced the backscattering and thus relaxing the assumed con-

stant relationship. Satisfactory in situ closure is observed be-

tween a limited number of observations of PSD and POC on

AMT cruises, which supports the PSD/allometric approach

we take here.

Detailed uncertainty analysis indicates that total carbon

concentration retrievals are sensitive to assumptions about

the underlying bulk particle index of refraction, which may

lead to exaggeration of the spatial range of concentration,

calling for caution when interpreting absolute concentra-

tions. This exaggeration is improved with an empirical cor-

rection which leads to satisfactory validation of total phy-

toplankton carbon determinations against in situ POC mea-

surements. Fractional PSCs, which are more reliable than the

absolute carbon values, are subject to much smaller uncer-

tainties due mostly to uncertainties in the allometric coef-

ficients. The bio-optical algorithm presented here is a first-

order, global, proof-of-concept approach that can be further

improved in multiple ways by addressing its assumptions and

sources of uncertainty and incorporating new advancements

in laboratory and satellite techniques (e.g., in situ phyto-

plankton carbon measurements and space-borne hyperspec-

tral ocean color sensors).

Data availability and archival

The SeaWiFS data set produced for and used in this pub-

lication has been archived in the PANGAEA data repository

(Kostadinov et al. (2016b), doi:10.1594/PANGAEA.859005)

and is publicly available at https://doi.pangaea.de/10.1594/

PANGAEA.859005. The following variables are provided:

slope of the power-law PSD (unitless), the No parameter

(Eq. (1), units of m−4, decimal logarithm of the data be-

fore the empirical correction of Eq. (5) is applied), total car-

bon biomass (mg C m−3) and carbon biomass in the three

PSCs (mg C m−3) with the empirical No correction applied

(Sect. 3.7), and the fractional contribution of the three PSCs

(picoplankton (0.5–2 µm ESD), nanoplankton (2–20 µm) and

microplankton (20–50 µm)) to the total biomass (unitless).

Partial propagated uncertainties quantified here are also pro-

vided for all variables (1 standard deviation in the units of

the respective variable). The effects of the empirical correc-

tion Eq. (5) on propagated uncertainty have been ignored,

i.e., we assume that the corrected No parameter has the same

uncertainty as the uncorrected one. The monthly and over-

all composite imagery (i.e., climatologies) are also provided,

with the respective propagated uncertainties for the compos-

ite imagery (Sect. S1.4). Important: the provided data set uses

the empirically corrected No parameter (See Sect. 3.7 and

Figs. 9 and 10) in order to provide more realistic absolute

phytoplankton concentration values. Note that analyses in

this paper use mostly the uncorrected No values, unless oth-

erwise indicated. Use of this data set is subject to the appro-

priate license as indicated in PANGAEA, and the SeaWiFS

input data set (http://oceancolor.gsfc.nasa.gov/cms/citations)

and this paper must be properly cited and acknowledged.

The Supplement related to this article is available online

at doi:10.5194/os-12-561-2016-supplement.

Acknowledgements. This work is supported by NASA Ocean

Biology and Biogeochemistry Grant no. NNX13AC92G

to Irina Marinov and Tihomir S. Kostadinov. NASA grants

NNG06GE77G, NNX08AG82G and NNX08AF99A also funded

Tihomir S. Kostadinov for parts of this work. Tihomir S. Kostadi-

nov is indebted to David Siegel and Stéphane Maritorena for

multiple discussions and input that inspired and improved this

work. We specifically thank Stéphane Maritorena for help with the

formulating of uncertainty propagation. We thank David Shields,

Danica Fine, Brian Hahn and Dave Menzies for help with data

processing, and Peter Perkins for his bivariate histogram script.

The WolframAlpha® online service is acknowledged for providing

derivative calculation verification. All other data processing,

analysis and plotting was done in MATLAB®. We acknowledge the

NASA Ocean Biology Processing Group (OBPG) for maintaining

and providing the SeaWiFS data set, the SeaBASS in situ data

set and validation search tool (at the Ocean Biology Distributed

Active Archive Center, OB.DAAC) and generally for their support

for ocean color research. DigitalGlobe and predecessor companies

GeoEye, Inc. and ORBIMAGE are also acknowledged for their

role in SeaWiFS data acquisition. We further acknowledge the

SEABASS data providers for providing the in situ POC data sets.

We acknowledge the British Oceanographic Data Centre (BODC)

for providing the AMT Cruise PSD and POC data. We acknowl-

edge the World Climate Research Programme’s Working Group

on Coupled Modelling, which is responsible for CMIP, and we

thank the climate modeling groups (listed in Table S3 of this

paper) for producing and making available their model output. For

CMIP the US Department of Energy’s Program for Climate Model

Diagnosis and Intercomparison provides coordinating support

and led development of software infrastructure in partnership

with the Global Organization for Earth System Science Portals.

Additional ancillary data providers are indicated in the text. We

also acknowledge two anonymous reviewers and the topical editor

for their comments, which significantly improved the manuscript.

Edited by: P. Chapman

References

Agawin, N. S. R., Duarte, C. M., and Agusti, S.: Nutrient and tem-

perature control of the contribution of picoplankton to phyto-

plankton biomass and production, Limnol. Oceanogr., 45, 591–

600, 2000.

Alvain, S., Moulin, C., Dandonneau, Y., and Loisel, H.: Seasonal

distribution and succession of dominant phytoplankton groups in

the global ocean: A satellite view, Global Biogeochem. Cy., 22,

GB3001, doi:10.1029/2007GB003154, 2008.

Ocean Sci., 12, 561–575, 2016 www.ocean-sci.net/12/561/2016/

http://dx.doi.org/10.1594/PANGAEA.859005
https://doi.pangaea.de/10.1594/PANGAEA.859005
https://doi.pangaea.de/10.1594/PANGAEA.859005
http://oceancolor.gsfc.nasa.gov/cms/citations
http://dx.doi.org/10.5194/os-12-561-2016-supplement
http://dx.doi.org/10.1029/2007GB003154


T. S. Kostadinov et al.: Carbon-based phytoplankton size classes 573

Antoine, D., André, J. M., and Morel, A.: Oceanic primary pro-

duction 2. Estimation at global scale from satellite (coastal zone

color scanner) chlorophyll, Global Biogeochem. Cy., 10, 57–69,

1996.

Behrenfeld, M. J. and Falkowski, P. G.: A consumer’s guide to phy-

toplankton primary productivity models, Limnol. Oceanogr., 42,

1479–1491, 1997a.

Behrenfeld, M. J. and Falkowski, P. G.: Photosynthetic rates de-

rived from satellite-based chlorophyll concentration, Limnol.

Oceanogr., 42, 1–20, 1997b.

Behrenfeld, M. J., Boss, E., Siegel, D. A., and Shea, D. M.:

Carbon-based ocean productivity and phytoplankton physi-

ology from space, Global Biogeochem. Cy., 19, GB1006,

doi:10.1029/2004GB002299, 2005.

Behrenfeld, M. J., O’Malley, R. T., Siegel, D. A., McClain, C. R.,

Sarmiento, J. L., Feldman, G. C., Milligan, A. J., Falkowski, P.

G., Letelier, R. M., and Boss, E. S.: Climate-driven trends in con-

temporary ocean productivity, Nature, 444, 752–755, 2006.

Boss, E., Twardowski, M. S., and Herring, S.: The shape of the par-

ticulate beam attenuation spectrum and its relation to the size

distribution of oceanic particles, Appl. Optics, 40, 4885–4893,

2001.

Bracher, A., Vountas, M., Dinter, T., Burrows, J. P., Röttgers, R.,

and Peeken, I.: Quantitative observation of cyanobacteria and

diatoms from space using PhytoDOAS on SCIAMACHY data,

Biogeosciences, 6, 751–764, doi:10.5194/bg-6-751-2009, 2009.

Brewin, R. J. W., Sathyendranath, S., Hirata, T., Lavender, S. J.,

Barciela, R., and Hardman-Mountford, N. J.: A three-component

model of phytoplankton size class for the Atlantic Ocean, Ecol.

Model., 221, 1472–1483, 2010.

Cabré, A., Marinov, I., and Leung, S.: Consistent global re-

sponses of marine ecosystems to future climate change across

the IPCC AR5 earth system models, Clim. Dynam., 1–28,

doi:10.1007/s00382-014-2374-3, 2014.

Carr, M.-E., Marjorie, A. M., Friedrichs, M., Schmeltz, M., Aita,

N., Antoine, D., Arrigo, K. R., Asanuma, I., Aumont, O., Bar-

ber, R., Behrenfeld, M., Bidigare, R., Buitenhuis, E. T., Camp-

bell, J., Ciotti, A., Dierssen, H., Dowell, M., Dunne, J., Esaias,

W., Gentili, B., Gregg, W., Groom, S., Hoepffner, N., Ishizaka,

J., Kameda, T., Le Quéré, C., Lohrenz, S., Marra, J., Mélin,

F., Moore, K., Morel, A., Reddy, T. E., Ryan, J., Scardi, M.,

Smyth, T., Turpie, K., Tilstone, G., Waters, K., and Yamanaka,

Y.: A comparison of global estimates of marine primary pro-

duction from ocean color, Deep-Sea Res. Pt II, 53, 741–770,

doi:10.1016/j.dsr2.2006.01.028, 2006.

Chisholm, S. W.: Phytoplankton Size, in: Primary productivity and

biogeochemical cycles in the sea, edited by: Falkowski, P. G.

and Woodhead, A. D., Plenum Press, New York, USA, 213–237,

1992.

Ciotti, A. and Bricaud, A.: Retrievals of a size parameter for phyto-

plankton and spectral light absorption by colored detrital matter

from water-leaving radiances at SeaWiFS channels in a continen-

tal shelf region off Brazil, Limnol. Oceanogr.-Meth., 4, 237–253,

2006.

Dugdale, R. C. and Wilkerson, F. P.: Low specific nitrate uptake

rate: A common feature of high-nutrient, low-chlorophyll marine

ecosystems, Limnol. Oceanogr., 36, 1678–1688, 1991.

Dunne, J. P., John, J. G., Shevliakova, E., Stouffer, R. J., Krasting,

J. P., Malyshev, S. L., Milly, P. C. D., Sentman, L. T., Adcroft,

A. J., Cooke, W., Dunne, K. A., Griffies, S. M., Hallberg, R.

W., Harrison, M. J., Levy, H., Wittenberg, A. T., Phillips, P. J.,

and Zadeh, N.: GFDL’s ESM2 Global Coupled Climate-Carbon

Earth System Models. Part II: Carbon System Formulation and

Baseline Simulation Characteristics, J. Climate, 26, 2247–2267,

doi:10.1175/jcli-d-12-00150.1, 2013.

DuRand, M. D., Olson, R. J., and Chisholm, S. W.: Phytoplankton

population dynamics at the Bermuda Atlantic Time-series station

in the Sargasso Sea, Deep-Sea Res. Pt. II, 48, 1983–2003, 2001.

Eppley, R. W. and Peterson, B. J.: Particulate organic matter flux

and planktonic new production in the deep ocean, Nature, 282,

677–680, 1979.

Eppley, R. W., Chavez, F. P., and Barber, R. T.: Standing stocks

of particulate carbon and nitrogen in the equatorial Pacific at

150◦W, J. Geophys. Res.-Oceans, 97, 655–661, 1992.

Falkowski, P. G. and Oliver, M. J.: Mix and match: how climate

selects phytoplankton, Nat. Rev. Microbiol., 5, 813–819, 2007.

Falkowski, P. G., Barber, R. T., and Smetacek, V.: Biogeochemical

Controls and Feedbacks on Ocean Primary Production, Science,

281, 200–206, 1998.

Fay, A. R. and McKinley, G. A.: Global open-ocean biomes: mean

and temporal variability, Earth Syst. Sci. Data, 6, 273–284,

doi:10.5194/essd-6-273-2014, 2014.

Field, C. B., Behrenfeld, M. J., Randerson, J. T., and Falkowski, P.:

Primary production of the biosphere: integrating terrestrial and

oceanic components, Science, 281, 237–240, 1998.

Fujiwara, A., Hirawake, T., Suzuki, K., and Saitoh, S.-I.: Remote

sensing of size structure of phytoplankton communities using op-

tical properties of the Chukchi and Bering Sea shelf region, Bio-

geosciences, 8, 3567–3580, doi:10.5194/bg-8-3567-2011, 2011.

Geider, R. J.: Light and Temperature Dependence of the Carbon to

Chlorophyll a Ratio in Microalgae and Cyanobacteria: Implica-

tions for Physiology and Growth of Phytoplankton, New Phytol.,

106, 1–34, 1987.

Geider, R. J., MacIntyre, H. L., and Kana, T. M.: A dynamic reg-

ulatory model of phytoplanktonic acclimation to light, nutrients,

and temperature, Limnol. Oceanogr., 43, 679–694, 1998.

Graff, J. R., Milligan, A. J., and Behrenfeld, M. J.: The measure-

ment of phytoplankton biomass using flow-cytometric sorting

and elemental analysis of carbon, Limnol. Oceanogr.-Meth., 10,

910–920, 2012.

Graff, J. R., Westberry, T. K., Milligan, A. J., Brown, M. B.,

Dall’Olmo, G., van Dongen-Vogels, V., Reifel, K. M., and

Behrenfeld, M. J.: Analytical phytoplankton carbon measure-

ments spanning diverse ecosystems, Deep-Sea Res. Pt. I, 102,

16–25, 2015.

Gregg, W. W.: Assimilation of SeaWiFS ocean chlorophyll data

into a three-dimensional global ocean model, J. Marine Syst., 69,

205–225, doi:10.1016/j.jmarsys.2006.02.015, 2008.

Gregg, W. W., Casey, N. W., O’Reilly, J. E., and Esaias, W. E.: An

empirical approach to ocean color data: Reducing bias and the

need for post-launch radiometric re-calibration, Remote Sens.

Environ., 113, 1598–1612, 2009.

Gundersen, K., Orcutt, K. M., Purdie, D. A., Michaels, A. F., and

Knap, A. H.: Particulate organic carbon mass distribution at the

Bermuda Atlantic Time-series Study (BATS) site, Deep-Sea Res.

Pt. II, 48, 1697–1718, 2001.

www.ocean-sci.net/12/561/2016/ Ocean Sci., 12, 561–575, 2016

http://dx.doi.org/10.1029/2004GB002299
http://dx.doi.org/10.5194/bg-6-751-2009
http://dx.doi.org/10.1007/s00382-014-2374-3
http://dx.doi.org/10.1016/j.dsr2.2006.01.028
http://dx.doi.org/10.1175/jcli-d-12-00150.1
http://dx.doi.org/10.5194/essd-6-273-2014
http://dx.doi.org/10.5194/bg-8-3567-2011
http://dx.doi.org/10.1016/j.jmarsys.2006.02.015


574 T. S. Kostadinov et al.: Carbon-based phytoplankton size classes

Hirata, T.: Satellite Phytoplankton Functional Type Algorithm In-

tercomparison Project, available at: http://pft.ees.hokudai.ac.jp/

satellite/index.shtml, last access: 11 March 2015.

Hirata, T., Hardman-Mountford, N. J., Brewin, R. J. W., Aiken,

J., Barlow, R., Suzuki, K., Isada, T., Howell, E., Hashioka, T.,

Noguchi-Aita, M., and Yamanaka, Y.: Synoptic relationships be-

tween surface Chlorophyll-a and diagnostic pigments specific

to phytoplankton functional types, Biogeosciences, 8, 311–327,

doi:10.5194/bg-8-311-2011, 2011.

Hirata, T., Hardman-Mountford, N., and Brewin, R. J. W.: Com-

paring satellite-based phytoplankton classification methods, Eos

Trans. AGU, 93, 2012.

IOCCG: Phytoplankton Functional Types from Space, edited by:

Sathyendranath, S., Reports of the International Ocean-Colour

Coordinating Group, No. 15, IOCCG, Dartmouth, Canada, 2014

Jennings, B. R. and Parslow, K.: Particle Size Measurement: The

Equivalent Spherical Diameter, Proc. R. Soc. Lon. Ser.-A, 419,

137–149, 1988.

Junge, C. E.: Air Chemistry and Radioactivity, Academic Press Inc.,

New York, USA, and London, UK, 382 pp., 1963.

Kostadinov, T. S.: Satellite retrieval of phytoplankton functional

types and carbon via the particle size distribution, PhD disser-

tation, University of California, Santa Barbara, CA, USA, 2009.

Kostadinov, T. S., Siegel, D. A., Maritorena, S., and Guillocheau,

N.: Ocean color observations and modeling for an optically com-

plex site: Santa Barbara Channel, California, USA, J. Geophys.

Res. 112, C07011, doi:10.1029/2006JC003526, 2007.

Kostadinov, T. S., Siegel, D. A., and Maritorena, S.: Re-

trieval of the particle size distribution from satellite ocean

color observations, J. Geophys. Res.-Oceans, 114, C09015,

doi:10.1029/2009JC005303, 2009.

Kostadinov, T. S., Siegel, D. A., and Maritorena, S.: Global vari-

ability of phytoplankton functional types from space: assessment

via the particle size distribution, Biogeosciences, 7, 3239–3257,

doi:10.5194/bg-7-3239-2010, 2010.

Kostadinov, T. S., Siegel, D. A., Maritorena, S., and Guillocheau,

N.: Optical assessment of particle size and composition in the

Santa Barbara Channel, California, Appl. Optics, 51, 3171–3189,

2012.

Kostadinov, T. S., Cabré, A., Vedantham, H., Marinov, I., Bracher,

A., Brewin, R., Bricaud, A., Hirata, T., Hirawake, T., Hardman-

Mountford, N., Mouw, C., Roy, S., and Uitz, J. Inter-Comparison

of Phytoplankton Functional Types Derived from Ocean Color

Algorithms and Earth System Models: Phenology, Remote Sens.

Environ., submitted, 2016a.

Kostadinov, T. S., Milutinovic, S., Marinov, I., and Cabré, A.:

Size-partitioned phytoplankton carbon concentrations retrieved

from ocean color data, links to data in netCDF format,

doi:10.1594/PANGAEA.859005, 2016b.

Le Quéré, C., Harrison, S. P., Prentice, I. C., Buitenhuis, E. T., Au-

mont, O., Bopp, L., Claustre, H., Cunha, L. C. D., Geider, R., Gi-

raud, X., Klaas, C., Kohfeld, K. E., Legendre, L., Manizza, M.,

Platt, T., Rivkin, R. B., Sathyendranath, S., Uitz, J., Watson, A.

J., and Wolf-Gladrow, D.: Ecosystem dynamics based on plank-

ton functional types for global ocean biogeochemistry models,

Glob. Change Biol., 11, 2016–2040, 2005.

Loisel, H. and Stramski, D.: Estimation of the inherent optical prop-

erties of natural waters from irradiance attenuation coefficient

and reflectance in the presence of Raman scattering, Appl. Op-

tics., 39, 3001–3011, 2000.

Loisel, H., Nicolas, J.-M., Sciandra, A, Stramski, D., and Poteau,

A.: Spectral dependency of optical backscattering by marine par-

ticles from satellite remote sensing of the global ocean, J. Geo-

phys. Res., 111, C09024, doi:10.1029/2005JC003367, 2006.

Longhurst, A. R.: Ecological Geography of the Sea, 2nd ed., Aca-

demic Press, Burlington, USA, 560 pp., 2007.

Marañon, E.: Cell Size as a Key Determinant of Phytoplankton

Metabolism and Community Structure, Annu. Rev. Mar. Sci., 7,

241–264, doi:10.1146/annurev-marine-010814-015955, 2015.

Marinov, I., Doney, S., Lima, I., Lindsey, K., Moore, K.

and Mahowald, N.: North-South asymmetry in the modeled

phytoplankton community response to climate change over

the 21st century, Global Biogeochem. Cyc., 27, 1274–1290,

doi:10.1002/2013GB004599, 2013.

Maritorena, S., Siegel, D. A., and Peterson, A. R.: Optimization of

a semianalytical ocean color model for global-scale applications,

Appl. Optics, 41, 2705–2714, 2002.

Menden-Deuer, S. and Lessard, E.: Carbon to volume relationships

for dinoflagellates, diatoms, and other protist plankton, Limnol.

Oceanogr., 45, 569–579, 2000.

Mie, G.: Beiträge zur Optik trüber Medien, speziell kolloidaler Met-

allösungen, Annalen der Physik, 330, 377–445, 1908.

Mouw, C. B. and Yoder, J. A.: Optical determination of phytoplank-

ton size composition from global SeaWiFS imagery, J. Geophys.

Res.-Oceans, 115, C12018, doi:10.1029/2010JC006337, 2010.

NASA Goddard Space Flight Center: Ocean Biology Distributed

Active Archive Center, Sea-viewing Wide Field-of-view Sen-

sor (SeaWiFS) Ocean Color Data, NASA OB.DAAC, Greenbelt,

MD, USA, Reprocessing R2010.0, last access: 30 January 2012,

Maintained by NASA Ocean Biology Distributed Active Archive

Center (OB.DAAC), Goddard Space Flight Center, Greenbelt

MD, 2010.

O’Reilly, J. E., Maritorena, S., Mitchell, B. G., Siegel, D. A.,

Carder, K. L., Garver, S. A., Kahru, M., and McClain, C. R.:

Ocean color chlorophyll algorithms for SeaWiFS, J. Geophys.

Res., 103, 24937–24953, 1998.

Otero, M. and Siegel, D. A.: Spatial and temporal characteristics of

sediment plumes and phytoplankton blooms in the Santa Barbara

Channel, Deep-Sea Res. Pt. II, 51, 1129–1149, 2004.

Oubelkheir, K. J., Claustre, H., Sciandra, A., and Babin, M.:

Bio-optical and biogeochemical properties of different trophic

regimes in oceanic waters, Limnol. Oceanogr., 50, 1795–1809,

2005.

Raitsos, D. E., Lavender, S. J., Maravelias, C. D., Haralabous, J.,

Richardson, A. J., and Reid, P.: Identifying four phytoplankton

functional types from space: An ecological approach, Limnol.

Oceanogr., 53, 605–613, 2008.

Reynolds, R. A., Stramski, D., Wright, V. M., and Woźniak,
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