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Supplement		
to	Kostadinov,	Milutinović,	Marinov	and	Cabré,	"Carbon‐Based	Phytoplankton	Size	
Classes	Retrieved	via	Ocean	Color	Estimates	of	the	Particle	Size	Distribution"	

S1.	Additional	Methodology	Information	

S1.1.	Details	of	Allometric	Relationships	Application	
There is some variation in the literature regarding the integration limits of Eq. 4 and the cut-
off values that are used in definition of the PSCs, because they are rather arbitrary.  The 
only objective cut-off value is that for the minimum autotrophic picoplankton size (0.5 
µm), as this is the reported ESD of the smallest known marine photosynthesizer (Partensky 
et al., 1999). The maximum size threshold for unicellular phytoplankton is not as clear and 
we settle on 50 µm, since larger algal cells are seldom encountered even in eutrophic 
conditions (Charles Stock, personal communication, 2013) and are particularly rare in the 
open ocean (Roy et al., 2013). 
 
The parameters a and b in Eq. 4, pertaining to the groups of phytoplankton that are relevant 
for this study, are selected from MDL2000 and are presented in Table S1.  C biomass is 
estimated using more than one allometric relationship in order to achieve a globally 
applicable solution.  The biomass of picoplankton is computed by implementing the 
parameters for cells with volume below 3000 µm3 (D < 17.894 µm) in Eq. 4 for D from 0.5 
µm to 2 µm. Nanoplankton biomass is computed by combining all the three sets of a and b 
values listed in Table S1. The first set (same as for picoplankton) is used in Eq. 4 for D 
between 2 µm and 17.894 µm. The second (for generic non-diatomaceous phytoplankton) 
and third set (for diatoms above 3000 µm3) are applied separately for D between 17.894 µm 
and 20 µm and the results are averaged and added to the result of applying the first set of 
parameters, obtaining the overall nanoplankton biomass. Similarly, microplankton biomass 
is determined as the arithmetic mean of the respective output of Eq. 4 when the second and 
the third sets of a and b values are used for D from 20 µm to 50 µm. The biomass of the 
entire phytoplankton community (0.5 µm  D  50 µm) is the sum of the respective 
biomass values for the three PSCs. 
 
Analytical solution of the integral of Eq. 4 thus results in the following expression for a 
given size class:  
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In the above equation, p represents the number of distinct sets of allometric coefficients 
used, i.e. p = 3 for total carbon and nanoplankton, p = 1 for picoplankton, and p = 2 for 
microplankton. Table S2 lists the weights wi applied for each allometric relationship.  The 
Dmax and Dmin values are selected as appropriate from the size ranges of the size class or the 
limits of applicability of the ith allometric relationship (Table S2).  Eq. S1 is not valid when 
the denominator is exactly 0.  In the very few cases when this happens operationally to 
within double floating point precision, the value of the PSD slope is nudged by a very small 
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value (much smaller than its uncertainty). The resulting operational allometric relationship 
is plotted in Fig. S1. 

S1.2	Phytoplankton	Carbon	Estimates	from	Earth	System	Models	
Phytoplankton carbon was also derived from the output of a group of Earth System 
simulations from the recent Coupled Model Intercomparison Project CMIP5 (Taylor et al., 
2012).  CMIP5 model output was downloaded from http://pcmdi9.llnl.gov/esgf-web-fe/.  
The models and their basic characteristics are summarized in Table S3.  The marine 
biogeochemical routine for models CanESM2 and MRI-ESM1 is based on the basic NPZD 
(Nutrient Phytoplankton Zooplankton Detritus) structure with only one phytoplankton type 
and one nutrient (nitrate).  The complexity increases with MPI-ESM, NorESM1, 
HadGEM2, and GISS-E2 via inclusion of more nutrients (nitrate, silicate, iron) and 
additional types of phytoplankton for HadGEM2 and GISS-E2.   Finally, IPSL-CM5, 
GFDL-ESM2, and CESM1-BGC are the most ecologically complex models, with at least 2 
types of phytoplankton, zooplankton types, more than 20 biogeochemical tracers, and 
inclusion of ballast in the last two models.  
 
We derive the ensemble mean phytoplankton C from 21 years of “present” historical output 
(1990 to 2010) of the variable ‘phyc’ (“total phytoplankton carbon concentration”).  Molar 
concentration provided by the models (mol C m-3) was converted to mass concentration 
(mg C m-3) using the atomic weight of carbon (12.011 g/mol, Wieser et al., 2013).   The 
“present” output is mostly based on the historical scenario (years 1850 to 2005) forced by 
observed atmospheric changes (both anthropogenic and natural).  The last five years (2006 
to 2010) of the "present" output are based on the RCP8.5 scenario. We selected 14 models 
with different resolutions (ocean grid varies from 0.5º to 2º) and complexities in their 
biogeochemical and ecological modules, as described in Table S3.  All model output was 
resampled to a 1o grid before calculating first the temporal average of each model 
individually, and then averaging each model's climatology to obtain the ensemble mean 
model climatology.  Because of significant similarities between model pairs (Cabré et al., 
2014), when computing ensemble averages we used weights as in Table S3.  Before 
computing averages, biomass values below 0 were set to missing data, and in the case of 
the MRI-ESM1 model values below 0.01 mg m-3 C were also set to missing values.  Those 
occur primarily along the coasts and are considered a numerical artifact (most are ~ 10-18 
mg m-3 C in areas where biomass is expected to be high). 

S1.3.	In‐situ	POC‐PSD	Closure	Analysis	
In-situ closure (i.e. agreement) between POC and PSD data was investigated as verification 
(proof-of-concept) of the allometric methodology presented here.  Nearly coincident 
observations of both PSD (Coulter Counter measurements) and POC (analytical chemical 
determinations) from Atlantic Meridional Transect (AMT) cruises 2, 3 and 4, conducted in 
1996 and 1997, were obtained from the British Oceanographic Data Centre (BODC, 
http://www.bodc.ac.uk/).  The 2 – 20 m diameter range of the PSD data was used to fit a 
regression line on the log10-transformed, bin-width normalized data, yielding estimates of 
the PSD parameters,  and No.  These were used as inputs to Eq. S1 to estimate allometric 
phytoplankton C from the PSD data.  Chemical POC data were provided in units of 
mol/L, which were converted to mg m-3 using carbon’s atomic weight of 12.011 g/mol 
(Wieser et al., 2013).   The nominal pore size of GF/F filters used in field measurements of 
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POC (e.g. S08; Kostadinov et al., 2012) is 0.7 m, and the water was pre-filtered with a 
pore size of 200 m, so only the 0.7 m to 200 m fraction is measured as POC.  
Phytoplankton C was then estimated from POC by multiplication by 1/3.  Match-ups were 
then constructed between the two methods of estimating phytoplankton carbon 
concentration, considering two data points a valid match-up only if they were closer than 
4.24 km from each other (diagonal of a 3x3 km box), samples were taken within 3 hours of 
each other, and within 15 m vertical separation.  Using these criteria 44 match-ups were 
obtained.  

S1.4.	Propagation	of	Uncertainty	to	Carbon	Products	and	Composite	
Imagery	
The proximal input parameters of the absolute and fractional C-based PSC algorithm are 
the PSD slope , the No parameter, and up to six allometric coefficients (Tables S1 and S2).  
Uncertainties (in terms of standard deviation) in these input parameters are propagated to 
the algorithm products on a per-pixel basis.  The uncertainty of absolute or fractional 
carbon concentration, C, in any size class is estimated as   
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This is the standard analytical approximation of error propagation formulation (e.g. Ku, 
1966).  The partial derivatives of C with respect to the input parameters are calculated 
analytically from Eq. S1, where p = 1, 2 or 3 depending on the size class (Tables S1 and S2, 
Sect. S1.1).  The KSM09 algorithm provides standard deviations of the output PSD 
parameters as a quantification of partial uncertainty.  The MDL2000 allometric coefficients 
are derived from linear regressions and their 95% confidence intervals are provided.  These 
were converted to standard deviations by dividing by the respective cumulative t-
distribution value for each case (Tables S1 and MDL2000, their Table 4).   Note that 
covariances among the input parameters are ignored in Eq. S2, which can lead to under- or 
overestimation depending on the signs of the covariance and the derivatives.  The estimate 
in Eq. S2 represents only a part of the uncertainty in C, because only parts of the PSD 
parameters' uncertainties are quantifiable and provided by KSM09.  Unquantified sources 
of error are discussed qualitatively in Sect. 3.6 and S6.   
 
Monthly and overall mission temporally averaged (composite) imagery was computed from 
the respective monthly maps of the carbon-based products as the arithmetic mean (in linear 
space) of all available monthly data for a given pixel.  Uncertainties of the composite 
imagery data were determined as  
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where k  is the standard deviation for the kth month of the complete time series, out of a 

total of N available months.  See Fig. S4 for a map of N.  The process of averaging when 
producing composite imagery further reduces random errors (Eq. S3), but not consistent 
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bias (e.g. Milutinović and Bertino, 2011).  Therefore, uncertainties in a single image 
produced from the input parameters are qualitatively different from uncertainties in a 
composite image produced by averaging multiple carbon product images with individually 
propagated errors.  In this work we produce PSD-based products from monthly SeaWiFS 
imagery and propagate errors to each monthly image.  The errors in any composite imagery 
are then calculated from the errors of the individual images participating in the averaging.  
Absolute uncertainties are discussed here in terms of one standard deviation, in the same 
units as the variable.  
 
Averaging for composite imagery was not weighted by the inverse of the variance (2) in 
composite imagery as it was done by Maritorena et al. (2010) (their Eq. 2) so as to not bias 
the data to lower values. This is because this weighting is only appropriate when the 
measurements from the same underlying random value distribution are made (i.e. on a 
spatio-temporal scale on which the ocean is not expected to change intrinsically, S. 
Maritorena, pers. comm.), and further because our error structure is such that error values 
are proportional to the value of the retrieved parameter (the latter is especially true for the 
absolute carbon retrievals, and much less so for the fractional PSCs).    
 
The C products are not linear in the PSD slope (Eq. S1) or the underlying backscattering 
coefficients and Rrs() values. The absolute C concentrations are linear in No, but not in the 
logarithm of No, and No is averaged temporally in log-space. Since various steps of the 
algorithm are not linear, calculating the C products from a composite image of Rrs() or the 
PSD parameters and calculating them from individual imagery and then averaging are not 
equivalent.  This work uses monthly SeaWiFS maps, but in the future processing is planned 
from daily imagery in order to address this issue.    

S1.5. Algorithm Output Analyses and Ancillary Data 
In order to investigate relationships of the novel C-based products with Chl concentration, 
monthly mapped SeaWiFS 9 km OC4v6 Chl [mg m-3] (O'Reilly et al., 2000), was obtained 
from NASA OBPG (the Ocean Biology Distributed Active Archive Center (OB.DAAC)) 
(reprocessing R2010.0).  The mission composite was also obtained in order to study 
climatological relationships.  The mission composite Chl image was downsampled to 1o 
resolution using 2D convolution and the 0.08 mg m-3 isoline of Chl was extracted in order 
to delineate the subtropical gyres on maps.  For comparison purposes, phytoplankton C 
biomass was also estimated using the B05 method with the same LAS2006-derived 
bbp(443) as used in the PSD-based algorithm.  POC was retrieved using the S08 algorithms 
(using the Rrs(490)/Rrs(555) band ratio parameterized with all data, see their Table 2). The 
same R2010.0 SeaWiFS reflectances were used as for our algorithm.  The POC retrievals 
were multiplied by 1/3 to approximate the living fraction. 
 
The assumptions of the C biomass algorithm are more likely to be violated in shallow 
coastal regions, where non-biogenic particles may contribute to backscattering significantly 
(e.g. Toole et al., 2001; Otero and Siegel, 2004). We thus excluded the continental shelves 
from some analyses as indicated. The shelves were identified as areas shallower than 200 m 
and determined using the bathymetry data from the NOAA/NGDC ETOPO1 data set 
(Amante and Eakins, 2009), downsampled to 9 km or 1o resolutions as needed.  In order to 
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display the coastline on maps, the L1 layer of the GSHHG v2.2.3 (Wessel and Smith, 1996) 
coastline data set was extracted with the NOAA/NGDC GEODAS-NG software.    
 
In order to estimate global phytoplankton C biomass standing stock within the mixed layer, 
monthly mixed layer depth (MLD) for the 1997-2010 SeaWiFS mission period was 
computed from the UK Met Office Hadley Centre’s monthly global objective analyses 
fields of seawater potential temperature and salinity (version EN3_v2a) (Ingleby and 
Huddleston, 2007). The fields were provided on a regular grid of 1 longitude/latitude 
resolution and 42 unequally spaced depth levels. For each grid cell and depth, seawater 
density was computed using the equation of state of seawater (UNESCO et al., 1980). 
Linear interpolation was then applied to every respective vertical profile of temperature and 
density to compute MLD, using the threshold approach of de Boyer Montégut et al. (2004) 
(0.2C or 0.03 kg m-3). Following their recommendation, the shallower of the 
temperature- and density-based values was chosen as the best estimate of MLD.  Monthly 
and overall SeaWiFS-era global MLD composites were computed from the resulting MLD 
maps using the median of all available MLD values in a particular grid cell. We selected the 
median because it is a more representative measure of central tendency for MLD than the 
mean, as was shown by de Boyer Montégut et al. (2004).  
 
Global phytoplankton C biomass stock was computed from the monthly and overall 
mission composites that were first downsampled from 9-km to 1o resolution in log10 space 
using a 2D convolution kernel of size 12x12.  Using composites and downsampling them is 
a spatio-temporal gap filling technique as it reduces or eliminates data gaps that would bias 
the global estimate.  Since ocean color data are not vertically resolved, we assume that the 
vertical profile of phytoplankton C biomass is uniform down to the mixed layer depth 
(MLD).  Thus biomass stock was computed by multiplying surface satellite estimates of C 
biomass by the corresponding MLD value, and all valid pixels were summed after also 
multiplying by the pixel area.  Pixel area was approximated using the area integral on a 
spherical Earth.  Biomass stock was computed for the entire ocean as well the deep ocean, 
excluding the shelves.  For comparison purposes biomass stock was computed also with the 
B05 and S08 climatologies, as well as the CMIP5 ensemble climatologies.  These biomass 
values were derived using only those pixels (at 1o resolution) where none of the datasets 
(MLD, satellite-derived, or CMIP5-based) was missing data.  Total areas for which the 
computation was done were estimated from the 1o ETOPO1-based bathymetry; total ocean 
area computed this way (3.608*108 km2) is in close agreement with the 3.619*108 km2 
estimate of Eakins and Sharman (2010).  The carbon biomass and area calculations exclude 
the Caspian Sea and other major lake bodies.  Overall climatology of NCEP MLD values 
on a 1-degree grid were also used to calculate global phytoplankton carbon biomass stock 
as a comparison.  

S1.6. Algorithm Validation with In-situ POC Measurements  
A validation search was performed against the SeaBASS in-situ bio-optical data set 
(Werdell et al., 2003) maintained by NASA's OBPG 
(http://seabass.gsfc.nasa.gov/seabasscgi/search.cgi, accessed and match-up search 
performed Nov. 30, 2015.).  In-situ POC measurements from SeaBASS were matched with 
SeaWiFS Rrs() determinations at 412, 443, 490, 510 and 555 nm, using SeaWiFS 
reprocessing R2014.0 (note that the rest of the analysis in this manuscript used reprocessing 
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R2010.0) and the default match-up criteria provided by the online match-up search tool 
(link above).  All water depths were included. For more details of the match ups, see Bailey 
and Werdell (2006).  The matched-up SeaWiFS Rrs() values were used to generate the 
allometric PSD determinations of total phytoplankton carbon biomass, as well as the 
comparable estimates from the B05 and S08 approaches, as done in this manuscript for the 
satellite imagery (Sect. 2).  The empirical correction to the No parameter was applied (Sect. 
3.7).  The match-up analysis then compared the satellite estimates of phytoplankton carbon 
to the corresponding in-situ POC measurements multiplied by 1/3. 

S2. Details on Global Phytoplankton Carbon Stock 
Globally integrated mixed-layer algal C biomass values have been previously obtained by 
integrating remotely sensed Chl vertically and converting it to C using an assumed Chl:C 
ratio.  Such estimates range from 0.30 Gt C to 0.86 Gt C (Antoine et al., 1996; Behrenfeld 
and Falkowski, 1997b; Le Quéré et al., 2005).  Antoine et al. (1996) provide the highest 
estimate.  They integrated Chl profiles vertically from the surface to whichever was larger 
between MLD provided by Levitus (1982) and the depth where sunlight intensity 
diminishes to 0.1% of its sea-surface value (Z0.1%).  The MLD values of Levitus (1982) are 
likely deeper than those of de Boyer Montégut et al. (2004) applied here, because the 
former are based on considerably larger threshold criteria (0.5C for temperature and 0.125 
kg m-3 for density) than the latter (Sect. S1.5).  Also, Z0.1% can exceed MLD in warm 
oligotrophic waters, which cover a large proportion of the total ocean area. This was the 
case over ~60% of the global ocean area in the study of Antoine et al. (1996); in these cases 
they employed non-uniform vertical profiles of Chl (Morel and Berthon, 1989).  For these 
reasons, it is expected that the global ocean algal biomass estimate by Antoine et al. (1996) 
will be higher than the values we determined here. Similar reasoning holds for the 
respective estimates by Le Quéré et al. (2005) and Behrenfeld and Falkowski (1997b). 
Importantly, using alternative MLD fields such as the NCEP-based estimates can cause the 
estimates of Fig. 2 (also Fig. S7) to almost double (not shown), illustrating that global 
phytoplankton carbon biomass estimates are sensitive to the choice of integration depths. 
They are also expected to be sensitive to the assumption of uniformity of vertical profiles.    
 
High latitude areas are observable via ocean color remote sensing for only a part of the year 
due to low solar angles and the polar night (Fig. S4).  As a result, monthly climatological 
estimates of biomass from the three satellite methods (Fig. S8A) represent less area 
(between ~85% and ~95% of the total ocean area) which varies with the seasons.  The 
seasonal variation observed can thus be confounded by variation in the observed area.  In 
order to alleviate the problem with varying observable area by SeaWiFS and estimate a 
more representative global seasonal cycle, areas not observed by SeaWiFS were gap-filled 
with the corresponding CMIP5 model ensemble data and the monthly global time series 
were recomputed (Fig. S8B).  The main difference between Figs. S8A and S8B is that the 
seasonal amplitudes of all four data sets are decreased.  As a measure of seasonality, we 
consider the difference between the maximum and minimum values from Fig. S8B, as a 
percentage of the mean annual signal.  From the satellite data sets, the B05 and S08 
estimates exhibit stronger global seasonality (~28-29%) than our PSD-based approach 
(~19%). The PSD-based approach exhibits the highest percentage of biomass in the 
continental shelf areas of all data sets (but see empirical correction in Sect. 3.9 and Fig. S7).  
The CMIP5 models exhibit significantly stronger seasonality (~85%) that the satellite data 
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sets.  Importantly, the models exhibit a single annual peak in the austral summer, whereas 
the satellite data sets indicate highest global biomass in the transitional months near the 
equinoxes.  These differences in global seasonality of biomass stock between the satellite 
data and the models suggest that model representation may need improvement in areas that 
contribute substantially to the global biomass stock in certain parts of the year, such as the 
Southern Ocean and/or the North Atlantic.  However, satellite data also have issues such as 
underestimation of Chl in the Southern Ocean (Dierssen and Smith, 2000; Garcia et al., 
2005; Kahru and Mitchell, 2010), indicating that ocean color products in general may be 
suspect in this undersampled part of the ocean.  The special bio-optical character of the 
Southern Ocean is evidenced elsewhere (Uitz et al., 2006), indicating that regionally tuned 
satellite algorithms may be required. The area is also hard to observe due to high latitudes 
and cloudiness.  This stresses the need for high quality in-situ observations of this region 
that contributes significantly to the global biological pump (Marinov et al., 2008). 

S3.	Carbon‐based	vs.	Volume‐based	PSCs	
The carbon-based PSCs constitute a recast of the volume fraction PSCs of Kostadinov et al. 
(2010).  As such, both are PSD-based and are only functions of the PSD slope  (the No 
parameter cancels when taking the ratio of Eq. S1 for different size classes) for a given set 
of allometric coefficients and size limits of integration.  This recast to carbon via the 
allometric relationships leads to a modification of the functions but a preservation of their 
general shape and tendencies as a function of  (Fig. 5).  The values of the allometric 
coefficients are a reflection of the fact that smaller phytoplankton cells are more carbon 
dense than larger cells (MDL2000; Moal et al., 1987; Verity et al., 1992).  According to the 
relationships in MDL2000, the tiniest phytoplankton (ESD = 0.5 m) contain close to 5.5 
times more carbon per unit cell volume than the largest phytoplankton cell considered in 
this study (ESD = 50 m) (Fig. S1).  This results in higher C-based picoplankton fractions 
when they are based on C as compared to volume-based ones, for all PSD slopes, and the 
opposite is true of microplankton (Fig. 5).  The sign of this difference depends on the PSD 
slope for nanoplankton, but for most of the ocean ( > ~3.5) C-based nanoplankton 
fractions are lower than volume-based values, with the exception of some limited areas 
with very low PSD values, such as the northern North Atlantic, the confluence zone of the 
Brazil and Falkland/Malvinas Currents and the thin coastal bands of the Weddell and Ross 
Seas (not shown).  

S4.	Details	on	the	C‐based	PSCs	vs.	Chl	Relationships	
For picoplankton, Hirata et al. (2011) also observe a sigmoid curve, but it is inflected the 
opposite way from our Fig. 7B.  This could be due to the fact that physiological adaptations 
may lead to changes in pigment composition without changes in size structure or carbon 
biomass.  A fruitful approach for further investigation would be to focus on blending these 
two approaches to derive more information about oceanic ecosystems.  Both approaches 
agree remarkably well on the general shape of nanoplankton contribution as a function of 
eutrophic state (cf. our Figs. 5 and 7C with their Fig. 2b), indicating maximum 
nanoplankton fraction at transitional, intermediate eutrophic states, with nanoplankton 
never exceeding about 50%.  This is encouraging because this limit of the PSD-based 
model is a result of the mathematical formulation, whereas the Hirata et al. (2011) result is 
based on empirical diagnostic pigment observations.  However, the shape of this curve is 
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not well observed for high Chl values on the bivariate histogram (Fig. 7C) and Hirata et al. 
(2011) observe a higher maximum than the PSD method.  Finally, for microplankton the 
curve shapes agree well, but Hirata et al. (2011) fractions reach values up to 80% for high 
Chl, whereas our PSD-based algorithm rarely exceeds 50% (cf. our Figs. 5 and 7D  with 
their Fig. 2C). 

S5.	Sensitivity	to	PSD	Parameters	and	the	Limits	of	
Integration	
Here we investigate the sensitivity of the carbon-based products to the input parameters, i.e. 
the PSD parameters and the limits of integration of Eq.  4.  Only the upper limit, Dmax, is 
analyzed because there are firm biological reasons to set the lower limit at Dmin = 0.5 m 
(Sect. S1.1), while the upper limit is ambiguous (e.g. Sieburth et al., 1978, Brewin et al., 
2010, Uitz et al., 2006, Aiken et al., 2008).  Note, however, that Hirata et al. (2011) and 
Roy et al. (2013) use different picoplankton limits. This sensitivity analysis is important 
because total uncertainties are a function not only of the uncertainties of the inputs, but also 
of the derivatives of the outputs with respect to the inputs (Eq. S2).          
 
The effect of varying Dmax from the operational value of 50 m to 200 m is largest for low 
PSD slopes (Fig. S9A) and does not exceed ~25% for fractional C-based nanoplankton, 
somewhat less for microplankton, and much less for picoplankton.  The effect diminished 
quickly for larger PSD slopes and is quite small for  > 4 (covering most of the ocean, see 
histogram in Fig. S9A).  Using the operational limit globally may cause an underestimation 
of microplankton contributions and instead may attribute this carbon mostly to 
nanoplankton, in the eutrophic productive areas of the ocean, during episodes when cells 
substantially larger than ~50 m ESD are present in the bloom.  The present algorithm is a 
proof-of-concept approach that is optimized for global applications, and there are reasons to 
believe the operational Dmax choice is the best (Sect. S1.1). 
 
Total phytoplankton carbon concentration is a relatively weak function of the PSD slope 
(Fig. S9B), especially around  = 4, where the derivative changes sign.  There is less than 
an order of magnitude variability in carbon over the entire range of PSD slope values.  In 
contrast, total carbon is a very strong function of the No parameter (Fig. S9C), leading to ~4 
order of magnitude variability with the realistic values for No.  C is a linear function of No 
(Eq. S1). This strong dependence is a very critical finding, illustrating than total carbon 
concentrations are driven mostly by No since it varies over logarithmic scales; in addition, 
the uncertainties in No are relatively higher and spatially uniform themselves (KSM09), 
accounting for most of the uncertainty in total carbon (Fig. S6A). To first order, efforts to 
improve carbon retrievals thus need to focus on No rather than other sources of error.   No 
has a similar effect on the carbon concentration in the different PSCs (Fig. S9C). The effect 
of varying Dmax is also shown, indicating that microplankton carbon is the only value 
affected more significantly, but only within much less than an order of magnitude.  In 
contrast, carbon in the different PSCs is a different function of  for each PSC (Fig. S9B), 
illustrating large variability for microplankton and smaller variability for pico- and 
nanoplankton.  As expected, increasing the PSD slope allocates more carbon to the smaller 
PSCs (at a fixed No).  Dmax variability only affects microplankton and total carbon 
concentrations at low PSD slopes (Fig. S9B), and this variability is generally smaller than 
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the quantifiable composite uncertainties (cf. Fig. 8A and Fig. S9B), unlike the effect of 
Dmax on fractional PSCs, which can be larger than the quantifiable composite uncertainties 
for low PSD values (cf. Fig. 8B and Fig. S9A). 	

S6.	Details	on	Algorithm	Assumptions	and	Additional	
Sources	of	Uncertainty	
The radiometric ocean color products (i.e. SeaWiFS Rrs() in this case), which are the 
initial input for the biomass algorithm, are associated with their own uncertainties, as is the 
output of the LAS2006 algorithm.  These uncertainties are not easy to quantify on a per-
pixel basis and are not provided directly by the algorithm developers.  Loisel et al. (2006) 
provide a detailed analysis of error sources for the spectral slope of backscattering.   These 
uncertainties are not included in the error budget presented here.  However, efforts are 
currently underway to provide a reasonable quantification of the effect of those 
uncertainties on the estimated spectral backscattering and its slope, and thus on the PSD 
and all downstream products.  
 
The PSD parameters are retrieved from the products of the LAS2006 algorithm via LUTs, 
which incorporate certain assumptions and uncertainties as well.  A detailed analysis of 
exogenous sources of uncertainties in the PSD parameters is provided in KSM09.  Here, a 
brief summary of the important points is provided.  The KSM09 algorithm assumes a 
power-law PSD as does the calculation of particle volume itself (Eq. 2).  While there are 
some indications that deviations from the power-law can be significant, especially in 
coastal waters (Reynolds et al., 2010), it remains a good first-order approximation 
especially in global applications (KSM09 and refs. therein).  Furthermore, the applicability 
of the power-law is assumed to hold over the entire diameter range of optically significant 
particles, including submicron particles, for which measurements are very scarce.  Mie 
scattering theory (Mie, 1908) assumes spherical and homogeneous particles, even though it 
is clear that these assumptions do not hold for living phytoplankton cells. Violations of 
these Mie theory assumptions are likely to be more severe in coastal and eutrophic areas 
where larger cells increase in importance (KSM09). To date, the backscattering budget is 
not satisfactorily closed (e.g. Stramski et al., 2004), i.e. there is considerable uncertainty in 
the sources of backscattering and their relative importance.  The assumption of biogenic 
origin of the backscattering particles is inherited from the interpretation of the PSD-
determined volume as biogenic (Kostadinov et al., 2010).  Note that inorganic particles 
such as coccoliths and even bubbles can contribute to backscattering (e.g. Balch et al, 2011; 
Randolph et al., 2014). The difficulty lies in the complexity and variability of the 
suspended particle assemblages in natural waters, and the limited theoretical abilities to 
model scattering (Quirantes and Bernard, 2004; Clavano et al., 2007).  Recent studies 
indicate that large phytoplankton may be responsible for more backscattering than Mie 
theory predicts (Dall’Olmo et al., 2009), and that significant fraction of backscattering 
variance is explained by nanoeukaryotes (Martinez-Vicente et al., 2013). 
 
As emphasized already, the expression of the PSCs in relative terms as fractions of C 
biomass has the distinct advantage of being only a function of the PSD slope  (for a given 
set of the allometric coefficients and limits of integration), since No cancels out.  For the 
calculation of the fractional PSCs, the contribution from non-autotrophic POC and non-
biogenic particles cancels, as long as their proportions when converted to C are reasonably 
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constant for a single observation (pixel) across all the size classes.  Since No is subject to 
larger uncertainties (KSM09) and it drives total carbon values to first order (Sect. S5), it is 
expected that the fractional PSCs are a more reliable and robust product.  In contrast, 
caution should be exercised when interpreting and using absolute carbon values.  The main 
source of uncertainty in No is the real part of the index of refraction of the particles, np, 
which is allowed to vary over a wide range in the KSM09 algorithm development.  
According to Mie theory, fewer particles with a higher real refractive index will cause the 
same amount of backscattering as would more particles of smaller refractive index and 
otherwise the same characteristics (e.g. Wozniak and Stramski, 2004).  This is confirmed in 
observational data sets (Neukermans et al., 2012). Therefore, the wide range of np used in 
the KSM09 LUT construction (1.025 to 1.2) results in large uncertainty in No retrievals, 
which is a measure of particle number concentration.  A single LUT is applied globally in 
the KSM09 algorithm.  In the open ocean, for example the oligotrophic gyres, mineral 
particle influences are expected to be minimal and thus np would be closer to 1.05, 
characteristic of organic particles, rather than closer to 1.2, which is characteristic of 
mineral particles (e.g. Wozniak and Stramski, 2004).  Therefore, by assuming larger overall 
values for np the LUT in KSM09 is likely to underestimate No over the open ocean (by 
attributing the backscattering to fewer particles of higher np than reality), and conversely, to 
possibly overestimate it in coastal areas where mineral particle influence could be more 
substantial.  This may explain the spatial range exaggeration seen in the PSD algorithm's 
retrieval, as compared to the other satellite approaches or the models (Figs. 1 and S3).  The 
KSM09 algorithm was designed for global operational applications (as is the carbon 
algorithm presented here), but it is expected that regionalizing the LUT based on a-priori 
knowledge of the specific particle assemblages will improve performance.  Importantly, 
this is the primary direction for improvement of our retrievals of absolute carbon 
concentrations, as No contributes to most of the uncertainty (Fig. S6A).  In order to address 
this issue, an empirical correction to No is introduced in Sect. 3.7.  Future research should 
also explore the feasibility of applying the relationship of the real index of refraction to 
intracellular carbon concentration (Stramski, 1999) in conceptually different scattering 
modelling that uses this relationship to model np, rather than treating it as a source of 
random error as in KSM09.  The feasibility of such an approach may improve with the 
advent of global space-borne hyperspectral ocean color sensors such as PACE.          
 
In contrast to the absolute concentrations, fractional PSC uncertainty is driven 
predominantly by uncertainties in the allometric coefficients over much of the ocean, and 
sometimes the PSD slope.  Thus, improvements in the fractional PSCs should focus mostly 
on the allometric coefficients, which come with their own set of assumptions and sources of 
error, only some of which are quantified as the regression coefficients' confidence intervals 
in MDL2000, i.e. the dispersion of the data around the statistical fit.  Sources of such errors 
could be, for example, combining the data coming from fixed and living cells, autotrophs 
and heterotrophs, and different morphology (thecate vs. athecate dinoflagellates). Other 
factors that contributed to the variance of the MDL2000 data set were (details in 
MDL2000): errors in cell dimension and C content measurements, deviations of cell shapes 
from the geometric approximations used to compute volume and considerable inter- and 
intra-specific variability in Ccell:Vcell ratios.  This variability necessitates the use of different 
allometric relationship for diatoms and other non-diatom large cells (Fig. S1).  This choice 
is based on the recommendation of MDL2000 that the biomass of mixed plankton be 
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determined by using one equation for diatoms and another for the remainder of unicellular 
plankton, treating cells above and below Vcell = 3,000 m3 differently.   
 
Additional uncertainties that are not captured by the variance of the MDL2000 allometric 
coefficients also exist.  For instance, it is not clear how representative these data are of 
natural phytoplankton assemblages.  The MDL2000 allometric relationships are based 
mostly on eukaryotes, with only two data points contributed by cyanophytes (prokaryotic).  
The bacteria are thus underrepresented in the derivation of the allometric relationships, and 
they are likely to be important, especially in oligotrophic waters.  In addition, the diameter 
range over which the MDL2000 relationships were derived was ~1.4 – 200 m, indicating 
that we are extrapolating these relationships a bit on the lower end, for submicron particles.  
Clearly, more laboratory work is required to determine reliably the carbon content of small 
cells, especially since Stramski (1999) observe large uncertainties comparing allometric 
estimates to their carbon estimates (Stramski et al., 1995) for Synechococcus.           
 
Growth conditions and growth phase could also significantly affect Ccell:Vcell ratios 
(Davidson et al., 2002). For example, the dinoflagellate cells that MDL2000 used to derive 
Ccell:Vcell relationships were grown in nutrient-replete cultures at a fixed temperature and 
light-dark cycle, and were harvested during exponential growth phase.   However, natural 
habitats often do not provide ideal conditions that can support continued exponential 
growth.  Mesocosm experiments conducted on a natural plankton community suggest that 
both nutrient limitation and the proportions of macronutrients may have considerable 
impacts on cellular C concentrations (Davidson et al., 2002).  Moal et al. (1987) observed a 
drop in cellular C concentration by between ~10% and ~60% after undergoing a shift from 
exponential to stationary growth.  Stramski et al. (1995) observed diel variations in cellular 
carbon content and intracellular carbon concentration for Synechococcus grown under 
natural light-dark cycles.   
 
Some of the above assumptions are necessary artifacts of the model formulation and clearly 
have no theoretical basis, such as the application of allometric conversion to non-
phytoplankton particles.  Others can be improved upon by more detailed knowledge of the 
ecosystems being studied, e.g. the 1/3 factor and the shape of the PSD.   Addressing these 
assumptions will require more observations and theoretical developments.  The algorithm 
presented here is a first order, proof-of-concept approach meant for global applications.  
Additional knowledge of the ecosystems being studied can be used to improve the 
estimates, for example if diatoms are known to be dominating a bloom based on an 
additional source of information, the allometric relationships specific to diatoms can be 
applied preferentially instead.  Taking a more integrated approach to PFT assessment has 
been studied (Raitsos et al., 2008), and future efforts should explore the possibility to 
leverage knowledge specific to biomes that are allowed to vary in time and space (Fay and 
McKinley, 2014) to tune the algorithm for them, including the underlying PSD LUTs (see 
below).   Furthermore, dynamic assessment of the POC:living C ratio should become more 
operationally feasible as more concurrent data become available from the field (Graff et al., 
2012; Graff et al, 2015).  
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Supplementary	Tables	
Table S1. The values of parameters a and b in the allometric Eq.3, as used in Eq. 4 and Eq. 
S1 in this study to convert volume to carbon.  Coefficient values are from Menden-Deuer 
and Lessard (2000), their Table 4.  Standard deviation of the regression coefficients are 
given in parentheses. The applicable diameter range for each allometric relationship and the 
weights applied to it (Eq. S1) are also given.  Vcell stands for cellular volume. 
 
Coefficient 

set # (i) 
Phytoplankton group log10(a) () b ( Diameter range 

applied to [m] 
Weight wi   

(Eq. 5) 
1 Vcell

* < 3000 µm3 -0.583 (0.080) 0.860 (0.030) 0.5 – 17.894 1 

2 All except diatoms -0.665 (0.066) 0.939 (0.021) 17.894-50 0.5 

3 Diatoms with Vcell > 
3000 µm3 

-0.933 (0.226) 0.881 (0.045) 17.894-50 0.5 

 
 
 
Table S2.  Size limits of integration (cellular diameter in m) applied to the three 
allometric relationships in Table S1 for the computation of carbon biomass in each size 
class.  These are the Dmin and Dmax values used in Eq. S1, with the corresponding weights wi 
(Table S1).  The allometric coefficients sets correspond to index i in Eqns. S1 and S2.  The 
resulting net volume to carbon relationship used in this study is plotted in Fig. S1.          
 
Size Class/Allometric 
coefficient Set Index i 

i = 1 i = 2 i = 3 

Picoplankton 0.5 – 2 -- -- 
Nanoplankton 2 - 17.894 17.894 - 20 17.894 – 20  
Microplankton -- 20 – 50  20 – 50  

Total C biomass 0.5 – 17.894 17.894 – 50  17.894 – 50 
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Table S3. Summary of the CMIP5 models that include phytoplankton biomass and primary 
production. The table includes: spatial resolution in the atmosphere and ocean, list of 
nutrient tracers, ecology subroutine, phytoplankton functional groups modelled, references, 
and weight we applied in the inter-model averages. 
	

 
Model 

 
Nutrients 

Ecology 
module 

Phytoplankton 
variables 

References Weight 

CanESM2 
N, (but also 
accounts for 
Fe limitation) 

NPZD based 
on Denman 
and Peña 
(1999).  

Generic phytoplankton 
Zahariev et al. 
(2008) 

1 

CESM1-BGC P, N,Fe,Si MET 
Diatoms, 
small phytoplankton, diazotrophs 

Moore et al. (2004), 
Moore et al. (2006) 

1 

GFDL-ESM2G 
(M) 

P,N,Fe,Si TOPAZ2 

Large phytoplankton (diatoms, 
greens, and other large 
eukaryotes), small 
phytoplankton (prokaryotic 
picoplankton and nanoplankton), 
and diazotrophs 

Dunne et al. (2013) 1 (1) 

HadGEM2-ES 
(CC) 

N,Fe,Si 
Diat- 
HadOCC 
(NPZD)  

Diatoms,  
non-diatoms 

Palmer and 
Totterdell (2001) 

0.5 (0.5) 

IPSL-CM5A-
MR (LR) 

P,N,Fe,Si 
PISCES (from 
HAMOCC5) 
 

Diatoms, nanophytoplankton 
(non-diatom). 
Diatoms differ from 
nanophytoplankton because they 
need silicon and more iron and 
because they have higher half-
saturation constants due to their 
larger mean size. 

Aumont and Bopp 
(2006), Séférian et 
al. (2013) 

0.5 (0.5) 

MPI-ESM-MR 
(LR) 

P,N,Fe,Si 
HAMOCC5.2 
(NPZD) 

Generic phytoplankton (Plankton 
concentration is then subdivided 
into opal - and calcium carbonate-
producing fractions as basis for 
shell production)

Ilyina et al. (2013) 0.5 (0.5) 

MRI-ESM1 P,N 
NPZD 
(Oschiles 
2001) 

Generic phytoplankton 
Yukimoto et al. 
(2011) 

1 

NorESM1-ME P,N,Fe,Si 
HAMOCC5.1 
(NPZD) 

Generic phytoplankton  (Plankton 
concentration is then subdivided 
into opal - and calcium carbonate-
producing fractions as basis for 
shell production) 

Assmann et al. 
(2010) 

1 

GISS-E2-H-CC 
(GISS-E2-R-CC) 

N, Fe, Si NOBM 
Diatoms, chlorophytes, 
cyanobacteria, coccolitophores 

Gregg (2008) 1 (1) 
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Supplementary	Figures	

	

Figure	S1.		The allometric relationships of Menden-Deuer and Lessard (2000) 
(MDL2000) (their Table 4) as applied for the carbon biomass algorithm (Sects. 2.1, S1.1 
and Tables S1 and S2). Carbon content per unit cellular volume is given as a function of 
cellular diameter. The vertical dotted lines indicate the size ranges of the three 
phytoplankton size classes (PSCs).  The curve exhibits a discontinuity at a diameter of 
17.894 m (V = 3,000 m3), because different relationships were reported for 
phytoplankton below and above that size, respectively.  For cells larger than this cutoff 
diameter, two separate allometric relationships are used (diatoms (blue) and all the rest 
(red)) and averaged (magenta) for use in the operational algorithm. 	
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Figure	S2. SeaWiFS mission composite (September 1997 – December 2010) of 
chlorophyll (Chl) concentration (mg m-3), using the standard SeaWiFS algorithm OC4v6. 
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Figure	S3.		Normalized frequency distributions (probability density functions, PDFs) of 
the mission mean phytoplankton carbon biomass images of Fig. 1A-D, namely the 
allometric PSD carbon estimate (light blue), the Stramksi et al. (2008) POC retrieval, 
multiplied by 1/3 (beige), the Behrenfeld et al. (2005) method (teal), and the ensemble 
mean of the CMIP5 models (dark red).  The PDF of the allometric PSD estimate of 
phytoplankton when an empirical correction to the No parameter is applied is also shown in 
darker blue (this is a PDF of the image in Fig. 9, see Sect. 3.7 for details).  The x-axis is in 
log10-space. 
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Figure	S4.	 The number of data values contributing to the SeaWiFS mission composite 
means of the carbon-based products. The number of available monthly data files for the 
SeaWiFS mission is 157, but the maximum of available data points at any pixel as indicated 
here is N = 155, reflecting several months with very sparse data in the latest few SeaWIFS 
years, due to data outages.  
 
 
 
 
 
 
 
 
 



Page	21	of	26	
	

 
 

Figure	S5.			Normalized frequency distributions (probability density functions) computed 
from the mapped global SeaWiFS mission composites of phytoplankton carbon biomass (in 
log-10 space) in the three PSCs (Fig. 3A-C) – picoplankton (red), nanoplankton (green) and 
microplankton (blue). 
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Figure	S6.		 Fraction of uncertainty of total phytoplankton carbon biomass due to A) the 
No PSD parameter, and B) the allometric coefficients.  The percent of total variance is 
shown.  The third quantified source of uncertainty, the PSD slope , contributes negligible 
amounts of variance (<5% for most pixels) and is not shown (the three sources add up to a 
total of 100% at each pixel).  C) The fraction of propagated variance of percent C-based 
picoplankton due to the allometric coefficients; the remainder to 100% is due to the PSD 
slope . May of 2004 is shown in all three panels. 
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Figure	S7.		As in Fig.2, but also illustrated are the global phytoplankton carbon stock 
estimates using the empirically corrected allometric PSD method (orange bars); See Sect. 
3.7 for details. 
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Figure	S8.	 A) Same as in Fig. 2, but for the monthly composite means for the three 
satellite data sets and the CMIP5 model ensemble mean. B) Same as in A), but with 
missing SeaWiFS pixels gap-filled with CMIP5 model data in order to represent the entire 
ocean in the calculation. 
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Figure	S9.		Sensitivity analyses of total and partitioned phytoplankton C biomass to the 
maximum limit of integration, Dmax and the PSD parameters  and No (Eqs. 4 and S1): A) 
the three PSCs defined as percent contribution to total C biomass, as a function of PSD 
slope , for three different values of Dmax, as indicated.  The histogram of the SeaWiFS 
mission composite PSD slope image is included (normalized to the highest count bin); B) 
Total and partitioned absolute phytoplankton carbon concentration as a function of the PSD 
slope , when No is fixed at 15.5 m-4; C) Total and partitioned absolute phytoplankton 
carbon concentration as a function of No, when the PSD slope is fixed at  = 4.  In panels B) 
and C), the effect of varying Dmax on total and microplankton C is also shown, as indicated.  
The cases corresponding to the operational value (Dmax = 50 m) are plotted in bold solid 
lines in all three panels. 


