Articles | Volume 12, issue 2
https://doi.org/10.5194/os-12-417-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/os-12-417-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
River bulge evolution and dynamics in a non-tidal sea – Daugava River plume in the Gulf of Riga, Baltic Sea
Edith Soosaar
CORRESPONDING AUTHOR
Marine Systems Institute at Tallinn University of
Technology, Tallinn, Estonia
Ilja Maljutenko
Marine Systems Institute at Tallinn University of
Technology, Tallinn, Estonia
Rivo Uiboupin
Marine Systems Institute at Tallinn University of
Technology, Tallinn, Estonia
Maris Skudra
Marine Systems Institute at Tallinn University of
Technology, Tallinn, Estonia
Urmas Raudsepp
Marine Systems Institute at Tallinn University of
Technology, Tallinn, Estonia
Related authors
No articles found.
Jüri Elken, Ilja Maljutenko, Priidik Lagemaa, Rivo Uiboupin, and Urmas Raudsepp
State Planet, 4-osr8, 9, https://doi.org/10.5194/sp-4-osr8-9-2024, https://doi.org/10.5194/sp-4-osr8-9-2024, 2024
Short summary
Short summary
Baltic deep water is generally warmer than surface water during winter when district heating is required. Depending on the location, depth, and oceanographic situation, bottom water of Tallinn Bay can be used as an energy source for seawater heat pumps until the end of February, covering the major time interval when heating is needed. Episodically, there are colder-water events when seawater heat extraction has to be complemented by other sources of heating energy.
Anja Lindenthal, Claudia Hinrichs, Simon Jandt-Scheelke, Tim Kruschke, Priidik Lagemaa, Eefke M. van der Lee, Ilja Maljutenko, Helen E. Morrison, Tabea R. Panteleit, and Urmas Raudsepp
State Planet, 4-osr8, 16, https://doi.org/10.5194/sp-4-osr8-16-2024, https://doi.org/10.5194/sp-4-osr8-16-2024, 2024
Short summary
Short summary
In 2022, large parts of the Baltic Sea experienced the third-warmest to warmest summer and autumn temperatures since 1997 and several marine heatwaves (MHWs). Using remote sensing, reanalysis, and in situ data, this study characterizes regional differences in MHW properties in the Baltic Sea in 2022. Furthermore, it presents an analysis of long-term trends and the relationship between atmospheric warming and MHW occurrences, including their propagation into deeper layers.
Karina von Schuckmann, Lorena Moreira, Mathilde Cancet, Flora Gues, Emmanuelle Autret, Ali Aydogdu, Lluis Castrillo, Daniele Ciani, Andrea Cipollone, Emanuela Clementi, Gianpiero Cossarini, Alvaro de Pascual-Collar, Vincenzo De Toma, Marion Gehlen, Rianne Giesen, Marie Drevillon, Claudia Fanelli, Kevin Hodges, Simon Jandt-Scheelke, Eric Jansen, Melanie Juza, Ioanna Karagali, Priidik Lagemaa, Vidar Lien, Leonardo Lima, Vladyslav Lyubartsev, Ilja Maljutenko, Simona Masina, Ronan McAdam, Pietro Miraglio, Helen Morrison, Tabea Rebekka Panteleit, Andrea Pisano, Marie-Isabelle Pujol, Urmas Raudsepp, Roshin Raj, Ad Stoffelen, Simon Van Gennip, Pierre Veillard, and Chunxue Yang
State Planet, 4-osr8, 2, https://doi.org/10.5194/sp-4-osr8-2-2024, https://doi.org/10.5194/sp-4-osr8-2-2024, 2024
Urmas Raudsepp, Ilja Maljutenko, Priidik Lagemaa, and Karina von Schuckmann
State Planet Discuss., https://doi.org/10.5194/sp-2024-19, https://doi.org/10.5194/sp-2024-19, 2024
Preprint under review for SP
Short summary
Short summary
Over the last three decades, the Baltic Sea has experienced rising temperature and salinity, reflecting broader atmospheric warming. Heat content fluctuations are driven by subsurface temperature changes in the upper 100 meters, including the thermocline and halocline, influenced by air temperature, evaporation, and wind stress. Freshwater content changes mainly result from salinity shifts in the halocline, with saline water inflow, precipitation, and wind stress as key factors.
Shakti Singh, Ilja Maljutenko, and Rivo Uiboupin
EGUsphere, https://doi.org/10.5194/egusphere-2024-1701, https://doi.org/10.5194/egusphere-2024-1701, 2024
Short summary
Short summary
The sea ice statistics study highlights the bias in model estimations compared to satellite data and provides a simple approach to minimise that. During the study period, the model estimates sea ice forming slightly earlier but aligns well with the satellite data for ice season's end. Rapid decrease in the sea ice parameters is observed across the Baltic Sea, especially the ice thickness in the Bothnian Bay sub-basin. These statistics could be crucial for regional adaptation strategies.
Jan Åström, Fredrik Robertsen, Jari Haapala, Arttu Polojärvi, Rivo Uiboupin, and Ilja Maljutenko
The Cryosphere, 18, 2429–2442, https://doi.org/10.5194/tc-18-2429-2024, https://doi.org/10.5194/tc-18-2429-2024, 2024
Short summary
Short summary
The HiDEM code has been developed for analyzing the fracture and fragmentation of brittle materials and has been extensively applied to glacier calving. Here, we report on the adaptation of the code to sea-ice dynamics and breakup. The code demonstrates the capability to simulate sea-ice dynamics on a 100 km scale with an unprecedented resolution. We argue that codes of this type may become useful for improving forecasts of sea-ice dynamics.
Urmas Raudsepp, Ilja Maljutenko, Amirhossein Barzandeh, Rivo Uiboupin, and Priidik Lagemaa
State Planet, 1-osr7, 7, https://doi.org/10.5194/sp-1-osr7-7-2023, https://doi.org/10.5194/sp-1-osr7-7-2023, 2023
Short summary
Short summary
The freshwater content in the Baltic Sea has wide sub-regional variability characterized by the local climate dynamics. The total freshwater content trend is negative due to the recent increased inflows of saltwater, but there are also regions where the increase in runoff and decrease in ice content have led to an increase in the freshwater content.
Urmas Raudsepp and Ilja Maljutenko
Geosci. Model Dev., 15, 535–551, https://doi.org/10.5194/gmd-15-535-2022, https://doi.org/10.5194/gmd-15-535-2022, 2022
Short summary
Short summary
A model's ability to reproduce the state of a simulated object is always a subject of discussion. A new method for the multivariate assessment of numerical model skills uses the K-means algorithm for clustering model errors. All available data that fall into the model domain and simulation period are incorporated into the skill assessment. The clustered errors are used for spatial and temporal analysis of the model accuracy. The method can be applied to different types of geoscientific models.
Tuomas Kärnä, Patrik Ljungemyr, Saeed Falahat, Ida Ringgaard, Lars Axell, Vasily Korabel, Jens Murawski, Ilja Maljutenko, Anja Lindenthal, Simon Jandt-Scheelke, Svetlana Verjovkina, Ina Lorkowski, Priidik Lagemaa, Jun She, Laura Tuomi, Adam Nord, and Vibeke Huess
Geosci. Model Dev., 14, 5731–5749, https://doi.org/10.5194/gmd-14-5731-2021, https://doi.org/10.5194/gmd-14-5731-2021, 2021
Short summary
Short summary
We present Nemo-Nordic 2.0, a novel operational marine model for the Baltic Sea. The model covers the Baltic Sea and the North Sea with approximately 1 nmi resolution. We validate the model's performance against sea level, water temperature, and salinity observations, as well as sea ice charts. The skill analysis demonstrates that Nemo-Nordic 2.0 can reproduce the hydrographic features of the Baltic Sea.
Jukka-Pekka Jalkanen, Lasse Johansson, Magda Wilewska-Bien, Lena Granhag, Erik Ytreberg, K. Martin Eriksson, Daniel Yngsell, Ida-Maja Hassellöv, Kerstin Magnusson, Urmas Raudsepp, Ilja Maljutenko, Hulda Winnes, and Jana Moldanova
Ocean Sci., 17, 699–728, https://doi.org/10.5194/os-17-699-2021, https://doi.org/10.5194/os-17-699-2021, 2021
Short summary
Short summary
This modelling study describes a methodology for describing pollutant discharges from ships to the sea. The pilot area used is the Baltic Sea area and discharges of bilge, ballast, sewage, wash water as well as stern tube oil are reported for the year 2012. This work also reports the release of SOx scrubber effluents. This technique may be used by ships to comply with tight sulfur limits inside Emission Control Areas, but it also introduces a new pollutant stream from ships to the sea.
Lasse Johansson, Erik Ytreberg, Jukka-Pekka Jalkanen, Erik Fridell, K. Martin Eriksson, Maria Lagerström, Ilja Maljutenko, Urmas Raudsepp, Vivian Fischer, and Eva Roth
Ocean Sci., 16, 1143–1163, https://doi.org/10.5194/os-16-1143-2020, https://doi.org/10.5194/os-16-1143-2020, 2020
Short summary
Short summary
Very little is currently known about the activities and emissions of private leisure boats. To change this, a new model was created (BEAM). The model was used for the Baltic Sea to estimate leisure boat emissions, also considering antifouling paint leach. When compared to commercial shipping, the modeled leisure boat emissions were seen to be surprisingly large for some pollutant species, and these emissions were heavily concentrated on coastal inhabited areas during summer and early autumn.
T. Liblik, J. Laanemets, U. Raudsepp, J. Elken, and I. Suhhova
Ocean Sci., 9, 917–930, https://doi.org/10.5194/os-9-917-2013, https://doi.org/10.5194/os-9-917-2013, 2013
Cited articles
Arakawa, A. and Lamb, V. R.: Computational design of the basic dynamical
processes of the UCLA General Circulation Model, Meth. Comput. Phys., 17,
173–263, 1977.
Attila, J., Koponen, S., Kallio, K., Lindfors, A., Kaitala, S., and
Ylöstalo, P.: MERIS Case II water processor comparison on coastal sites
of the northern Baltic Sea, Remote Sens. Environ., 128, 138–149,
2013.
Avicola, G. and Huq, P.: The characteristics of the recirculating bulge
region in coastal buoyant outflows, J. Mar. Res., 61,
435–463, 2003.
BSHC (Baltic Sea Hydrographic Commission): Baltic Sea Bathymetry Database
version 0.9.3., available at: http://data.bshc.pro/ (last access: 8 March 2016),
2013.
Beltrán-Abaunza, J. M., Kratzer, S., and Brockmann, C.: Evaluation of MERIS products
from Baltic Sea coastal waters rich in CDOM, Ocean Sci., 10, 377–396, https://doi.org/10.5194/os-10-377-2014, 2014.
Burchard, H. and Bolding, K.: GETM – a general estuarine transport model,
Scientific documentation, Technical Report EUR 20253 EN, European
Commission, 2002.
Burchard, H. and Rennau, H.: Comparative quantification of physically and
numerically induced mixing in ocean models, Ocean Modelling, 20,
293–311, 2008.
Chant, R. J., Wilkin, J., Zhang, W., Choi, B.-J., Hunter, E., Castelao, R.,
Glenn, S., Jurisa, J., Schofield, O., Houghton, R., Kohut, J., Frazer, T. K.,
and Moline, M. A.: Dispersal of the Hudson River plume in the New York Bight:
Synthesis of observational and numerical studies during LaTTE, Oceanography,
21, 148–161, 2008.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi,
S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P.,
Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C.,
Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach,
H., Holm, E. V., Isaksen, L., Kallberg, P., Köhler, M., Matricardi, M.,
McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de
Rosnay, P., Tavolato, C., Thepaut, J.-N., and Vitart, F.: The ERA-Interim
reanalysis: configuration and performance of the data assimilation system,
Q. J. Roy. Meteor. Soc., 137, 553–597, 2011.
Doerffer, R. and Schiller, H.: The MERIS case 2 water algorithm.
Int. J. Remote Sens., 28, 517–535, 2007.
Doerffer, R. and Schiller, H.: MERIS Regional Coastal and Lake Case 2 Water
Project atmospheric correction ATBD (Algorithm Theoretical Basis Document),
1.0, 41 pp., 2008.
Doerffer, R., Sorensen K., and Aiken, J.: MERIS potential for coastal zone
applications, Int. J. Remote Sens., 20, 1809–1818,
1999.
Dzwonkowski, B. and Yan, X.: Tracking of a Chesapeake Bay estuarine outflow
plume with satellite-based ocean color data, Cont. Shelf Res.,
25, 1942–1958, 2005.
Fernández-Nóvoa, D., Mendes, R., Decastro, M., Dias, J.,
Sánchez-Arcilla, A., and Gómez-Gesteira, M.: Analysis of the
influence of river discharge and wind on the Ebro turbid plume using
MODIS-Aqua and MODIS-Terra data, J. Marine Syst., 142, 40–46,
2015.
Fong, D. A. and Geyer, W. R.: The Alongshore Transport of Freshwater in a
Surface-Trapped River Plume, J. Phys. Oceanog., 32, 957–972, 2002.
Funkquist, L. and Kleine, E.: An introduction to HIROMB, an operational
baroclinic model for the Baltic Sea, Tech. Rep. SMHI, Norrköping, 2000.
Gitelson, A. A., Gurlin, D., Moses, W. J., and Barrow, T.: A bio-optical
algorithm for the remote estimation of the chlorophyll-a concentration in
case 2 waters, Environ. Res. Lett., 4, 045003
https://doi.org/10.1088/1748-9326/4/4/045003, 2009.
Goyens, C., Jamet, C., and Schroeder, T.: Evaluation of four atmospheric
correction algorithms for MODIS-Aqua images over contrasted coastal waters,
Remote Sens. Environ., 131, 63–75, 2013.
Gräwe, U., Holtermann, P., Klingbeil, K., and Burchard, H.: Advantages of
vertically adaptive coordinates in numerical models of stratified shelf
seas, Ocean Model., 92, 56–68, 2015.
Gregorio, S. O., Haidvogelb, D. B., Thomasa, P. J., Taskinogluc, E. S., and
Skeend, A. J.: Laboratory and numerical simulations of gravity-driven coastal
currents: Departures from geostrophic theory, Dynam. Atmos. Oceans, 52,
20–50, 2011.
Hetland, R. D. and Signell, R. P.: Modelling coastal current transport in the
Gulf of Maine, Deep-Sea Res. II, 52, 2430–2449, 2005.
Hopkins, J., Lucas, M., Dufau, C., Sutton, M., Stum, J., Lauret, O., and
Channelliere, C.: Detection and variability of the Congo River plume
from satellite derived sea surface temperature, salinity, ocean colour and
sea level, Remote Sens. Environ., 139, 365–385, 2013.
Horner-Devine, A. R.: The bulge circulation in the Columbia River plume,
Cont. Shelf Res., 29, 234–251, 2009.
Horner-Devine, A. R., Fong, D. A., Monismith, S. G., and Maxworthy, T.:
Laboratory experiments simulating a coastal river inflow, J. Fluid Mech.,
555, 203–232, 2006.
Horner-Devine, A. R., Fong, D. A., and Monismith, S. G.: Evidence for the
inherent unsteadiness of a river plume: Satellite observations of the
Niagara River discharge, Limnol. Oceanogr., 53, 2731–2737, 2008.
Horner-Devine, A. R., Hetland, R., and Macdonald, D.: Mixing and Transport in
Coastal River Plumes, Annu. Rev. Fluid Mech., 47, 569–594, 2015.
Keruss, M. and Sennikovs, J.: Determination of tides in Gulf of Riga and
Baltic Sea. Proc. International Scientific Colloqium “Modelling of Material
Processing”, Riga, 28–29 May 1999.
Klingbeil, K., Mohammadi-Aragh, M., Gräwe, U., and Burchard, H.:
Quantification of spurious dissipation and mixing discrete variance decay in
a finite-volume frame-work, Ocean Model., 81, 49–64, 2014.
Kudela, R. M., Horner-Devine, A. R., Banas, N. S., Hickey, B. M., Peterson,
T. D., Lessard, E. J., Frame, E., Bruland, K. W., Lohan, M., Jay, D. A.,
Peterson, J., Peterson, B., Kosro, M., Palacios, S., and Dever, E. P.:
Multiple trophic levels fueled by recirculation in the Columbia River plume,
Geophys. Res. Lett., 37, L18607, https://doi.org/10.1029/2010GL044342, 2010.
Lips, U., Zhurbas, V., Skudra, M., and Väli, G.: A numerical study of
circulation in the Gulf of Riga, Baltic Sea. Part I: Whole-basin gyres and
mean currents, Cont. Shelf Res., 112, 1–13, 2016.
Maljutenko, I. and Raudsepp, U.: Validation of GETM model simulated long-term
salinity fields in the pathway of saltwater transport in response to the
Major Baltic Inflows in the Baltic Sea, in: IEEE Xplore: Baltic International
Symposium (BALTIC), 2014 IEEE/OES, 27–29 May 2014, Tallinn Estonia, IEEE,
23–31, 2014.
Mendes, R., Vaz, N., Fernández-Nóvoa, D., Silva, J., Decastro, M.,
Gómez-Gesteira, M., and Dias, J.: Observation of a turbid plume using
MODIS imagery: The case of Douro estuary (Portugal), Remote Sens. Environ., 154, 127–138, 2014.
Nof, D. and Pichevin, T.: The Ballooning of Outflows, J. Phys. Oceanogr.,
31, 3045–3058, 2001.
Pan, J., Gu, Y., and Wang, D.: Observations and numerical modeling of the
Pearl River plume in summer season, J. Geophys. Res.-Oceans, 119,
2480–2500, 2014.
Pietrzak, J.: The use of TVD limiters for forward-in-time upstream-biased
advection schemes in ocean modeling, Mon. Weather Rev., 126, 812–830, 1998.
Raudsepp, U.: Interannual and seasonal temperature and salinity variations in
the Gulf of Riga and corresponding saline water inflow from the Baltic
Proper, Nordic Hydrology, 32, 135–160, 2001.
Raudsepp, U., Beletsky, D., and Schwab, D. J.: Basin-scale topographic waves
in the Gulf of Riga, J. Phys. Oceanogr., 33, 1129–1140,
2003.
Saldías, G., Sobarzo, M., Largier, J., Moffat, C., and Letelier, R.:
Seasonal variability of turbid river plumes off central Chile based on
high-resolution MODIS imagery, Remote Sens. Environ., 123, 220–233,
2012.
Shchepetkin, A. F. and McWilliams, J. C.: A method for computing horizontal
pressuregradient force in an oceanic model with a nonaligned vertical
coordinate, J. Geophys. Res., 108, 3090, https://doi.org/10.1 029/2001JC001047, 2003.
Siitam, L., Sipelgas, L., and Uiboupin, R.: Analysis of natural background
and dredging-induced changes in TSM concentration from MERIS images near
commercial harbours in the Estonian coastal sea, Int. J. Remote Sens., 35, 6764–6780, 2014.
Stips, A., Bolding, K., Pohlmann, T., and Burchard, H.: Simulating the
temporal and spatial dynamics of the North Sea using the new model GETM
(general estuarine transport model, Ocean Dyn., 54, 266–283, 2004.
Soosaar, E., Hetland, R. D., Horner-Devine, A., Avener, M. E., and Raudsepp,
U.: Offshore spreading of buoyant bulge from numerical simulations and
laboratory experiments. In: IEEE Xplore: Baltic International Symposium
(BALTIC), 2014 IEEE/OES, 27–29 May 2014, Tallinn Estonia, IEEE,
2014a.
Soosaar, E., Maljutenko, I., Raudsepp, U., and Elken, J.: An investigation of
anticyclonic circulation in the southern Gulf of Riga during the spring
period, Cont. Shelf Res., 78, 75–84, 2014b.
Thomas, P. J. and Linden, P. F.: Rotating gravity currents: small-scale and
large-scale laboratory experiments and a geostrophic model, J. Fluid Mech.,
578, 35–65, 2007.
Umlauf, L. and Burchard, H.: Second-order turbulence closure models for
geophysical boundary layers. A review of recent work, Cont. Shelf Res., 2,
795–827, 2005.
Undén, P., Rontu, L., Jörvinen, H., Lynch, P., Calvo, J., Cats, G.,
Cuxart, J., Eerola, K., Fortelius, C., Garcia-Moya, J. A., Jones, C.,
Lenderink, G., McDonald, A., McGrath, R., Navascues, B., Nielsen, N. W.,
Ødegaard, V., Rodrigues, E., Rummukainen, M., Rõõm, R., Sattler,
K., Sass, B. H., Savijörvi, H., Schreur, B. W., and Sigg, R., The, H.,
and Tijm, A.: HIRLAM-5 scientific documentation, available at:
http://www.hirlam.org/ (last access: 8 March 2016), 2002.
Vaičiūtė, D., Bresciani, M., and Bučas, M.: Validation of
MERIS Bio-Optical Products with In Situ Data in the Turbid Lithuanian Baltic
Sea Coastal Waters, J. Appl. Remote Sens., 6,
063568-1–063568-20, https://doi.org/10.1117/1.JRS.6.063568, 2012.
Valente, A. and Silva, J.: On the observability of the fortnightly cycle of
the Tagus estuary turbid plume using MODIS ocean colour images, J. Marine Syst., 75, 131–137, 2009.
Whitney, M. and Garvine, R.: Wind influence on a coastal buoyant outflow, J. Geophys. Res., 110,
C03014, https://doi.org/10.1029/2003JC002261, 2005.
Yankovsky, A. E. and Chapman, D. C.: A simple theory for the fate of buoyant
coastal discharges, J. Phys. Oceanogr., 27, 1386–1401, 1997.
Short summary
Remote sensing imagery and numerical model study of river bulge evolution and dynamics in a non-tidal sea showed an anti-cyclonically rotating bulge during the studied low wind period in the Gulf of Riga. In about 7–8 days the bulge grew up to 20 km in diameter, before being diluted. Both model and satellite images showed river water mainly contained in the bulge. The study shows significant effects of the wind in the evolution of the river bulge, even if the wind speed was moderate (3–4 m s−1).
Remote sensing imagery and numerical model study of river bulge evolution and dynamics in a...