Articles | Volume 12, issue 6
https://doi.org/10.5194/os-12-1237-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/os-12-1237-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
High-resolution monitoring of marine protists based on an observation strategy integrating automated on-board filtration and molecular analyses
Katja Metfies
CORRESPONDING AUTHOR
Helmholtz Young Investigators Group PLANKTOSENS, Alfred Wegener
Institute Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany
Friedhelm Schroeder
In-situ Measuring Systems, Helmholtz Zentrum Geesthacht Centre for Materials
and Coastal Research, 21502 Geesthacht, Germany
Johanna Hessel
Helmholtz Young Investigators Group PLANKTOSENS, Alfred Wegener
Institute Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany
Jochen Wollschläger
In-situ Measuring Systems, Helmholtz Zentrum Geesthacht Centre for Materials
and Coastal Research, 21502 Geesthacht, Germany
Sebastian Micheller
Helmholtz Young Investigators Group PLANKTOSENS, Alfred Wegener
Institute Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany
Christian Wolf
Helmholtz Young Investigators Group PLANKTOSENS, Alfred Wegener
Institute Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany
Estelle Kilias
Helmholtz Young Investigators Group PLANKTOSENS, Alfred Wegener
Institute Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany
Pim Sprong
Helmholtz Young Investigators Group PLANKTOSENS, Alfred Wegener
Institute Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany
Stefan Neuhaus
Scientific Computing, Alfred Wegener Institute Helmholtz Centre for
Polar and Marine Research, Bremerhaven, 27570 Bremerhaven, Germany
Stephan Frickenhaus
Scientific Computing, Alfred Wegener Institute Helmholtz Centre for
Polar and Marine Research, Bremerhaven, 27570 Bremerhaven, Germany
Wilhelm Petersen
In-situ Measuring Systems, Helmholtz Zentrum Geesthacht Centre for Materials
and Coastal Research, 21502 Geesthacht, Germany
Related authors
Valérie Gros, Bernard Bonsang, Roland Sarda-Estève, Anna Nikolopoulos, Katja Metfies, Matthias Wietz, and Ilka Peeken
Biogeosciences, 20, 851–867, https://doi.org/10.5194/bg-20-851-2023, https://doi.org/10.5194/bg-20-851-2023, 2023
Short summary
Short summary
The oceans are both sources and sinks for trace gases important for atmospheric chemistry and marine ecology. Here, we quantified selected trace gases (including the biological metabolites dissolved dimethyl sulfide, methanethiol and isoprene) along a 2500 km transect from the North Atlantic to the Arctic Ocean. In the context of phytoplankton and bacterial communities, our study suggests that methanethiol (rarely measured before) might substantially influence ocean–atmosphere cycling.
Burkard Baschek, Friedhelm Schroeder, Holger Brix, Rolf Riethmüller, Thomas H. Badewien, Gisbert Breitbach, Bernd Brügge, Franciscus Colijn, Roland Doerffer, Christiane Eschenbach, Jana Friedrich, Philipp Fischer, Stefan Garthe, Jochen Horstmann, Hajo Krasemann, Katja Metfies, Lucas Merckelbach, Nino Ohle, Wilhelm Petersen, Daniel Pröfrock, Rüdiger Röttgers, Michael Schlüter, Jan Schulz, Johannes Schulz-Stellenfleth, Emil Stanev, Joanna Staneva, Christian Winter, Kai Wirtz, Jochen Wollschläger, Oliver Zielinski, and Friedwart Ziemer
Ocean Sci., 13, 379–410, https://doi.org/10.5194/os-13-379-2017, https://doi.org/10.5194/os-13-379-2017, 2017
Short summary
Short summary
The Coastal Observing System for Northern and Arctic Seas (COSYNA) was established in order to better understand the complex interdisciplinary processes of northern seas and the Arctic coasts in a changing environment. Particular focus is given to the heavily used German Bight in the North Sea. The automated observing and modelling system is designed to monitor real-time conditions, to provide short-term forecasts and data products, and to assess the impact of anthropogenically induced change.
Shungudzemwoyo P. Garaba, Michelle Albinus, Guido Bonthond, Sabine Flöder, Mario L. M. Miranda, Sven Rohde, Joanne Y. L. Yong, and Jochen Wollschläger
Earth Syst. Sci. Data, 15, 4163–4179, https://doi.org/10.5194/essd-15-4163-2023, https://doi.org/10.5194/essd-15-4163-2023, 2023
Short summary
Short summary
These high-quality data document a harmful algal bloom dominated by Nodularia spumigena, a cyanobacterium that has been recurring in waters around the world, using advanced water observation technologies. We also showcase the benefits of experiments of opportunity and the issues with obtaining synoptic spatio-temporal data for monitoring water quality. The dataset can be leveraged to gain more knowledge on related blooms, develop detection algorithms and optimize future monitoring efforts.
Valérie Gros, Bernard Bonsang, Roland Sarda-Estève, Anna Nikolopoulos, Katja Metfies, Matthias Wietz, and Ilka Peeken
Biogeosciences, 20, 851–867, https://doi.org/10.5194/bg-20-851-2023, https://doi.org/10.5194/bg-20-851-2023, 2023
Short summary
Short summary
The oceans are both sources and sinks for trace gases important for atmospheric chemistry and marine ecology. Here, we quantified selected trace gases (including the biological metabolites dissolved dimethyl sulfide, methanethiol and isoprene) along a 2500 km transect from the North Atlantic to the Arctic Ocean. In the context of phytoplankton and bacterial communities, our study suggests that methanethiol (rarely measured before) might substantially influence ocean–atmosphere cycling.
Delphine Dissard, Gert Jan Reichart, Christophe Menkes, Morgan Mangeas, Stephan Frickenhaus, and Jelle Bijma
Biogeosciences, 18, 423–439, https://doi.org/10.5194/bg-18-423-2021, https://doi.org/10.5194/bg-18-423-2021, 2021
Short summary
Short summary
Results from a data set acquired from living foraminifera T. sacculifer collected from surface waters are presented, allowing us to establish a new Mg/Ca–Sr/Ca–temperature equation improving temperature reconstructions. When combining equations, δ18Ow can be reconstructed with a precision of ± 0.5 ‰, while successive reconstructions involving Mg/Ca and δ18Oc preclude salinity reconstruction with a precision better than ± 1.69. A new direct linear fit to reconstruct salinity could be established.
Wilhelm Petersen, Susanne Reinke, Gisbert Breitbach, Michail Petschatnikov, Henning Wehde, and Henrike Thomas
Earth Syst. Sci. Data, 10, 1729–1734, https://doi.org/10.5194/essd-10-1729-2018, https://doi.org/10.5194/essd-10-1729-2018, 2018
Short summary
Short summary
From 2002 to 2005 a FerryBox system was installed aboard two different ferries traveling between Cuxhaven (Germany) and Harwich (UK) on a daily basis. The FerryBox system is an automated flow-through monitoring system for measuring oceanographic and biogeochemical parameters installed on ships of opportunity. The data set provides the parameters water temperature, salinity, dissolved oxygen and chlorophyll a fluorescence.
Burkard Baschek, Friedhelm Schroeder, Holger Brix, Rolf Riethmüller, Thomas H. Badewien, Gisbert Breitbach, Bernd Brügge, Franciscus Colijn, Roland Doerffer, Christiane Eschenbach, Jana Friedrich, Philipp Fischer, Stefan Garthe, Jochen Horstmann, Hajo Krasemann, Katja Metfies, Lucas Merckelbach, Nino Ohle, Wilhelm Petersen, Daniel Pröfrock, Rüdiger Röttgers, Michael Schlüter, Jan Schulz, Johannes Schulz-Stellenfleth, Emil Stanev, Joanna Staneva, Christian Winter, Kai Wirtz, Jochen Wollschläger, Oliver Zielinski, and Friedwart Ziemer
Ocean Sci., 13, 379–410, https://doi.org/10.5194/os-13-379-2017, https://doi.org/10.5194/os-13-379-2017, 2017
Short summary
Short summary
The Coastal Observing System for Northern and Arctic Seas (COSYNA) was established in order to better understand the complex interdisciplinary processes of northern seas and the Arctic coasts in a changing environment. Particular focus is given to the heavily used German Bight in the North Sea. The automated observing and modelling system is designed to monitor real-time conditions, to provide short-term forecasts and data products, and to assess the impact of anthropogenically induced change.
Yoana G. Voynova, Holger Brix, Wilhelm Petersen, Sieglinde Weigelt-Krenz, and Mirco Scharfe
Biogeosciences, 14, 541–557, https://doi.org/10.5194/bg-14-541-2017, https://doi.org/10.5194/bg-14-541-2017, 2017
Short summary
Short summary
This study focuses on how the June 2013 Elbe River flood affected the southern German Bight. The largest summer flood within the last 140 years, it generated a substantial plume of nutrient-rich, buoyant waters from the Elbe estuary onto the coast. During the calm 2013 summer, the flood was followed by prolonged (2-month) water column stratification, chlorophyll blooms in surface, and uncharacteristically low oxygen in bottom waters. With climate change, these events are becoming more frequent.
M. Haller, F. Janssen, J. Siddorn, W. Petersen, and S. Dick
Ocean Sci., 11, 879–896, https://doi.org/10.5194/os-11-879-2015, https://doi.org/10.5194/os-11-879-2015, 2015
Short summary
Short summary
Automated measurement systems called FerryBox are installed on cargo ships in the North Sea. Operational model forecasts have been compared to FerryBox data of water temperature and salinity. We wanted to know how well the simulations agree with the observations. We found out that water temperature simulation gives satisfying results, while salinity simulation still could be improved. It turned out that assimilation of observational data into operational models gives strong benefits.
Cited articles
Acevedo-Trejos, E., Brandt, G., Steinacher, M., and Merico, A.: A glimpse into the future composition of marine phytoplankton communities, Front. Mar. Sci., 1, https://doi.org/10.1146/annurev-marine-041911-111611, 2014.
Boersma, M., Gruner, N., Signorelli, N. T., Gonzalez, P. E. M., Peck, M. A., and Wiltshire, K. H.: Projecting effects of climate change on marine systems: is the mean all that matters?, P. R. Soc. B, 283, https://doi.org/10.1098/rspb.2015.2274, 2016.
Bowers, H. A., Brutemark, A., Carvalho, W. F., and Graneli, E.: Combining Flow Cytometry and Real-Time PCR Methodology to demonstrate consumption by Prymnesium parvum, J. Am. Water Resour. As., 46, 133–143, https://doi.org/10.1111/j.1752-1688.2009.00397.x, 2010.
Bresnan, E., Cook, K. B., Hughes, S. L., Hay, S. J., Smith, K., Walsham, P., and Webster, L.: Seasonality of the plankton community at an east and west coast monitoring site in Scottish waters, J. Sea Res., 105, 16–29, https://doi.org/10.1016/j.seares.2015.06.009, 2015.
Caron, D. A., Peele, E. R., Lim, E. L., and Dennett, M. R.: Picoplankton and nanoplankton and their trophic coupling in the surface waters of the Sargasso Sea south of Bermuda, Limnol. Oceanogr., 44, 259–272, https://doi.org/10.4319/lo.1999.44.2.0259, 1999.
Comeau, A. M., Li, W. K. W., Tremblay, J. E., Carmack, E. C., and Lovejoy, C.: Arctic Ocean Microbial Community Structure before and after the 2007 Record Sea Ice Minimum, Plos One, 604, 6, https://doi.org/10.1038/srep00604, 2011.
de Vargas, C., Audic, S. Henry, N., Decelle, J., Mahe, F., Logares, R., Lara, E., Berney, C., Le Bescot, N., Probert, I., Carmichael, M., Poulain, J., Romac, S., Colin, S., Aury, J.-M., Bittner, L., Chaffron, S., Dunthorn, M., Engelen, S., Flegontova, O., Guidi, L., Horak, A., Jaillon, O., Lima-Mendez, G., Lukes J., Malviya, S., Morard, R., Mulot, M., Scalco, E., Siano, R., Vincent, F., Zingone, A., Dimier, C., Picheral, M., Searson, S., Kandels-Lewis, S., Acinas, S. G., Bork, P., Bowler, C., Gorsky, G., Grimsley, P., Hingamp, D., Iudicone, F., Not, H., Ogata, S., Pesant, J., Raes, M. E., Sieracki, S., Speich, N., Stemmann, L., Sunagawa, S., Weissenbach, J., Wincker, P., and Karsenti, E.: Eukaryotic plankton diversity in the sunlit ocean, Science, 348, 1261605, https://doi.org/10.1126/science.1261605, 2015.
Diercks, S., Metfies, K., and Medlin, L.K.: Development and adaptation of a multiprobe biosensor for the use in a semi-automated device for the detection of toxic algae, Biosens. Bioelectron, 23, 1527–1533, https://doi.org/10.1016/j.bios.2008.01.010, 2008a.
Diercks, S., Medlin, L. K., and Metfies, K.: Colorimetric detection of the toxic dinoflagellate Alexandrium minutum using sandwich hybridization in a microtiter plate assay, Harmful Algae, 7, 137–145, https://doi.org/10.1016/j.hal.2007.06.005, 2008b.
Doney, S. C., Ruckelshaus, M., Duffy, J. E., Barry, J. P., Chan, F., English, C. A., Galindo, H. M., Grebmeier, J. M., Hollowed, A. B., Knowlton, N., Polovina, J., Rabalais, N. N., Sydeman, W. J., and Talley, L. D.: Climate Change Impacts on Marine Ecosystems, Annual Review of Marine Science, 4, 11–37, https://doi.org/10.1146/annurev-marine-041911-111611, 2012.
Field, C. B., Behrenfeld, M. J., Randerson, J. T., and Falkowski, P.: Primary production of the biosphere: Integrating terrestrial and oceanic components, Science, 281, 237–240, https://doi.org/10.1126/science.281.5374.237, 1998.
Hugenholtz, P.: Exploring prokaryotic diversity in the genomic era, Genome Biology, 3, https://doi.org/10.1186/gb-2002-3-2-reviews0003, 2002.
Kilias, E., Wolf, C., Noethig, E.-M., Peeken, I., and Metfies, K.: Protist distribution in the Western Fram Strait in summer, J. Phycol., 49, 996–1010, https://doi.org/10.1111/jpy.12109, 2013.
Kilias, E., Kattner, G., Wolf, C., Frickenhaus, S., and Metfies, K.: A molecular survey of protist diversity through the central Arctic Ocean, Polar Biol., 61, 569–579, https://doi.org/10.1007/s00300-014-1519-5, 2014a.
Kilias, E. S., Noethig, E.-M., Wolf, C., and Metfies, K.: Picoeukaryote Plankton Composition off West Spitsbergen at the Entrance to the Arctic Ocean, J. Eukaryot. Microbiol., 33, 23466, https://doi.org/10.1111/jeu.12134, 2014b.
Kilias, E. S., Peeken, I., and Metfies, K.: Protist diversity in Arctic Sea Ice and Melt pond aggregates obtained by pyrosequencing – a short insight, Polar Res., 13, 74–80, https://doi.org/10.3402/polar.v33.23466, 2014c.
Kilias, E. S., Wolf, C., and Metfies, K.: Characterizing variability in marine protist communities via ARISA fingerprints – a method evaluation, Limnol. Oceanogr.-Meth., 13, 74–80, https://doi.org/10.1002/lom3.10008, 2015.
Kraberg, A. C., Rodriguez, N., and Salewski, C. R.: Historical phytoplankton data from Helgoland Roads: Can they be linked to modern time series data?, J. Sea Res., 101, 51–58, https://doi.org/10.1016/j.seares.2015.03.004, 2015.
Leibold, M. A.: Resources and predators can affect the vertical distributions of zooplankton, Limnol. Oceanogr., 35, 938–344, https://doi.org/10.4319/lo.1990.35.4.0938, 1990.
Mackas, D. L., Denman, K. L., and Abbott, M. R.: Plankton Patchiness-Biology in the physical vernacular, B. Mar. Sci., 37, 652–674, 1985.
McQuatters-Gollop, A., Edwards, M., Helaouet, P., Johns, D. G., Owens, N. J. P., Raitsos, D. E., Schroeder, D., Skinner, J., and Stern, R. F.: The Continuous Plankton Recorder survey: How can long-term phytoplankton datasets contribute to the assessment of Good Environmental Status?, Estuar. Coast. Mar. Sci., 162, 88–97, https://doi.org/10.1016/j.ecss.2015.05.010, 2015.
Mellard, J. P., Yoshiyama, K., Litchman, E., and Klausmeier, C. A.: The vertical distribution of phytoplankton in stratified water columns, J. Theor. Biol., 269, 16–30, https://doi.org/10.1016/j.jtbi.2010.09.041, 2011.
Medlin, L., Elwood, H. J., Stickel, S., and Sogin, M.L.: The characterization of enzymatically amplified eukaroytic 16S-like rRNA coding regions, Gene, 71, 491–499, https://doi.org/10.1016/0378-1119(88)90066-2, 1988.
Metfies, K. and Medlin, L. K.: Refining cryptophyte identification with DNA-microarrays, J. Plankton Res., 29, 1071–1075, https://doi.org/10.1093/plankt/fbm080, 2007.
Metfies, K., Gescher, C., Frickenhaus, S., Niestroy, R., Wichels, A., Gerdts, G., Knefelkamp, B., Wiltshire, K., and Medlin, L.: Contribution of the class Cryptophyceae to phytoplankton structure in the German Bight, J. Phycol., 46, 1152–1160, https://doi.org/10.1111/j.1529-8817.2010.00902.x, 2010.
Metfies, K., von Appen, W. J., Kilias, E., Nicolaus, A., and Noethig, E. M.: Biogeography and photosynthetic biomass of arctic marine pico-eukaroytes during summer of the record sea ice minimum 2012, Plos One, 11, e0148512, https://doi.org/10.1371/journal.pone.0148512, 2016.
Nehring, S.: Establishment of thermophilic phytoplankton species in the North Sea: biological indicators of climatic changes?, ICES J. Mar. Sci., 55, 818–823, https://doi.org/10.1006/jmsc.1998.0389, 1998.
Petersen, W.: FerryBox systems: State-of-the-art in Europe and future development, J. Marine Syst., 140, 4–12, https://doi.org/10.1016/j.jmarsys.2014.07.003, 2014.
Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., and Gloeckner, F. O.: The SILVA ribosomal RNA gene database project: improved data processing and web-based tools, Nucleic Acids Res., 41, D590–D596, https://doi.org/10.1093/nar/gks1219, 2013.
Soltwedel, T.: HAUSGARTEN: multidisciplinary investigations at a deep-sea, long-term observatory in the Arctic Ocean, Oceanography, 18, 15, https://doi.org/10.5670/oceanog.2005.24, 2005.
Sunagawa, S., Coelho, L. P., Chaffron, S., Kultima, J. R., Labadie, K., Salazar, G., Djahanschiri, B., Zeller, G., Mende, D. R., Alberti, A., Cornejo-Castillo, F. M., Costea, P. I., Cruaud, C., d'Ovidio, F., Engelen, S., Ferrera, I., Gasol, J. M., Guidi, L., Hildebrand, F., Kokoszka, F., Lepoivre, C., Lima-Mendez, G., Poulain, J., Poulos, B. T., Royo-Llonch, M., Sarmento, H., Vieira-Silva, S., Dimier, C., Picheral, M., Searson, S., Kandels-Lewis, S., Bowler, C., de Vargas, C., Gorsky, G., Grimsley, N., Hingamp, P., Iudicone, D., Jaillon, O., Not, F., Ogata, H., Pesant, S., Speich, S., Stemmann, L., Sullivan, M. B., Weissenbach, J., Wincker, P., Karsenti, E., Raes, J., Acinas, S. G., and Bork, P.: Structure and function of the global ocean microbiome, Science, 348, 6237, https://doi.org/10.1126/science.1261359, 2015.
Thiele, S., Wolf, C., Schulz, I. K., Assmy, P., Metfies, K., and Fuchs, B. M.: Stable Composition of the Nano- and Picoplankton Community during the Ocean Iron Fertilization Experiment LOHAFEX, Plos One, 9, 0113244, https://doi.org/10.1371/journal.pone.0113244, 2014.
Toebe, K., Alpermann, T. J., Tillmann, U., Krock, B., Cembella, A., and John, U.: Molecular discrimination of toxic and non-toxic Alexandrium species (Dinophyta) in natural phytoplankton assemblages from the Scottish coast of the North Sea, Eur. J. Phycol., 48, 12–26, https://doi.org/10.1080/09670262.2012.752870, 2013.
Turnbaugh, P. J., Hamady, M., Yatsunenko, T., Cantarel, B. L., Duncan, A., Ley, R. E., Sogin, M. L., Jones, W. J., Roe, B. A., Affourtit, J. P., Egholm, M., Henrissat, B., Heath, A. C., Knight, R., and Gordon J. I.: A core gut microbiome in obese and lean twins, Nature, 457, 480–484, https://doi.org/10.1038/nature07540, 2009.
Ussler, W., Preston, C., Tavormina, P., Pargett, D., Jensen, S., Roman, B., Marin, R., Shah, S. R., Girguis, P. R., Birch, J. M., Orphan, V., and Scholin C.: Autonomous Application of Quantitative PCR in the Deep Sea: In Situ Surveys of Aerobic Methanotrophs Using the Deep-Sea Environmental Sample Processor, Environ. Sci. Technol., 47, 9339–9346, https://doi.org/10.1021/es4023199, 2013.
Wassmann, P., Ratkova, T., and Reigstad, M.: The contribution of single and colonial cells of Phaeocystis pouchetii to spring and summer blooms in the north-eastern North Atlantic, Harmful Algae, 4, 823–840, https://doi.org/10.1016/j.hal.2004.12.009, 2005.
Wiltshire, K. H., Kraberg, A., Bartsch, I., Boersma, M., Franke, H.-D., Freund, J., Gebuehr, C., Gerdts, G., Stockmann, K., and Wichels, A.: Helgoland Roads, North Sea: 45 Years of Change, Estuar. Coasts, 33, 295–310, https://doi.org/10.1007/s12237-009-9228-y, 2009.
Woese, C. R.: Bacterial Evolution, Microbiol. Rev., 51, 221–271, 1987.
Wolf, C., Frickenhaus, S., Kilias, E. S., Peeken, I., and Metfies, K.: Regional variability in eukaryotic protist communities in the Amundsen Sea, Antarct. Sci., 25, 741–751, https://doi.org/10.1017/S0954102013000229, 2013.
Wolf, C., Kilias, E. S., and Metfies, K.: Evaluating the potential of 18S rDNA clone libraries to complement pyrosequencing data of marine protists with near full-length sequence information, Mar. Biol. Res., 10, 771–780, https://doi.org/10.1080/17451000.2013.852685, 2014a.
Wolf, C., Frickenhaus, S., Kilias, E. S., Peeken, I., and Metfies, K.: Protist community composition in the Pacific sector of the Southern Ocean during austral summer 2010, Polar Biol., 37, 375–389, https://doi.org/10.1007/s00300-013-1438-x, 2014b.
Wollschläger, J., Nicolaus, A., Wiltshire, K. H., and Metfies, K.: Assessment of North Sea phytoplankton via molecular sensing: a method evaluation, J. Plankton Res., 36, 695–708, https://doi.org/10.1093/plankt/fbu003, 2014.
Wollschläger, J., Wiltshire, K. H., Petersen, W., and Metfies, K.: Analysis of phytoplankton distribution and community structure in the German Bight with respect to the different size classes, J. Sea Res., 99, 83–96, https://doi.org/10.1016/j.seares.2015.02.005, 2015.
Zhu, F., Massana, R., Not, F., Marie, D., and Vaulot, D.: Mapping of picoeucaryotes in marine ecosystems with quantitative PCR of the 18S rRNA gene, FEMS Microbiol. Ecol., 52, 79–92, https://doi.org/10.1016/j.protis.2012.11.006, 2005.
Zielinski, O., Busch, J. A., Cembella, A. D., Daly, K. L., Engelbrektsson, J., Hannides, A. K., and Schmidt, H.: Detecting marine hazardous substances and organisms: sensors for pollutants, toxins, and pathogens, Ocean Sci., 5, 329–349, https://doi.org/10.5194/os-5-329-2009, 2009.
Short summary
Here we introduce a new molecular-based observation strategy for high-resolution assessment of marine microbes (e.g., microalgae) in space and time. The observation strategy combines automated sampling on board ships or observation platforms with a variety of different molecular genetic methods for refined observation of marine microbes at adaquate scales, in order to better understand the impact of climate change on this group of organisms, which are at the base of marine food webs.
Here we introduce a new molecular-based observation strategy for high-resolution assessment of...