Articles | Volume 12, issue 6
https://doi.org/10.5194/os-12-1179-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/os-12-1179-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Sub-basin-scale sea level budgets from satellite altimetry, Argo floats and satellite gravimetry: a case study in the North Atlantic Ocean
Marcel Kleinherenbrink
CORRESPONDING AUTHOR
Department of Geoscience and Remote Sensing, Delft University of Technology, P.O. Box 5048, 2600 GA Delft, the Netherlands
Riccardo Riva
Department of Geoscience and Remote Sensing, Delft University of Technology, P.O. Box 5048, 2600 GA Delft, the Netherlands
Yu Sun
Department of Geoscience and Remote Sensing, Delft University of Technology, P.O. Box 5048, 2600 GA Delft, the Netherlands
Related authors
Marcel Kleinherenbrink, Anton Korosov, Thomas Newman, Andreas Theodosiou, Alexander S. Komarov, Yuanhao Li, Gert Mulder, Pierre Rampal, Julienne Stroeve, and Paco Lopez-Dekker
The Cryosphere, 15, 3101–3118, https://doi.org/10.5194/tc-15-3101-2021, https://doi.org/10.5194/tc-15-3101-2021, 2021
Short summary
Short summary
Harmony is one of the Earth Explorer 10 candidates that has the chance of being selected for launch in 2028. The mission consists of two satellites that fly in formation with Sentinel-1D, which carries a side-looking radar system. By receiving Sentinel-1's signals reflected from the surface, Harmony is able to observe instantaneous elevation and two-dimensional velocity at the surface. As such, Harmony's data allow the retrieval of sea-ice drift and wave spectra in sea-ice-covered regions.
Karen M. Simon, Riccardo E. M. Riva, Marcel Kleinherenbrink, and Thomas Frederikse
Solid Earth, 9, 777–795, https://doi.org/10.5194/se-9-777-2018, https://doi.org/10.5194/se-9-777-2018, 2018
Short summary
Short summary
This study constrains the post-glacial rebound signal in Scandinavia and northern Europe via the combined inversion of prior forward model information with GPS-measured vertical land motion data and GRACE gravity data. The best-fit model for vertical motion rates has a χ2 value of ~ 1 and a maximum uncertainty of 0.3–0.4 mm yr−1. An advantage of inverse models relative to forward models is their ability to estimate formal uncertainties associated with the post-glacial rebound process.
Marcel Kleinherenbrink, Riccardo Riva, and Thomas Frederikse
Ocean Sci., 14, 187–204, https://doi.org/10.5194/os-14-187-2018, https://doi.org/10.5194/os-14-187-2018, 2018
Short summary
Short summary
Tide gauges observe sea level changes, but are also affected by vertical land motion (VLM). Estimation of absolute sea level requires a correction for the local VLM. VLM is either estimated from GNSS observations or indirectly by subtracting tide gauge observations from satellite altimetry observations. Because altimetry and GNSS observations are often not made at the tide gauge location, the estimates vary. In this study we determine the best approach for both methods.
Mattia Poinelli, Michael Schodlok, Eric Larour, Miren Vizcaino, and Riccardo Riva
The Cryosphere, 17, 2261–2283, https://doi.org/10.5194/tc-17-2261-2023, https://doi.org/10.5194/tc-17-2261-2023, 2023
Short summary
Short summary
Rifts are fractures on ice shelves that connect the ice on top to the ocean below. The impact of rifts on ocean circulation below Antarctic ice shelves has been largely unexplored as ocean models are commonly run at resolutions that are too coarse to resolve the presence of rifts. Our model simulations show that a kilometer-wide rift near the ice-shelf front modulates heat intrusion beneath the ice and inhibits basal melt. These processes are therefore worthy of further investigation.
Carolina M. L. Camargo, Riccardo E. M. Riva, Tim H. J. Hermans, Eike M. Schütt, Marta Marcos, Ismael Hernandez-Carrasco, and Aimée B. A. Slangen
Ocean Sci., 19, 17–41, https://doi.org/10.5194/os-19-17-2023, https://doi.org/10.5194/os-19-17-2023, 2023
Short summary
Short summary
Sea-level change is mainly caused by variations in the ocean’s temperature and salinity and land ice melting. Here, we quantify the contribution of the different drivers to the regional sea-level change. We apply machine learning techniques to identify regions that have similar sea-level variability. These regions reduce the observational uncertainty that has limited the regional sea-level budget so far and highlight how large-scale ocean circulation controls regional sea-level change.
Carolina M. L. Camargo, Riccardo E. M. Riva, Tim H. J. Hermans, and Aimée B. A. Slangen
Earth Syst. Dynam., 13, 1351–1375, https://doi.org/10.5194/esd-13-1351-2022, https://doi.org/10.5194/esd-13-1351-2022, 2022
Short summary
Short summary
The mass loss from Antarctica, Greenland and glaciers and variations in land water storage cause sea-level changes. Here, we characterize the regional trends within these sea-level contributions, taking into account mass variations since 1993. We take a comprehensive approach to determining the uncertainties of these sea-level changes, considering different types of errors. Our study reveals the importance of clearly quantifying the uncertainties of sea-level change trends.
Marcel Kleinherenbrink, Anton Korosov, Thomas Newman, Andreas Theodosiou, Alexander S. Komarov, Yuanhao Li, Gert Mulder, Pierre Rampal, Julienne Stroeve, and Paco Lopez-Dekker
The Cryosphere, 15, 3101–3118, https://doi.org/10.5194/tc-15-3101-2021, https://doi.org/10.5194/tc-15-3101-2021, 2021
Short summary
Short summary
Harmony is one of the Earth Explorer 10 candidates that has the chance of being selected for launch in 2028. The mission consists of two satellites that fly in formation with Sentinel-1D, which carries a side-looking radar system. By receiving Sentinel-1's signals reflected from the surface, Harmony is able to observe instantaneous elevation and two-dimensional velocity at the surface. As such, Harmony's data allow the retrieval of sea-ice drift and wave spectra in sea-ice-covered regions.
Yu Sun and Riccardo E. M. Riva
Earth Syst. Dynam., 11, 129–137, https://doi.org/10.5194/esd-11-129-2020, https://doi.org/10.5194/esd-11-129-2020, 2020
Short summary
Short summary
The solid Earth is still deforming because of the effect of past ice sheets through glacial isostatic adjustment (GIA). Satellite gravity observations by the Gravity Recovery and Climate Experiment (GRACE) mission are sensitive to those signals but are superimposed on the redistribution effect of water masses by the hydrological cycle. We propose a method separating the two signals, providing new constraints for forward GIA models and estimating the global water cycle's patterns and magnitude.
Carine G. van der Boog, Julie D. Pietrzak, Henk A. Dijkstra, Nils Brüggemann, René M. van Westen, Rebecca K. James, Tjeerd J. Bouma, Riccardo E. M. Riva, D. Cornelis Slobbe, Roland Klees, Marcel Zijlema, and Caroline A. Katsman
Ocean Sci., 15, 1419–1437, https://doi.org/10.5194/os-15-1419-2019, https://doi.org/10.5194/os-15-1419-2019, 2019
Short summary
Short summary
We use a model of the Caribbean Sea to study how coastal upwelling along Venezuela impacts the evolution of energetic anticyclonic eddies. We show that the anticyclones grow by the advection of the cold upwelling filaments. These filaments increase the density gradient and vertical shear of the anticyclones. Furthermore, we show that stronger upwelling results in stronger eddies, while model simulations with weaker upwelling contain weaker eddies.
Karen M. Simon, Riccardo E. M. Riva, Marcel Kleinherenbrink, and Thomas Frederikse
Solid Earth, 9, 777–795, https://doi.org/10.5194/se-9-777-2018, https://doi.org/10.5194/se-9-777-2018, 2018
Short summary
Short summary
This study constrains the post-glacial rebound signal in Scandinavia and northern Europe via the combined inversion of prior forward model information with GPS-measured vertical land motion data and GRACE gravity data. The best-fit model for vertical motion rates has a χ2 value of ~ 1 and a maximum uncertainty of 0.3–0.4 mm yr−1. An advantage of inverse models relative to forward models is their ability to estimate formal uncertainties associated with the post-glacial rebound process.
Marcel Kleinherenbrink, Riccardo Riva, and Thomas Frederikse
Ocean Sci., 14, 187–204, https://doi.org/10.5194/os-14-187-2018, https://doi.org/10.5194/os-14-187-2018, 2018
Short summary
Short summary
Tide gauges observe sea level changes, but are also affected by vertical land motion (VLM). Estimation of absolute sea level requires a correction for the local VLM. VLM is either estimated from GNSS observations or indirectly by subtracting tide gauge observations from satellite altimetry observations. Because altimetry and GNSS observations are often not made at the tide gauge location, the estimates vary. In this study we determine the best approach for both methods.
Katja Frieler, Stefan Lange, Franziska Piontek, Christopher P. O. Reyer, Jacob Schewe, Lila Warszawski, Fang Zhao, Louise Chini, Sebastien Denvil, Kerry Emanuel, Tobias Geiger, Kate Halladay, George Hurtt, Matthias Mengel, Daisuke Murakami, Sebastian Ostberg, Alexander Popp, Riccardo Riva, Miodrag Stevanovic, Tatsuo Suzuki, Jan Volkholz, Eleanor Burke, Philippe Ciais, Kristie Ebi, Tyler D. Eddy, Joshua Elliott, Eric Galbraith, Simon N. Gosling, Fred Hattermann, Thomas Hickler, Jochen Hinkel, Christian Hof, Veronika Huber, Jonas Jägermeyr, Valentina Krysanova, Rafael Marcé, Hannes Müller Schmied, Ioanna Mouratiadou, Don Pierson, Derek P. Tittensor, Robert Vautard, Michelle van Vliet, Matthias F. Biber, Richard A. Betts, Benjamin Leon Bodirsky, Delphine Deryng, Steve Frolking, Chris D. Jones, Heike K. Lotze, Hermann Lotze-Campen, Ritvik Sahajpal, Kirsten Thonicke, Hanqin Tian, and Yoshiki Yamagata
Geosci. Model Dev., 10, 4321–4345, https://doi.org/10.5194/gmd-10-4321-2017, https://doi.org/10.5194/gmd-10-4321-2017, 2017
Short summary
Short summary
This paper describes the simulation scenario design for the next phase of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP), which is designed to facilitate a contribution to the scientific basis for the IPCC Special Report on the impacts of 1.5 °C global warming. ISIMIP brings together over 80 climate-impact models, covering impacts on hydrology, biomes, forests, heat-related mortality, permafrost, tropical cyclones, fisheries, agiculture, energy, and coastal infrastructure.
Riccardo E. M. Riva, Thomas Frederikse, Matt A. King, Ben Marzeion, and Michiel R. van den Broeke
The Cryosphere, 11, 1327–1332, https://doi.org/10.5194/tc-11-1327-2017, https://doi.org/10.5194/tc-11-1327-2017, 2017
Short summary
Short summary
The reduction of ice masses stored on land has made an important contribution to sea-level rise over the last century, as well as changed the Earth's shape. We model the solid-earth response to ice mass changes and find significant vertical deformation signals over large continental areas. We show how deformation rates have varied strongly throughout the last century, which affects the interpretation and extrapolation of recent observations of vertical land motion and sea-level change.
Natthachet Tangdamrongsub, Susan C. Steele-Dunne, Brian C. Gunter, Pavel G. Ditmar, Edwin H. Sutanudjaja, Yu Sun, Ting Xia, and Zhongjing Wang
Hydrol. Earth Syst. Sci., 21, 2053–2074, https://doi.org/10.5194/hess-21-2053-2017, https://doi.org/10.5194/hess-21-2053-2017, 2017
Short summary
Short summary
This paper investigates the assimilation of terrestrial water storage variation estimates derived from GRACE data using an EnKF 3D approach. The spatially correlated errors in GRACE data derived from its full error variance–covariance matrices were taken into account. The experiments showed that GRACE DA improved the accuracy of groundwater storage estimates by as much as 25 % over the Hexi Corridor. The inclusion of error correlations provided an equal or greater improvement in the estimates.
B. C. Gunter, O. Didova, R. E. M. Riva, S. R. M. Ligtenberg, J. T. M. Lenaerts, M. A. King, M. R. van den Broeke, and T. Urban
The Cryosphere, 8, 743–760, https://doi.org/10.5194/tc-8-743-2014, https://doi.org/10.5194/tc-8-743-2014, 2014
Related subject area
Approach: Remote Sensing | Depth range: All Depths | Geographical range: Deep Seas: North Atlantic | Phenomena: Sea Level
Global sea level reconstruction for 1900–2015 reveals regional variability in ocean dynamics and an unprecedented long weakening in the Gulf Stream flow since the 1990s
Tal Ezer and Sönke Dangendorf
Ocean Sci., 16, 997–1016, https://doi.org/10.5194/os-16-997-2020, https://doi.org/10.5194/os-16-997-2020, 2020
Short summary
Short summary
Regional variability and changes in ocean dynamics during 1900–2015 were obtained in the western North Atlantic Ocean from a global sea level reconstruction. An unprecedented long period of weakening in the Gulf Stream (GS) flow since the late 1990s was found. The variability and slowdown of the GS were related to the Atlantic Meridional Overturning Circulation. The reconstruction captured observed variability in the coastal sea level and GS flow on timescales of ∼5–50 years very well.
Cited articles
Ablain, M., Cazenave, A., Larnicol, G., Balmaseda, M., Cipollini, P., Faugère, Y., Fernandes, M. J., Henry, O., Johannessen, J. A., Knudsen, P., Andersen, O., Legeais, J., Meyssignac, B., Picot, N., Roca, M., Rudenko, S., Scharffenberg, M. G., Stammer, D., Timms, G., and Benveniste, J.: Improved sea level record over the satellite altimetry era (1993–2010) from the Climate Change Initiative project, Ocean Sci., 11, 67–82, https://doi.org/10.5194/os-11-67-2015, 2015.
Bamber, J. and Riva, R.: The sea level fingerprint of recent ice mass fluxes, The Cryosphere, 4, 621–627, https://doi.org/10.5194/tc-4-621-2010, 2010.
Bretherton, F. P., Davis, R. E., and Fandry, C. B.: A technique for objective analysis and design of oceanographic experiments applied to MODE-73, Deep-Sea Res., 23, 559–582, 1976.
Cabanes, C., Grouazel, A., von Schuckmann, K., Hamon, M., Turpin, V., Coatanoan, C., Paris, F., Guinehut, S., Boone, C., Ferry, N., de Boyer Montégut, C., Carval, T., Reverdin, G., Pouliquen, S., and Le Traon, P.-Y.: The CORA dataset: validation and diagnostics of in-situ ocean temperature and salinity measurements, Ocean Sci., 9, 1–18, https://doi.org/10.5194/os-9-1-2013, 2013.
Carrère, L. and Lyard F.: Lyard Modeling the barotropic response of the global ocean to atmospheric wind and pressure forcing – comparisons with observations, Geophys. Res. Lett., 30, 1275, https://doi.org/10.1029/2002GL016473, 2003.
Cartwright, D. E. and Edden, A. C.: Corrected Tables of Tidal Harmonics, Geophys. J. Roy. Astr. S., 33, 253–264, 1973.
Cartwright, D. E. and Tayler, R. J.: New Computations of the Tide-generating Potential, Geophys. J. Roy. Astr. S., 23, 45–73, 1971.
Cazenave, A. and Le Cozannet, G.: Sea level rise and its coastal impacts, Earth's Future, 2, 15–34, 2013.
Cazenave, A., Dominh, K., Guinehut, S., Berthier, E., Llovel, W., Ramillien, G., Ablain, M., and Larnicol, G.: Sea level budget over 2003–2008: A reevaluation from GRACE space gravimetry, satellite altimetry and Argo, Glob. Planet. Change, 65, 83–88, 2008.
Chambers, D. P. and Willis, J. K.: A global evaluation of ocean bottom pressure from GRACE, OMCT, and steric-corrected altimetry, J. Atmos. Ocean. Tech., 27, 1395–1402, 2010.
Chelton, D. B., Schlax M. G., Samelson, R. M., and de Szoeke, R. A.: Global observations of large oceanic eddies. Geophys. Res. Lett., 34, L15606, https://doi.org/10.1029/2007GL030812, 2007.
Cheng, M. K., Tapley, B. D., and Ries, C.: Deceleration in the Earth's oblateness, J. Geophys. Res.-Sol. Ea., 118, 740–747, 2013.
Dobslaw, H., Flechtner, F., Bergmann-Wolf, I., Dahle, C., Dill, R., Esselborn, S., and Thomas, M.: Simulating high-frequency atmosphere-ocean mass variability for dealiasing of satellite gravity observations: AOD1B RL05, J. Geophys. Res.-Oceans, 118, 3704–3711, 2013.
Feng, W., Zhong, M., and Xu, H.: Sea level variations in the South China Sea inferred from satellite gravity, altimetry, and oceanographic data, Science China Earth Sciences, 55, 1696–1701, 2012.
Feng, W., Lemoine, J. M., Zhong, M., and Hsu, H. T.: Mass-induced sea level variations in the Red Sea from GRACE, steric-corrected altimetry, in situ bottom pressure records, and hydrographic observations, J. Geodynam., 78, 1–7, 2014.
Ferry, N., Parent, L., Garric, G., Barnier, B., and Jourdain, N. C.: Mercator global Eddy permitting ocean reanalysis GLORYS1V1: Description and results, Mercator-Ocean Quarterly Newsletter, 36, 15–27, 2010.
Gaillard, F., Autret, E., Thierry, V., Galaup, P., Coatanoan, C., and Loubrieu, T.: Quality control of large Argo datasets, J. Atmos. Ocean. Tech., 26, 337–351, 2009.
García, D., Chao, B. F., Del Río, J., Vigo, I., and García-Lafuente, J.: On the steric and mass-induced contributions to the annual sea level variations in the Mediterranean Sea, J. Geophys. Res.-Oceans, 111, C09030, https://doi.org/10.1029/2005JC002956, 2006.
Grosso, P., Le Menn, M., De La, J. L. D. B., Wu, Z. Y., and Malardé, D.: Practical versus absolute salinity measurements: New advances in high performance seawater salinity sensors, Deep-Sea Res. Pt. I, 57, 151–156, 2010.
Henry, O., Ablain, M., Meyssignac, B., Cazenave, A., Masters, D., Nerem, S., and Garric, G.: Effect of the processing methodology on satellite altimetry-based global mean sea level rise over the Jason-1 operating period, J. Geodesy, 88, 351–361, 2014.
Intergovernmental Oceanographic Commision.: IAPSO: The international thermodynamic equation of seawater-2010: Calculation and use of thermodynamic properties, Intergovernmental Oceanographic Commission (IOC), Manuals and Guides, 56, UNESCO, Paris, 196 pp., 2010.
Ishii, M., Kimoto, M., Sakamoto, K., and Iwasaki, S. I.: Steric sea level changes estimated from historical ocean subsurface temperature and salinity analyses, J. Oceanogr., 62, 115–170, 2006.
Ivanovic, R. F., Valdes, P. J., Gregoire, L., Flecker, R., and Gutjahr, M.: Sensitivity of modern climate to the presence, strength and salinity of Mediterranean-Atlantic exchange in a global general circulation model, Clim. Dynam., 42, 859–877, 2014.
Klees, R., Revtova, E. A., Gunter, B. C., Ditmar, P., Oudman, E., Winsemius, H. C., and Savenije, H. H. G.: The design of an optimal filter for monthly GRACE gravity models, Geophys. J. Int., 175, 417–432, 2008.
Klinger, B., Mayer-Gürr, T., Behzadpour, S., Ellmer, M., Kvas, A., and Zehentner, N.: The new ITSG-Grace2016 release, EGU General Assembly, Vienna, 17–22 April 2016, 2016.
Kusche, J.: Approximate decorrelation and non-isotropic smoothing of time-variable GRACE-type gravity field models, J. Geodesy, 81, 733–749, 2007.
Kusche, J., Schmidt, R., Petrovic, S., and Rietbroek, R.: Decorrelated GRACE time-variable gravity solutions by GFZ, and their validation using a hydrological model, J. Geodesy, 83, 903–913, 2009.
Le Traon, P.Y., Nadal, F., and Ducet, N.: An improved mapping method of multisatellite altimeter data, J. Atmos. Ocean. Tech., 15, 522–534, 1998.
Le Traon, P. Y., Dibarboure, G., and Ducet, N.: Use of a high-resolution model to analyze the mapping capabilities of multiple-altimeter missions, J. Atmos. Ocean. Technol., 18, 1277–1288, 2001.
Leuliette, E. W. and Miller, L.: Closing the sea level rise budget with altimetry, Argo, and GRACE, Geophys. Res. Lett., 36, L04608, https://doi.org/10.1029/2008GL036010, 2009.
Leuliette, E. W. and Scharroo, R.: Integrating Jason-2 into a multiple-altimeter climate data record, Mar. Geodesy, 33, 504–517, 2010.
Leuliette, E. W., and Willis, J. K.: Balancing the sea level budget, Oceanography, 24, 122–129, 2011.
Li, J., Zuo, J., Chen, M., Tan, W., and Yang, Y.: Assessing the global averaged sea-level budget from 2003 to 2010, Acta Oceanol. Sin., 32, 16–23, 2013.
Marcos, M., Calafat, F. M., Llovel, W., Gomis, D., and Meyssignac, B.: Regional distribution of steric and mass contributions to sea level changes, Glob. Planet. Change, 76, 206–218, 2011.
Masters, D., Nerem, R. S., Choe, C., Leuliette, E., Beckley, B., White, N., and Ablain, M.: Comparison of global mean sea level time series from TOPEX/Poseidon, Jason-1, and Jason-2, Mar. Geodesy, 35, 20–41, 2012.
Mitchum, G. T.: Monitoring the stability of satellite altimeters with tide gauges, J. Atmos. Ocean. Technol., 15, 721–730, 1998.
Mitchum, G. T.: An improved calibration of satellite altimetric heights using tide gauge sea levels with adjustment for land motion, Mar. Geodesy, 23, 145–166, 2000.
Nerem, R. S.: Measuring global mean sea level variations using TOPEX/POSEIDON altimeter data, J. Geophys. Res.-Oceans, 100, 25135–25151, 1995.
Nerem, R. S., Chambers, D. P., Choe, C., and Mitchum, G. T.: Estimating mean sea level change from the TOPEX and Jason altimeter missions, Mar. Geodesy, 33, 435–446, 2010.
Pawlocwicz, P., McDougall, T. J., Feistel, R., and Tailleux, R.: An historical perspective on the development of the Thermodynamic Equation of Seawater-2010, Ocean Science, 8, 161–174, https://doi.org/10.5194/os-8-161-2012, 2012.
Peltier, W. R., Argus, D. F., and Drummond, R.: Space geodesy constrains ice age terminal deglaciation: The global ICE-6G_C (VM5a) model, J. Geophys. Res.-Sol. Ea., 120, 450–487, 2015.
Pérez-Hernández, M. D., and Joyce, T. M.: Two modes of Gulf Stream variability revealed in the last two decades of satellite altimeter data, J. Phys. Oceanogr., 44, 149–163, 2014.
Purkey, S. G., Johnson, G. C., and Chambers, D. P.: Relative contributions of ocean mass and deep steric changes to sea level rise between 1993 and 2013, J. Geophys. Res.-Oceans, 119, 7509–7522, 2014.
Ray, R. D.: Precise comparisons of bottom-pressure and altimetric ocean tides, J. Geophys. Res.-Oceans, 118, 4570–4584, 2013.
Roemmich, D. and Gilson, J.: The 2004–2008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the Argo Program, Prog. Oceanogr., 82, 81–100, 2009.
Sallenger Jr, A. H., Doran, K. S., and Howd, P. A.: Hotspot of accelerated sea-level rise on the Atlantic coast of North America, Nature Climate Change, 2, 884–888, 2012.
Scharroo, R.: Presentation to the Ocean Surface Topography Science Team, Venice, 16–18 March 2006.
Scharroo, R., Leuliette, E. W., Lillibridge, J. L., Byrne, D., Naeije, M. C., and Mitchum, G. T.: RADS: Consistent multi-mission products, in: Proceedings of Symposium on 20 Years of Progress in Radar Altimetry, 20, 59–60, 2012.
Siemes, C., Ditmar, P., Riva, R. E. M., Slobbe, D. C., Liu, X. L., and Farahani, H. H.: Estimation of mass change trends in the Earth's system on the basis of GRACE satellite data, with application to Greenland, J. Geodesy, 87, 69–87, 2013.
Storto, A., Masina, S., Balmaseda, M., Guinehut, S., Xue, Y., Szekely, T., Fukumori, I., Forget, G., Chang, Y. -S., Good, S. A., Köhl, A., Vernieres, G., Ferry, N., Peterson, A. K., Behringer, D., Ishii, M., Masuda, S., Fujii, Y., Toyoda, T., Yin, Y., Valdivieso, M., Barnier, B., Boyer, T., Lee, T., Gourrion, J., Wang, O., Heimback, P., Rosati, A., Kovach, R., Hernandez, F., Martin, M. J., Kamachi, M., Kuragano, T., Mogensen, K., Alves, O., Haines, K., and Wang, X.: Steric sea level variability (1993–2010) in an ensemble of ocean reanalyses and objective analyses, Clim. Dynam., 1–21, https://doi.org/0.1007/s00382-015-2554-9, 2015.
Swenson, S., and Wahr, J.: Methods for inferring regional surface-mass anomalies from Gravity Recovery and Climate Experiment (GRACE) measurements of time-variable gravity, J. Geophys. Res.-Sol. Ea., 107, 2193, https://doi.org/10.1029/2001JB000576, 2002.
Swenson, S., Chambers, D., and Wahr, J.: Estimating geocenter variations from a combination of GRACE and ocean model output, J. Geophys. Res.-Sol. Ea., 113, B08410, https://doi.org/10.1029/2007JB005338, 2008.
Tai, C. K. and Wagner, C.: Sampling errors of the global mean sea level derived from TOPEX/Poseidon altimetry, Acta Oceanol. Sin., 30, 12–18, 2011.
Tamisiea, M. E.: Ongoing glacial isostatic contributions to observations of sea level change, Geophys. J. Int., 186, 1036–1044, 2011.
Tamisiea, M. E., Hill, E. M., Ponte, R. M., Davis, J. L., Velicogna, I., and Vinogradova, N. T.: Impact of self-attraction and loading on the annual cycle in sea level, J. Geophys. Res.-Oceans, 115, C07004, https://doi.org/10.1029/2009JC005687, 2010.
Tapley, B. D., Bettadpur, S., Watkins, M., and Reigber, C.: The gravity recovery and climate experiment: Mission overview and early results, Geophys. Res. Lett., 31, L09607, https://doi.org/10.1029/2004GL019920, 2004.
Tran, N., Philipps, S., Poisson, J. C., Urien, S., Bronner, E., and Picot, N.: Impact of GDR-D standards on SSB correction, Ocean Science Topography Science Team Meeting, Venice, 22–29 September 2012.
Våge, K., Pickart, R. S., Thierry, V., Reverdin, G., Lee, C. M., Petrie, B., Agnew, T.A., Wong, A., and Ribergaard, M. H.: Surprising return of deep convection to the subpolar North Atlantic Ocean in winter 2007–2008, Nat. Geosci., 2, 67–72, 2009.
von Schuckmann, K., Sallée, J.-B., Chambers, D., Le Traon, P.-Y., Cabanes, C., Gaillard, F., Speich, S., and Hamon, M.: Consistency of the current global ocean observing systems from an Argo perspective, Ocean Sci., 10, 547–557, https://doi.org/10.5194/os-10-547-2014, 2014.
Wagner, C., McAdoo, D., Klokoc̆ník, J., and Kostelecký, J.: Degradation of geopotential recovery from short repeat-cycle orbits: application to GRACE monthly fields, J. Geodesy, 80, 94–103, 2006.
Wahr, J. M.: Deformation of the Earth induced by polar motion, J. Geophys. Res., 90, 9363–9368, 1985.
Wang, Y. M. and Rapp, R. H.: Estimation of sea surface dynamic topography, ocean tides, and secular changes from Topex altimeter data, Rep. 430, Department of Geodetic Science and Surveying, The Ohio State University, Columbus, 89 pp., 1994.
Willis, J. K., Chambers, D. P., and Nerem, R. S.: Assessing the globally averaged sea level budget on seasonal to interannual timescales, J. Geophys. Res.-Oceans, 113, C06015, https://doi.org/10.1029/2007JC004517, 2008.
Zhang, Z. Z., Chao, B. F., Lu, Y., and Hsu, H. T.: An effective filtering for GRACE time-variable gravity: Fan filter, Geophys. Res. Lett., 36, L17311, https://doi.org/10.1029/2009GL039459, 2009.
Short summary
Satellite altimetry measures changes in sea level, while satellite gravimetry measures mass changes, and one can infer steric sea level from Argo temperature and salinity profiles. For the first time, it is shown that in most cases the mass and steric components match the total sea level measured by altimetry on a sub-basin scale in terms of trend, annual amplitude and interannual variability. We also find that the choice of gravity field filter is essential to close the budget.
Satellite altimetry measures changes in sea level, while satellite gravimetry measures mass...