Articles | Volume 12, issue 1
https://doi.org/10.5194/os-12-117-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/os-12-117-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Bio-optical characterization and light availability parameterization in Uummannaq Fjord and Vaigat–Disko Bay (West Greenland)
L. Holinde
CORRESPONDING AUTHOR
Institute for Chemistry and Biology of the Marine Environment,
University of Oldenburg, Carl-von-Ossietzky-Str. 9–11, 26129 Oldenburg, Germany
O. Zielinski
Institute for Chemistry and Biology of the Marine Environment,
University of Oldenburg, Carl-von-Ossietzky-Str. 9–11, 26129 Oldenburg, Germany
Related authors
L. Holinde, T. H. Badewien, J. A. Freund, E. V. Stanev, and O. Zielinski
Earth Syst. Sci. Data, 7, 289–297, https://doi.org/10.5194/essd-7-289-2015, https://doi.org/10.5194/essd-7-289-2015, 2015
Short summary
Short summary
We present water level data derived from long-term measurements of water pressure at the Time Series Station Spiekeroog (southern North Sea). Problems addressed during data processing include outliers, data gaps and sensor drift. For quality control, we compared the processed data to measurements of water level obtained nearby. We also carried out a storm flood analysis and a Fourier analysis to identify major tidal components.
Burkard Baschek, Friedhelm Schroeder, Holger Brix, Rolf Riethmüller, Thomas H. Badewien, Gisbert Breitbach, Bernd Brügge, Franciscus Colijn, Roland Doerffer, Christiane Eschenbach, Jana Friedrich, Philipp Fischer, Stefan Garthe, Jochen Horstmann, Hajo Krasemann, Katja Metfies, Lucas Merckelbach, Nino Ohle, Wilhelm Petersen, Daniel Pröfrock, Rüdiger Röttgers, Michael Schlüter, Jan Schulz, Johannes Schulz-Stellenfleth, Emil Stanev, Joanna Staneva, Christian Winter, Kai Wirtz, Jochen Wollschläger, Oliver Zielinski, and Friedwart Ziemer
Ocean Sci., 13, 379–410, https://doi.org/10.5194/os-13-379-2017, https://doi.org/10.5194/os-13-379-2017, 2017
Short summary
Short summary
The Coastal Observing System for Northern and Arctic Seas (COSYNA) was established in order to better understand the complex interdisciplinary processes of northern seas and the Arctic coasts in a changing environment. Particular focus is given to the heavily used German Bight in the North Sea. The automated observing and modelling system is designed to monitor real-time conditions, to provide short-term forecasts and data products, and to assess the impact of anthropogenically induced change.
Nick Rüssmeier, Axel Hahn, Daniela Nicklas, and Oliver Zielinski
J. Sens. Sens. Syst., 6, 37–52, https://doi.org/10.5194/jsss-6-37-2017, https://doi.org/10.5194/jsss-6-37-2017, 2017
Short summary
Short summary
Maritime study sites utilized as a physical experimental test bed for sensor data fusion, communication technology and data stream analysis tools can provide substantial frameworks for design and development of e-navigation technologies. Increasing safety by observation and monitoring of the maritime environment with new technologies meets forward-looking needs to facilitate situational awareness. The study highlights research potentials and foundations achieved by distributed optical sensors.
Anne-Christin Schulz, Thomas H. Badewien, Shungudzemwoyo P. Garaba, and Oliver Zielinski
Ocean Sci., 12, 1155–1163, https://doi.org/10.5194/os-12-1155-2016, https://doi.org/10.5194/os-12-1155-2016, 2016
Short summary
Short summary
We compared observations from the operational Time Series Station Spiekeroog, related to water transparency, conducted correlation tests among these measured parameters, and explored the utility of both acoustic and optical tools in monitoring water transparency. Our findings suggest that both optical and acoustic measurements can be reasonable proxies of water transparency with the potential to mitigate gaps and increase data quality in long-time observations of marine environments.
L. Holinde, T. H. Badewien, J. A. Freund, E. V. Stanev, and O. Zielinski
Earth Syst. Sci. Data, 7, 289–297, https://doi.org/10.5194/essd-7-289-2015, https://doi.org/10.5194/essd-7-289-2015, 2015
Short summary
Short summary
We present water level data derived from long-term measurements of water pressure at the Time Series Station Spiekeroog (southern North Sea). Problems addressed during data processing include outliers, data gaps and sensor drift. For quality control, we compared the processed data to measurements of water level obtained nearby. We also carried out a storm flood analysis and a Fourier analysis to identify major tidal components.
Cited articles
Andersen, O. G. N.: The annual cycle of temperature, salinity, currents and
water masses in Disko Bugt and adjacent waters, West Greenland, Monographs on Greenland, 217,
Museum Tusculanums Press, Copenhagen, 1981.
Arar, E. J.: Method 446.0: In Vitro Determination of Chlorophylls a, b,
c + c and Pheopigments in Marine And Freshwater Algae by Visible
Spectrophotometry, Report, United States Environmental Protection Agency,
Office of Research and Development, National Exposure Research Laboratory,
Cincinatti, Ohio, USA, 1997.
Bannister, T. T.: A general theory of steady state phytoplankton growth in a
nutrient saturated mixed layer, Limnol. Oceanogr., 19, 13–30,
https://doi.org/10.4319/lo.1974.19.1.0013,
1974.
Behrenfeld, M. J. and Falkowski, P. G.: A consumer's guide to phytoplankton
primary productivity models, Limnol. Oceanogr., 42, 1479–1491,
https://doi.org/10.4319/lo.1997.42.7.1479, 1997.
Buiteveld, H.: A model for calculation of diffuse light attenuation (PAR) and
Secchi depth, Netherlands Journal of Aquatic Ecology, 29, 55–65, 1995.
Cembella, A., Zielinski, O., Anderson, D., Graeve, M., Henkel, R., John, U.,
Kattner, G., Koch, B., Krock, B., Meier, D., Richlen, M., Tillmann, U., and
Voß, D.: ARCHEMHAB: Interactions and feedback mechanisms between
hydrography, geochemical signatures and microbial ecology, with a focus on
HAB species diversity, biogeography and dynamics, Report,
DFG-Senatskommission für Ozeanographie, Bremen, Germany, 2013.
Cuny, J., Rhines, P. B., Schott, F., and Lazier, J.: Convection above the
Labrador continental slope, J. Phys. Oceanogr., 35, 489–511,
https://doi.org/10.1175/Jpo2700.1, 2005.
Duyens, L. N. M.: The flattering of the absorption spectrum of suspensions,
as compared to that of solutions, Biochim. Biophys. Acta, 19, 1–12,
https://doi.org/10.1016/0006-3002(56)90380-8,
1956.
Etherington, L. L., Hooge, P. N., Hooge, E. R., and Hill, D. F.: Oceanography
of Glacier Bay, Alaska: Implications for biological patterns in a glacial
fjord estuary, Estuar. Coast., 30, 927–944, https://doi.org/10.1007/bf02841386,
2007.
Amante, C. and Eakins, B. W.:
ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and
Analysis, National Centers of Environmental Information, https://doi.org/10.7289/V5C8276M, 2009.
Farmer, D. M. and Freeland, H. J.: The Physical Oceanography of Fjords,
Prog. Oceanogr., 12, 147–219, https://doi.org/10.1016/0079-6611(83)90004-6,
1983.
Garaba, S. P. and Zielinski, O.: Comparison of remote sensing reflectance
from above-water and in-water measurements west of Greenland, Labrador Sea,
Denmark Strait, and west of Iceland, Opt. Express, 21, 15938–15950,
https://doi.org/10.1364/OE.21.015938,
2013.
Garaba, S. P., Voß, D., and Zielinski, O.: Physical, Bio-Optical State and
Correlations in North-Western European Shelf Seas, Remote Sens., 6,
5042–5066, https://doi.org/10.3390/rs6065042, 2014.
Gohin, F.: Annual cycles of chlorophyll-a , non-algal suspended particulate matter,
and turbidity observed from space and in-situ in coastal waters, Ocean Sci.,
7, 705–732, https://doi.org/10.5194/os-7-705-2011, 2011.
Gohin, F., Loyer, S., Lunven, M., Labry, C., Froidefond, J. M., Delmas, D.,
Huret, M., and Herbland, A.: Satellite-derived parameters for biological
modelling in coastal waters: illustration over the eastern continental shelf
of the Bay of Biscay, Remote Sens. Environ., 95, 29–46,
https://doi.org/10.1016/j.rse.2004.11.007, 2005.
Hansen, M. O., Nielsen, T. G., Stedmon, C. A., and Munk, P.: Oceanographic
regime shift during 1997 in Disko Bay, Western Greenland, Limnol. Oceanogr.,
57, 634–644, https://doi.org/10.4319/lo.2012.57.2.0634,
2012.
Heide-Jørgensen, M. P., Laidre, K. L., Logsdon, M. L., and Nielsen, T. G.:
Springtime coupling between chlorophyll a, sea ice and sea surface
temperature in Disko Bay, West Greenland, Prog. Oceanogr., 73, 79–95,
https://doi.org/10.1016/j.pocean.2007.01.006, 2007.
Jensen, H. M., Pedersen, L., Burmeister, A. D., and Hansen, B. W.: Pelagic
primary production during summer along 65 to 72° N off West
Greenland, Polar Biol., 21, 269–278, https://doi.org/10.1007/s003000050362, 1999.
Joughin, I., Smith, B. E., Shean, D. E., and Floricioiu, D.: Brief
Communication: Further summer speedup of Jakobshavn Isbræ, The
Cryosphere, 8, 209–214, https://doi.org/10.5194/tc-8-209-2014, 2014.
Lund-Hansen, L. C., Andersen, T. J., Nielsen, M. H., and Pejrup, M.:
Suspended Matter, Chl-a, CDOM, grain sizes, and optical properties in the
arctic Fjord-Type Estuary, Kangerlussuaq, West Greenland during summer,
Estuar. Coast., 33, 1442–1451, https://doi.org/10.1007/s12237-010-9300-7, 2010.
Melling, H., Gratton, Y., and Ingram, G.: Ocean circulation within the North
Water polynya of Baffin Bay, Atmosphere-Ocean, 39, 301–325,
https://doi.org/10.1080/07055900.2001.9649683, 2010.
Moore, C., Barnard, A., Fietzek, P., Lewis, M. R., Sosik, H. M., White, S.,
and Zielinski, O.: Optical tools for ocean monitoring and research, Ocean
Sci., 5, 661–684, https://doi.org/10.5194/os-5-661-2009, 2009.
Moore, S. K., Trainer, V. L., Mantua, N. J., Parker, M. S., Laws, E. A.,
Backer, L. C., and Fleming, L. E.: Impacts of climate variability and future
climate change on harmful algal blooms and human health, Environ. Health, 7
Suppl 2, S4, https://doi.org/10.1186/1476-069X-7-S2-S4, 2008.
Munchow, A., Melling, H., and Falkner, K. K.: An observational estimate of
volume and freshwater flux leaving the arctic ocean through nares strait, J.
Phys. Oceanogr., 36, 2025–2041, https://doi.org/10.1175/Jpo2962.1, 2006.
Murray, C., Markager, S., Stedmon, C. A., Juul-Pedersen, T., Sejr, M. K., and
Bruhn, A.: The influence of glacial melt water on bio-optical properties in
two contrasting Greenland fjords, Estuarine, Coast. Shelf Sci., 163, 72–83,
https://doi.org/10.1016/j.ecss.2015.05.041, 2015.
Nelson, D. M. and Smith, W. O.: Sverdrup revisited – critical depths,
maximum chlorophyll levels, and the control of Southern-Ocean productivity by
the irradiance-mixing regime, Limnol. Oceanogr., 36, 1650–1661, 1991.
Nghiem, S. V., Hall, D. K., Mote, T. L., Tedesco, M., Albert, M. R.,
Keegan, K., Shuman, C. A., DiGirolamo, N. E., and Neumann, G.: The extreme
melt across the Greenland ice sheet in 2012, Geophys. Res. Lett., 39, L20502,
https://doi.org/10.1029/2012gl053611, 2012.
Paulson, C. A. and Simpson, J. J.: Irradiance measurements in the upper
ocean, J. Phys. Oceanogr., 7, 952–956,
https://doi.org/10.1175/1520-0485(1977)007<0952:imituo>2.0.co;2,
1977.
Platt, T. and Sathyendranath, S.: Oceanic primary production: estimation by
remote sensing at local and regional scales, Science, 241, 1613–1620,
https://doi.org/10.1126/science.241.4873.1613, 1988.
Ribergaard, M. H., Pedersen, S. A., Ådlandsvik, B., and Kliem, N.:
Modelling the ocean circulation on the West Greenland shelf with special
emphasis on northern shrimp recruitment, Cont. Shelf Res., 24, 1505–1519,
https://doi.org/10.1016/j.csr.2004.05.011, 2004.
Straneo, F. and Cenedese, C.: The Dynamics of Greenland's Glacial Fjords and
Their Role in Climate, Ann. Rev. Mar. Sci., 7, 89–112,
https://doi.org/10.1146/annurev-marine-010213-135133, 2015.
Straneo, F., Sutherland, D. A., Holland, D., Gladish, C., Hamilton, G. S.,
Johnson, H. L., Rignot, E., Xu, Y., and Koppes, M.: Characteristics of ocean
waters reaching Greenland's glaciers, Ann. Glaciol., 53, 202–210,
https://doi.org/10.3189/2012AoG60A059, 2012.
Tang, C. C. L., Ross, C. K., Yao, T., Petrie, B., DeTracey, B. M., and Dunlap,
E.: The circulation, water masses and sea-ice of Baffin Bay, Prog.
Oceanogr., 63, 183–228, https://doi.org/10.1016/j.pocean.2004.09.005, 2004.
Vahtera, E., Crespo, B. G., McGillicuddy, D. J., Olli, K., and
Anderson, D. M.: Alexandrium fundyense cyst viability and germling survival
in light vs. dark at a constant low temperature, Deep-Sea Res. Pt. II, 103,
112–119, https://doi.org/10.1016/j.dsr2.2013.05.010, 2014.
Weir, C. T., Siegel, D. A., Michaels, A. F., and Menzies, D. W.: In-situ
evaluation of a ship's shadow, 2258, 815–821, https://doi.org/10.1117/12.190130, 1994.
Zielinski, O., Llinas, O., Oschlies, A., and Reuter, R.: Underwater light
field and its effect on a one-dimensional ecosystem model at station ESTOC,
north of the Canary Islands, Deep-Sea Res. Pt. II, 49, 3529–3542,
https://doi.org/10.1016/S0967-0645(02)00096-6, 2002.
Zielinski, O., Busch, J. A., Cembella, A. D., Daly, K. L., Engelbrektsson,
J., Hannides, A. K., and Schmidt, H.: Detecting marine hazardous substances
and organisms: sensors for pollutants, toxins, and pathogens, Ocean Sci., 5,
329–349, https://doi.org/10.5194/os-5-329-2009, 2009.
Zielinski, O., Voß, D., Meier, D., Henkel, R., Holinde, L.,
Garaba, S. P., and Cembella, A.: Physical oceanography during Maria S. Merian
cruise MSM21/3 (ARCHEMHAB), PANGAEA – Data Publisher for Earth &
Environmental Science, https://doi.org/10.1594/pangaea.819731, 2013a.
Zielinski, O., Voß, D., Meier, D., Henkel, R., Holinde, L.,
Garaba, S. P., and Cembella, A.: Total suspended matter, particulate organic
matter, and particulate inorganic matter during Maria S. Merian cruise
MSM21/3 (ARCHEMHAB), PANGAEA – Data Publisher for Earth & Environmental
Science, https://doi.org/10.1594/PANGAEA.810708, 2013b.
Zielinski, O., Voß, D., Meier, D., Henkel, R., Holinde, L.,
Garaba, S. P., and Cembella, A.: Chlorophyll a during Maria S. Merian cruise
MSM21/3 (ARCHEMHAB), PANGAEA – Data Publisher for Earth & Environmental
Science, https://doi.org/10.1594/PANGAEA.810651, 2013c.
Zielinski, O., Voß, D., Meier, D., Henkel, R., Holinde, L.,
Garaba, S. P., and Cembella, A.: Colored dissolved organic matter during
Maria S. Merian cruise MSM21/3 (ARCHEMHAB), PANGAEA – Data Publisher for
Earth & Environmental Science, https://doi.org/10.1594/PANGAEA.810861, 2013d.
Zweng, M. M. and Munchow, A.: Warming and freshening of Baffin Bay, 1916-2003,
J. Geophys. Res.-Oceans, 111, C07016, https://doi.org/10.1029/2005jc003093,
2006.
Short summary
In 2012 measurements were conducted in two adjacent estuary systems on Greenland’s western coast that are strongly influenced by glacial meltwater. Results described in this study show the relevance of inorganic SPM and Chl a alike, while colored dissolved organic matter is less prominent. Light availability was recorded throughout the cruise and an effective two-component (Chl a and inorganic SPM) model for PAR is developed to fill observational gaps from insufficient light conditions.
In 2012 measurements were conducted in two adjacent estuary systems on Greenland’s western...