Articles | Volume 11, issue 6
https://doi.org/10.5194/os-11-879-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/os-11-879-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Evaluation of numerical models by FerryBox and fixed platform in situ data in the southern North Sea
Institute of Coastal Research, Helmholtz-Zentrum Geesthacht GmbH, Max-Planck-Str. 1, 21502 Geesthacht, Germany
F. Janssen
Bundesamt für Seeschifffahrt und Hydrographie, Bernhard-Nocht-Straße 78, 20359 Hamburg, Germany
J. Siddorn
Met Office, Exeter, UK
W. Petersen
Institute of Coastal Research, Helmholtz-Zentrum Geesthacht GmbH, Max-Planck-Str. 1, 21502 Geesthacht, Germany
S. Dick
Bundesamt für Seeschifffahrt und Hydrographie, Bernhard-Nocht-Straße 78, 20359 Hamburg, Germany
Related authors
Magdalena Uber, Michael Haller, Christoph Brendel, Gudrun Hillebrand, and Thomas Hoffmann
Hydrol. Earth Syst. Sci., 28, 87–102, https://doi.org/10.5194/hess-28-87-2024, https://doi.org/10.5194/hess-28-87-2024, 2024
Short summary
Short summary
We calculated past, present and future rainfall erosivity in central Europe from high-resolution precipitation data (3 km and 1 h) generated by the COSMO-CLM convection-permitting climate model. Future rainfall erosivity can be up to 84 % higher than it was in the past. Such increases are much higher than estimated previously from regional climate model output. Convection-permitting simulations have an enormous and, to date, unexploited potential for the calculation of future rainfall erosivity.
M. Haller, B. Brümmer, and G. Müller
The Cryosphere, 8, 275–288, https://doi.org/10.5194/tc-8-275-2014, https://doi.org/10.5194/tc-8-275-2014, 2014
Magdalena Uber, Michael Haller, Christoph Brendel, Gudrun Hillebrand, and Thomas Hoffmann
Hydrol. Earth Syst. Sci., 28, 87–102, https://doi.org/10.5194/hess-28-87-2024, https://doi.org/10.5194/hess-28-87-2024, 2024
Short summary
Short summary
We calculated past, present and future rainfall erosivity in central Europe from high-resolution precipitation data (3 km and 1 h) generated by the COSMO-CLM convection-permitting climate model. Future rainfall erosivity can be up to 84 % higher than it was in the past. Such increases are much higher than estimated previously from regional climate model output. Convection-permitting simulations have an enormous and, to date, unexploited potential for the calculation of future rainfall erosivity.
Marina Tonani, Peter Sykes, Robert R. King, Niall McConnell, Anne-Christine Péquignet, Enda O'Dea, Jennifer A. Graham, Jeff Polton, and John Siddorn
Ocean Sci., 15, 1133–1158, https://doi.org/10.5194/os-15-1133-2019, https://doi.org/10.5194/os-15-1133-2019, 2019
Short summary
Short summary
A new high-resolution ocean model at 1.5 km has replaced the 7 km system for delivering short-term forecasts of the North-West European Shelf seas. The products (temperature, salinity, currents, and sea surface height) are available on the Copernicus Marine Service catalogue. This study focuses on the high-resolution impact on the quality of the products delivered to the users. Results show that the high-resolution model is better at resolving the variability of the physical variables.
Huw W. Lewis, John Siddorn, Juan Manuel Castillo Sanchez, Jon Petch, John M. Edwards, and Tim Smyth
Ocean Sci., 15, 761–778, https://doi.org/10.5194/os-15-761-2019, https://doi.org/10.5194/os-15-761-2019, 2019
Short summary
Short summary
Oceans are modified at the surface by winds and by the exchange of heat with the atmosphere. The effect of changing atmospheric information that is available to drive an ocean model of north-west Europe, which can simulate small-scale details of the ocean state, is tested. We show that simulated temperatures agree better with observations located near the coast around the south-west UK when using data from a high-resolution atmospheric model, and when atmosphere and ocean feedbacks are included.
Huw W. Lewis, Juan Manuel Castillo Sanchez, Alex Arnold, Joachim Fallmann, Andrew Saulter, Jennifer Graham, Mike Bush, John Siddorn, Tamzin Palmer, Adrian Lock, John Edwards, Lucy Bricheno, Alberto Martínez-de la Torre, and James Clark
Geosci. Model Dev., 12, 2357–2400, https://doi.org/10.5194/gmd-12-2357-2019, https://doi.org/10.5194/gmd-12-2357-2019, 2019
Short summary
Short summary
In the real world the atmosphere, oceans and land surface are closely interconnected, and yet the prediction systems used for weather and ocean forecasting tend to treat them in isolation. This paper describes the third version of a regional modelling system which aims to represent the feedback processes between sky, sea and land. The main innovation introduced in this version enables waves to affect the underlying ocean. Coupled results from four different month-long simulations are analysed.
Huw W. Lewis, Juan Manuel Castillo Sanchez, John Siddorn, Robert R. King, Marina Tonani, Andrew Saulter, Peter Sykes, Anne-Christine Pequignet, Graham P. Weedon, Tamzin Palmer, Joanna Staneva, and Lucy Bricheno
Ocean Sci., 15, 669–690, https://doi.org/10.5194/os-15-669-2019, https://doi.org/10.5194/os-15-669-2019, 2019
Short summary
Short summary
Forecasts of ocean temperature, salinity, currents, and sea height can be improved by linking state-of-the-art ocean and wave models, so that they can interact to better represent the real world. We test this approach in an ocean model of north-west Europe which can simulate small-scale details of the ocean state. The intention is to implement the system described in this study for operational use so that improved information can be provided to users of ocean forecast data.
Wilhelm Petersen, Susanne Reinke, Gisbert Breitbach, Michail Petschatnikov, Henning Wehde, and Henrike Thomas
Earth Syst. Sci. Data, 10, 1729–1734, https://doi.org/10.5194/essd-10-1729-2018, https://doi.org/10.5194/essd-10-1729-2018, 2018
Short summary
Short summary
From 2002 to 2005 a FerryBox system was installed aboard two different ferries traveling between Cuxhaven (Germany) and Harwich (UK) on a daily basis. The FerryBox system is an automated flow-through monitoring system for measuring oceanographic and biogeochemical parameters installed on ships of opportunity. The data set provides the parameters water temperature, salinity, dissolved oxygen and chlorophyll a fluorescence.
Huw W. Lewis, Juan Manuel Castillo Sanchez, Jennifer Graham, Andrew Saulter, Jorge Bornemann, Alex Arnold, Joachim Fallmann, Chris Harris, David Pearson, Steven Ramsdale, Alberto Martínez-de la Torre, Lucy Bricheno, Eleanor Blyth, Victoria A. Bell, Helen Davies, Toby R. Marthews, Clare O'Neill, Heather Rumbold, Enda O'Dea, Ashley Brereton, Karen Guihou, Adrian Hines, Momme Butenschon, Simon J. Dadson, Tamzin Palmer, Jason Holt, Nick Reynard, Martin Best, John Edwards, and John Siddorn
Geosci. Model Dev., 11, 1–42, https://doi.org/10.5194/gmd-11-1-2018, https://doi.org/10.5194/gmd-11-1-2018, 2018
Short summary
Short summary
In the real world the atmosphere, oceans and land surface are closely interconnected, and yet prediction systems tend to treat them in isolation. Those feedbacks are often illustrated in natural hazards, such as when strong winds lead to large waves and coastal damage, or when prolonged rainfall leads to saturated ground and high flowing rivers. For the first time, we have attempted to represent some of the feedbacks between sky, sea and land within a high-resolution forecast system for the UK.
Enda O'Dea, Rachel Furner, Sarah Wakelin, John Siddorn, James While, Peter Sykes, Robert King, Jason Holt, and Helene Hewitt
Geosci. Model Dev., 10, 2947–2969, https://doi.org/10.5194/gmd-10-2947-2017, https://doi.org/10.5194/gmd-10-2947-2017, 2017
Short summary
Short summary
An update to an ocean modelling configuration for the European North West Shelf is described. It is assessed against observations and climatologies for 1981–2012. Sensitivities in the model configuration updates are assessed to understand changes in the model system. The model improves upon an existing model of the region, although there remain some areas with significant biases. The paper highlights the dependence upon the quality of the river inputs.
Burkard Baschek, Friedhelm Schroeder, Holger Brix, Rolf Riethmüller, Thomas H. Badewien, Gisbert Breitbach, Bernd Brügge, Franciscus Colijn, Roland Doerffer, Christiane Eschenbach, Jana Friedrich, Philipp Fischer, Stefan Garthe, Jochen Horstmann, Hajo Krasemann, Katja Metfies, Lucas Merckelbach, Nino Ohle, Wilhelm Petersen, Daniel Pröfrock, Rüdiger Röttgers, Michael Schlüter, Jan Schulz, Johannes Schulz-Stellenfleth, Emil Stanev, Joanna Staneva, Christian Winter, Kai Wirtz, Jochen Wollschläger, Oliver Zielinski, and Friedwart Ziemer
Ocean Sci., 13, 379–410, https://doi.org/10.5194/os-13-379-2017, https://doi.org/10.5194/os-13-379-2017, 2017
Short summary
Short summary
The Coastal Observing System for Northern and Arctic Seas (COSYNA) was established in order to better understand the complex interdisciplinary processes of northern seas and the Arctic coasts in a changing environment. Particular focus is given to the heavily used German Bight in the North Sea. The automated observing and modelling system is designed to monitor real-time conditions, to provide short-term forecasts and data products, and to assess the impact of anthropogenically induced change.
Yoana G. Voynova, Holger Brix, Wilhelm Petersen, Sieglinde Weigelt-Krenz, and Mirco Scharfe
Biogeosciences, 14, 541–557, https://doi.org/10.5194/bg-14-541-2017, https://doi.org/10.5194/bg-14-541-2017, 2017
Short summary
Short summary
This study focuses on how the June 2013 Elbe River flood affected the southern German Bight. The largest summer flood within the last 140 years, it generated a substantial plume of nutrient-rich, buoyant waters from the Elbe estuary onto the coast. During the calm 2013 summer, the flood was followed by prolonged (2-month) water column stratification, chlorophyll blooms in surface, and uncharacteristically low oxygen in bottom waters. With climate change, these events are becoming more frequent.
Jason Holt, Patrick Hyder, Mike Ashworth, James Harle, Helene T. Hewitt, Hedong Liu, Adrian L. New, Stephen Pickles, Andrew Porter, Ekaterina Popova, J. Icarus Allen, John Siddorn, and Richard Wood
Geosci. Model Dev., 10, 499–523, https://doi.org/10.5194/gmd-10-499-2017, https://doi.org/10.5194/gmd-10-499-2017, 2017
Short summary
Short summary
Accurately representing coastal and shelf seas in global ocean models is one of the grand challenges of Earth system science. Here, we explore what the options are for improving this by exploring what the important physical processes are that need to be represented. We use a simple scale analysis to investigate how large the resulting models would need to be. We then compare this with how computer power is increasing to provide estimates of when this might be feasible in the future.
Katja Metfies, Friedhelm Schroeder, Johanna Hessel, Jochen Wollschläger, Sebastian Micheller, Christian Wolf, Estelle Kilias, Pim Sprong, Stefan Neuhaus, Stephan Frickenhaus, and Wilhelm Petersen
Ocean Sci., 12, 1237–1247, https://doi.org/10.5194/os-12-1237-2016, https://doi.org/10.5194/os-12-1237-2016, 2016
Short summary
Short summary
Here we introduce a new molecular-based observation strategy for high-resolution assessment of marine microbes (e.g., microalgae) in space and time. The observation strategy combines automated sampling on board ships or observation platforms with a variety of different molecular genetic methods for refined observation of marine microbes at adaquate scales, in order to better understand the impact of climate change on this group of organisms, which are at the base of marine food webs.
Jun She, Icarus Allen, Erik Buch, Alessandro Crise, Johnny A. Johannessen, Pierre-Yves Le Traon, Urmas Lips, Glenn Nolan, Nadia Pinardi, Jan H. Reißmann, John Siddorn, Emil Stanev, and Henning Wehde
Ocean Sci., 12, 953–976, https://doi.org/10.5194/os-12-953-2016, https://doi.org/10.5194/os-12-953-2016, 2016
Short summary
Short summary
This white paper addresses key scientific challenges and research priorities for the development of operational oceanography in Europe for the next 5–10 years. Knowledge gaps and deficiencies are identified in relation to common scientific challenges in four EuroGOOS knowledge areas: European ocean observations, modelling and forecasting technology, coastal operational oceanography, and operational ecology.
J. R. Siddorn, S. A. Good, C. M. Harris, H. W. Lewis, J. Maksymczuk, M. J. Martin, and A. Saulter
Ocean Sci., 12, 217–231, https://doi.org/10.5194/os-12-217-2016, https://doi.org/10.5194/os-12-217-2016, 2016
Short summary
Short summary
The Met Office provides a range of services in the marine environment. To support these services, and to ensure they evolve to meet the demands of users and are based on the best available science, a number of scientific challenges need to be addressed. The paper summarises the key challenges, and highlights some priorities for the ocean monitoring and forecasting research group at the Met Office.
A. Megann, D. Storkey, Y. Aksenov, S. Alderson, D. Calvert, T. Graham, P. Hyder, J. Siddorn, and B. Sinha
Geosci. Model Dev., 7, 1069–1092, https://doi.org/10.5194/gmd-7-1069-2014, https://doi.org/10.5194/gmd-7-1069-2014, 2014
M. Haller, B. Brümmer, and G. Müller
The Cryosphere, 8, 275–288, https://doi.org/10.5194/tc-8-275-2014, https://doi.org/10.5194/tc-8-275-2014, 2014
Related subject area
Approach: In situ Observations | Depth range: Surface | Geographical range: Shelf Seas | Phenomena: Temperature, Salinity and Density Fields
Long term trends in the sea surface temperature of the Black Sea
G. I. Shapiro, D. L. Aleynik, and L. D. Mee
Ocean Sci., 6, 491–501, https://doi.org/10.5194/os-6-491-2010, https://doi.org/10.5194/os-6-491-2010, 2010
Cited articles
Backhaus, J. O.: A three-dimensional model for the simulation of shelf sea dynamics, Deutsche Hydrographische Zeitschrift, 38, 165–187, 1985.
Baretta, J. W., Ebenhöh, W., and Ruardij, P.: The European regional seas ecosystem model, a complex marine ecosystem model, Neth. J. Sea Res., 33, 233–246, 1995.
Becker, G. A.: Die Nordsee als physikalisches System, in: Warnsignale aus der Nordsee. Wissenschaftliche Fakten, edited by: Lozan, J. L., Lenz, W., Rachor, E., Watermann, B., and Westerhagen, H., Paul Parey, Berlin and Hamburg, Germany, 428 pp., 1990.
Berntsen, J. and Svendsen, E.: Using the SKAGEX dataset for evaluation of ocean model skills, J. Marine Syst., 18, 313–331, https://doi.org/10.1016/S0924-7963(97)00111-5, 1999.
Blackford, J. C., Allen, J. I., and Gilbert, F. J.: Ecosystem dynamics at six contrasting sites: a generic modelling study, J. Marine Syst., 52, 191–215, https://doi.org/10.1016/j.jmarsys.2004.02.004, 2004.
Blockley, E. W., Martin, M. J., McLaren, A. J., Ryan, A. G., Waters, J., Lea, D. J., Mirouze, I., Peterson, K. A., Sellar, A., and Storkey, D.: Recent development of the Met Office operational ocean forecasting system: an overview and assessment of the new Global FOAM forecasts, Geosci. Model Dev., 7, 2613–2638, https://doi.org/10.5194/gmd-7-2613-2014, 2014.
Brüning, T., Janssen, F., Kleine, E., Komo, H., Maßmann, S., Menzenhauer-Schumacher, I., Jandt, S., and Dick, S.: Operational Ocean Forecasting for German Coastal Waters, Die Küste, 81, 273–290, 2014.
BSH: available at: http://www.bsh.de/en/Marine_data/Observations/MARNET_monitoring_network/ (last access: 9 November 2015), 2014.
BSH: available at: http://www.bsh.de/en/Marine_data/Observations/Daily_circulation_pattern_German_Bight/index.jsp, last access: 9 November 2015.
Cefas: available at: https://www.cefas.co.uk/cefas-data-hub/smartbuoys/ (last access: 9 November 2015), 2014.
COSYNA: available at: www.cosyna.de (last access: 9 November 2015), 2014.
de Kok, J. M.: Baroclinic eddy formation in a Rhine plume model, J. Marine Syst., 12, 35–52, https://doi.org/10.1016/S0924-7963(96)00087-5, 1997.
Delhez, E. and Martin, G.: Preliminary results of 3-D baroclinic numerical models of the mesoscale and macroscale circulations on the North-Western Europena Continental Shelf, J. Marine Syst., 3, 423–440, https://doi.org/10.1016/0924-7963(92)90014-Y, 1992.
Dick, S., Kleine, E., Müller-Navarra, S. H., Klein, H., and Komo, H.: The operational circulation model of BSH (BSHcmod) – model description and validation, Berichte des BSH, 29, 49 pp., 2001.
Doms, G. and Schättler, U.: The non-hydrostatic limited-area model LM (Lokalmodell) of DWD. Part I: Scientific documentation, Deutscher Wetterdienst, available at: http://www.cosmo-model.org/content/model/documentation/core/default.htm#p1 (last access: 9 November 2015), 1999.
Donlon, C. J., Casey, K. S., Robinson, I. S., Gentemann, C. L., Reynolds, R. W., Barton, I., Arino, O., Stark, J., Rayner, N., LeBorgne, P., Poulter, D., Vazquez-Cuervo, J., Armstrong, E., Beggs, H., Llewellyn-Jones, D., Minnett, P. J., Merchant, C. J., and Evans, R.: The GODAE High-Resolution Sea Surface Temperature Pilot Project, Oceanography, 22, 34–45, https://doi.org/10.5670/oceanog.2009.64, 2009.
Donlon, C. J., Martin, M., Stark, J., Roberts-Jones, J., Fiedler, E., and Wimmer, W.: The Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) system, Remote Sens. Environ., 116, 140–158, https://doi.org/10.1016/j.rse.2010.10.017, 2012.
Edwards, K. P., Barciela, R., and Butenschön, M.: Validation of the NEMO-ERSEM operational ecosystem model for the North West European Continental Shelf, Ocean Sci., 8, 983–1000, https://doi.org/10.5194/os-8-983-2012, 2012.
FerryBox: available at: http://www.ferrybox.org (last access: 9 November 2015), 2014.
Grayek, S., Staneva, J., Schulz-Stellenfleth, J., and Petersen, W.: Use of Ferrybox surface temperature and salinity measurements to improve model based state estimates for the German Bight, J. Marine Syst., 88, 45–59, https://doi.org/10.1016/j.jmarsys.2011.02.020, 2011.
Hydes, D. J., Kelly-Gerreyn, B. A., Colijn, F., Petersen, W., Schroeder, F., Mills, D. K., Durand, D., Wehde, H., Sorensen, K., and Morrison, G.: The way forward in developing and integrating FerryBox technologies, Proceedings of OceanObs'09 Conference, 21–25 September 2009, Venice, Italy, 2009.
Janssen, F., Schrum, C., and Backhaus, J. O.: A climatological data set of temperature and salinity for the Baltic Sea and the North Sea, German Journal of Hydrography, 9, 5–245, 1999.
Jickells, T. D.: Nutrient biogeochemistry of the coastal zone, Science, 281, 217–222, https://doi.org/10.1126/science.281.5374.217, 1998.
Kannen, A.: Challenges for marine spatial planning in the context of multiple sea uses, policy arenas and actors based on experiences from the German North Sea, Reg. Environ. Change, 1–12, https://doi.org/10.1007/s10113-012-0349-7, 2012.
Korres, G., Nittis, K., Hoteit, I., and Triantafyllou, G.: A high resolution data assimilation system for the Aegean Sea hydrodynamics, J. Marine Syst., 77, 325–340, https://doi.org/10.1016/j.jmarsys.2007.12.014, 2009.
Legates, D. R. and McCabe, G. J.: Evaluating the use of "goodness-of-fit" Measures in hydrologic and hydroclimatic model validation, Water Resour. Res., 35, 233–241, https://doi.org/10.1029/1998WR900018, 1999.
Lenhart, H.-J. and Pohlmann, T.: The ICES-boxes approach in relation to results of a North Sea circulation model, Tellus A, 49, 139–160, https://doi.org/10.1034/j.1600-0870.1997.00010.x, 1997.
Loewe, P.: System Nordsee – Zustand 2005 im Kontext langzeitlicher Entwicklungen, Berichte des Bundesamtes für Seeschifffahrt und Hydrographie (BSH), Hamburg und Rostock, Germany, 44, 81–92, 2009.
Loewe, P., Klein, H., and Weigelt-Krenz, S.: System Nordsee – 2006 & 2007: Zustand und Entwicklungen, Berichte des Bundesamtes für Seeschifffahrt und Hydrographie (BSH), Hamburg und Rostock, Germany, 49, 117–130, 2013.
Losa, S. N., Danilov, S., Schröter, J., Nerger, L., Maßmann, S., and Janssen, F.: Assimilating NOAA SST data into the BSH operational circulation model for the North and Baltic Seas: Inference about the data, J. Marine Syst., 105–108, 152–162, https://doi.org/10.1016/j.jmarsys.2012.07.008, 2012.
Losa, S. N., Danilov, S., Schröter, J., Janjić, T., Nerger, L., and Janssen, F.: Assimilating NOAA SST data into BSH operational circulation model for the North and Baltic Seas: Part 2. Sensitivity of the forecast's skill to the prior model error statistics, J. Marine Syst., 129, 259–270, https://doi.org/10.1016/j.jmarsys.2013.06.011, 2014.
Luyten, P. J., Deleersnijder, E., Ozer, J., and Ruddick, K. G.: Presentation of a family of turbulence closure models for stratified shallow water flows and preliminary application to the Rhine outflow region, Cont. Shelf Res., 16, 101–130, 1996.
Maar, M., Moller, E. F., Larsen, J., Madsen, K. S., Wan, Z. W., She, J., Jonasson, L., and Neumann, T.: Ecosystem modelling across a salinity gradient from the North Sea to the Baltic Sea, Ecol. Model., 222, 1696–1711, https://doi.org/10.1016/j.ecolmodel.2011.03.006, 2011.
Madec, G.: NEMO ocean engine, Technical Note, Institute Pierre-Simon Laplace (IPSL), France, 300 pp., 2008.
Martin, M. J., Hines, A., and Bell, M. J.: Data assimilation in the FOAM operational short-range ocean forecasting system: a description of the scheme and its impact, Q. J. Roy. Meteor. Soc., 133, 981–995, https://doi.org/10.1002/qj.74, 2007.
McLaren, A., Sykes, P., Blockley, E. W., O'Dea, E. J., Mahdon, R., McEwan, R., and Ryan, A.: For European North West Shelf – Ocean Physics and Biogeochemistry Analysis and Forecast Product, MyOcean online catalogue, available at: http://marine.copernicus.eu/documents/QUID/CMEMS-NWS-QUID-004-001-002.pdf, last access: 9 November 2015.
Mills, D. K., Laane, R. W. P. M., Rees, J. M., Rutgers van der Loeff, M., Suylen, J. M., Pearce, D. J., Sivyer, D. B., Heins, C., Platt, K., Rawlinson, M., and Colijn, F.: Smartbuoy: A marine environmental monitoring buoy with a difference, in: Elsevier Oceanography Series, edited by: Dahlin, H., Flemming, N. C., Nittis, K., and Petersson, S. E., Elsevier, Ansterdam, the Netherlands, 325–333, available at: https://doi.org/10.1016/S0422-9894(03)80052-1 (last access: 12 November 2015), 2003.
O'Dea, E. J., Arneold, A. K., Edwards, K. P., Furner, R., Hyder, P., Martin, M. J., Siddorn, J. R., Storkey, D., While, J., Holt, J. T., and Liu, H.: An operational ocean forecast system incorporating NEMO and SST data assimilation for the tidally driven European North-West shelf, Journal of Operational Oceanography, 5, 3–17, 2012.
OSPAR: Quality status Report 2000, Region II – Greater North Sea, OSPAR Commission, London, UK, ISBN 0-946956-48-0, 5–25, 2000.
OSPAR: Quality status report 2010, OSPAR Commission, London, UK, ISBN 978-1-907390-38-8, 176 pp., 2010.
Otto, L., Zimmerman, J. T. F., Furnes, G. K., Mork, M., Saetre, R., and Becker, G.: Review of the physical oceanography of the North Sea, Neth. J. Sea Res., 26, 161–238, https://doi.org/10.1016/0077-7579(90)90091-T, 1990.
Petersen, W.: FerryBox systems: State-of-the-art in Europe and future development, J. Marine Syst., 140, Part A, 4–12, https://doi.org/10.1016/j.jmarsys.2014.07.003, 2014.
Petersen, W., Petschatnikov, M., and Schroeder, F.: FerryBox Systems for Monitoring Coastal Waters, Elsevier, Amsterdam, the Netherlands, 325–333, available at: https://doi.org/10.1016/S0422-9894(03)80050-8 (last access: 12 November 2015), 2003.
Petersen, W., Colijn, F., Elliot, J., Howarth, M. J., Hydes, D. J., Kaitala, S., Kontoyiannis, H., Lavin, A., Lips, I., Pfeiffer, K. D., Proctor, R., Ridderinkhof, H., and Sorensen, K.: European FerryBox Project: From Online Oceanographic Measurements to Environmental Information, in: European Operational Oceanography: Present and Future, edited by: Dahlin, H., Flemming, N. C., Marchand, P., and Petersson, S. E., Proceedings of the 4th EuroGOOS Conference, Brest, France, ISBN 92-894-9722-2, 1–32, 2005.
Petersen, W., Colijn, F., Hydes, D. J., and Schroeder, F.: FerryBox: From on-line oceanographic observations to environmental information, EU Project FerryBox 2002–2005, EuroGOOS Publications, Amsterdam, the Netherlands, 25, 36 pp., 2007.
Petersen, W., Wehde, H., Krasemann, H., Colijn, F., and Schroeder, F.: FerryBox and MERIS – Assessment of coastal and shelf sea ecosystems by combining in situ and remotely sensed data, Estuar. Coast. Shelf. S., 77, 296–307, https://doi.org/10.1016/j.ecss.2007.09.023, 2008.
Petersen, W., Schroeder, F., and Bockelmann, F. D.: FerryBox – Application of continuous water quality observations along transects in the North Sea, Ocean Dynam., 61, 1541–1554, https://doi.org/10.1007/s10236-011-0445-0, 2011.
Pleskachevsky, A., Eppel, D. P., and Kapitza, H.: Interaction of waves, currents and tides, and wave-energy impact on the beach area of Sylt Island, Ocean Dynam., 59, 451–461, https://doi.org/10.1007/s10236-008-0174-1, 2009.
Proctor, R. and James, I. D.: A fine-resolution 3-D model of the Southern North Sea, J. Marine Syst., 8, 285–295, https://doi.org/10.1016/0924-7963(96)00011-5, 1996.
Queste, B. Y., Fernand, L., Jickells, T. D., and Heywood, K. J.: Spatial extent and historical context of North Sea oxygen depletion in August 2010, Biogeochemistry, 113, 53–68, https://doi.org/10.1007/s10533-012-9729-9, 2013.
Riethmuller, R., Colijn, F., Krasemann, H., Schroeder, F., and Ziemer, F.: COSYNA, an Integrated Coastal Observation System for Northern and Arctic Seas, in: Oceans 2009 – Europe, 11–14 May 2009, Bremen, Germany, Oceans-IEEE, 1–7, https://doi.org/10.1109/OCEANSE.2009.5278153, 2009.
Siddorn, J. R., Allen, J. I., Blackford, J. C., Gilbert, F. J., Holt, J. T., Holt, M. W., Osborne, J. P., Proctor, R., and Mills, D. K.: Modelling the hydrodynamics and ecosystem of the North-West European continental shelf for operational oceanography, J. Marine Syst., 65, 417–429, https://doi.org/10.1016/j.jmarsys.2006.01.018, 2007.
Søiland, H. and Skogen, M. D.: Validation of a three-dimensional biophysical model using nutrient observations in the North Sea, ICES J. Mar. Sci., 57, 816–823, https://doi.org/10.1006/jmsc.2000.0567, 2000.
Sperna Weiland, F. C., van Beek, L. P. H., Kwadijk, J. C. J., and Bierkens, M. F. P.: The ability of a GCM-forced hydrological model to reproduce global discharge variability, Hydrol. Earth Syst. Sci., 14, 1595–1621, https://doi.org/10.5194/hess-14-1595-2010, 2010.
Stanev, E. V., Schulz-Stellenfleth, J., Staneva, J., Grayek, S., Seemann, J., and Petersen, W.: Coastal observing and forecasting system for the German Bight – estimates of hydrophysical states, Ocean Sci., 7, 569–583, https://doi.org/10.5194/os-7-569-2011, 2011.
Storkey, D., Blockley, E. W., Furner, R., Guiavarc'h, C., Lea, D., Martin, M. J., Barciela, R. M., Hines, A., Hyder, P., and Siddorn, J. R.: Forecasting the ocean state using NEMO:The new FOAM system, Journal of Operat. Oceanogr., 3, 3–15, 2010.
Svendsen, E., Bemtsen, J., Skogen, M., Ådlandsvik, B., and Martinsen, E.: Model simulation of the Skagerrak circulation and hydrography during Skagex, J. Marine Syst., 8, 219–236, https://doi.org/10.1016/0924-7963(96)00007-3, 1996.
Thomas, H., Gattuso, J. P., and Smith, S. V.: Coastal Biogeochemistry at the EGS-AGU-EUG Joint Assembly, LOICZ newsletter 28, 1–4, 2003.
Turrell, W. R.: New hypotheses concerning the circulation of the northern North Sea and its relation to North Sea fish stock recruitment, ICES J. Mar. Sci., 49, 107–123, https://doi.org/10.1093/icesjms/49.1.107, 1992.
Vested, H. J., Jensen, H. R., Petersen, H. M., Jørgensen, A.-M., and Machenhauer, B.: An operational hydrographic warning system for the North Sea and the Danish Belts, Cont. Shelf Res., 12, 65–81, https://doi.org/10.1016/0278-4343(92)90006-6, 1992.
Volent, Z., Johnsen, G., Hovland, E. K., Folkestad, A., Olsen, L. M., Tangen, K., and Sorensen, K.: Improved monitoring of phytoplankton bloom dynamics in a Norwegian fjord by integrating satellite data, pigment analysis, and FerryBox data with a coastal observation network, J. Appl. Remote Sens., 5, 053561, https://doi.org/10.1117/1.3658032, 2011.
Wehde, H., Schroeder, F., Colijn, F., Reinke, S., Petersen, W., Schrum, C., Plüß, A., and Mills, D. K.: FerryBox observations in the southern North Sea – application of numerical models for improving the significance of the FerryBox data, Proceedings of the Fourth EuroGOOS conference, 6–9 June 2005, Brest, France, 169–173, 2006.
Willmott, C. J.: On the validation of models. Phys. Geogr., 2, 184–194, 1981.
Young, E. F. and Holt, J. T.: Prediction and analysis of long-term variability of temperature and salinity in the Irish Sea, J. Geophys. Res.-Oceans, 112, C01008, https://doi.org/10.1029/2005JC003386, 2007.
Short summary
Automated measurement systems called FerryBox are installed on cargo ships in the North Sea. Operational model forecasts have been compared to FerryBox data of water temperature and salinity. We wanted to know how well the simulations agree with the observations. We found out that water temperature simulation gives satisfying results, while salinity simulation still could be improved. It turned out that assimilation of observational data into operational models gives strong benefits.
Automated measurement systems called FerryBox are installed on cargo ships in the North Sea....