Articles | Volume 11, issue 1
https://doi.org/10.5194/os-11-83-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/os-11-83-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
An alternative method for correcting fluorescence quenching
L. Biermann
CORRESPONDING AUTHOR
Sea Mammal Research Unit, Scottish Oceans Institute, St. Andrews, UK
C. Guinet
Centre National de la Recherche Scientifique, Centre d'Etudes Biologiques de Chizé, Villiers en Bois, France
M. Bester
Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
A. Brierley
Pelagic Ecology Research Group, Scottish Oceans Institute, St. Andrews, UK
L. Boehme
Sea Mammal Research Unit, Scottish Oceans Institute, St. Andrews, UK
Related authors
No articles found.
Dani C. Jones, Maike Sonnewald, Shenjie Zhou, Ute Hausmann, Andrew J. S. Meijers, Isabella Rosso, Lars Boehme, Michael P. Meredith, and Alberto C. Naveira Garabato
Ocean Sci., 19, 857–885, https://doi.org/10.5194/os-19-857-2023, https://doi.org/10.5194/os-19-857-2023, 2023
Short summary
Short summary
Machine learning is transforming oceanography. For example, unsupervised classification approaches help researchers identify underappreciated structures in ocean data, helping to generate new hypotheses. In this work, we use a type of unsupervised classification to identify structures in the temperature and salinity structure of the Weddell Gyre, which is an important region for global ocean circulation and for climate. We use our method to generate new ideas about mixing in the Weddell Gyre.
Jérôme Pinti, Tim DeVries, Tommy Norin, Camila Serra-Pompei, Roland Proud, David A. Siegel, Thomas Kiørboe, Colleen M. Petrik, Ken H. Andersen, Andrew S. Brierley, and André W. Visser
Biogeosciences, 20, 997–1009, https://doi.org/10.5194/bg-20-997-2023, https://doi.org/10.5194/bg-20-997-2023, 2023
Short summary
Short summary
Large numbers of marine organisms such as zooplankton and fish perform daily vertical migration between the surface (at night) and the depths (in the daytime). This fascinating migration is important for the carbon cycle, as these organisms actively bring carbon to depths where it is stored away from the atmosphere for a long time. Here, we quantify the contributions of different animals to this carbon drawdown and storage and show that fish are important to the biological carbon pump.
M. C. Moshobane, P. J. N. de Bruyn, and M. N. Bester
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLI-B6, 267–273, https://doi.org/10.5194/isprs-archives-XLI-B6-267-2016, https://doi.org/10.5194/isprs-archives-XLI-B6-267-2016, 2016
R. Sauzède, H. Lavigne, H. Claustre, J. Uitz, C. Schmechtig, F. D'Ortenzio, C. Guinet, and S. Pesant
Earth Syst. Sci. Data, 7, 261–273, https://doi.org/10.5194/essd-7-261-2015, https://doi.org/10.5194/essd-7-261-2015, 2015
Cited articles
Alderkamp, A. C., Garcon, V., de Baar, H. J., and Arrigo, K. R.: Short-term photoacclimation effects on photoinhibition of phytoplankton in the Drake Passage (Southern Ocean), Deep Sea Res. Pt. I, 58, 943–955, https://doi.org/10.1016/j.dsr.2011.07.001, 2011.
Arrigo, K. R., Mills, M. M., Kropuenske, L. R., van Dijken, G. L., Alderkamp, A. C., and Robinson, D. H.: Photophysiology in two major Southern Ocean phytoplankton taxa: photosynthesis and growth of Phaeocystis antarctica and Fragilariopsis cylindrus under different irradiance levels, Integr. Comp. Biol., 50, 950–966, https://doi.org/10.1093/icb/icq021, 2010.
Behrenfeld, M. J. and Boss, E.: Beam attenuation and chlorophyll concentration as alternative optical indices of phytoplankton biomass, J. Mar. Res., 64, 431–451, https://doi.org/10.1357/002224006778189563, 2006.
Behrenfeld, M. J. and Falkowski, P. G.: Photosynthetic rates derived from satellite-based chlorophyll concentration, Limnol. Oceanogr., 42, 1–20, https://doi.org/10.4319/lo.1997.42.1.0001, 1997.
Behrenfeld, M. J., Westberry, T. K., Boss, E. S., O'Malley, R. T., Siegel, D. A., Wiggert, J. D., Franz, B. A., McClain, C. R., Feldman, G. C., Doney, S. C., Moore, J. K., Dall'Olmo, G., Milligan, A. J., Lima, I., and Mahowald, N.: Satellite-detected fluorescence reveals global physiology of ocean phytoplankton, Biogeosciences, 6, 779–794, https://doi.org/10.5194/bg-6-779-2009, 2009.
Bester, M. N.: Chemical restraint of Antarctic fur seals and southern elephant seals, South Afr. J. Wildl. Res., 18, 57–60, 1988.
Boehme, L., Lovell, P., Biuw, M., Roquet, F., Nicholson, J., Thorpe, S. E., Meredith, M. P., and Fedak, M.: Technical Note: Animal-borne CTD-Satellite Relay Data Loggers for real-time oceanographic data collection, Ocean Sci., 5, 685–695, https://doi.org/10.5194/os-5-685-2009, 2009.
Charrassin, J. B., Roquet, F., Park, Y. H., Bailleul, F., Guinet, C., Meredith, M., , Nicholls, K., Thorpe, S., Tremblay, Y., Costa, D., Göbel, M., Muelbert, M., Bester, M. N., Plötz, J., Bornemann, H., Timmermann, R., Hindell, M., Meijers, A., Coleman, R. C., Field, I. C., McMahon, C., Rintoul, S., Sokolov, S., Fedak, M., Lovell, P., Biuw, M., Kovacs, K., and Lydersen, C.: New insights into Southern Ocean physical and biological processes revealed by instrumented elephant seals, Proceedings of OceanObs 09: Sustained Ocean Observations and Information for Society (Vol. 2), edited by: Hall, J., Harrison, D. E., and Stammer, D., Venice, Italy, 21–25 September 2009, https://doi.org/10.5270/OceanObs09.cwp.15, ESA Publication WPP-306, 2010.
Claustre, H., Sciandra, A., and Vaulot, D.: Introduction to the special section bio-optical and biogeochemical conditions in the South East Pacific in late 2004: the BIOSOPE program, Biogeosciences, 5, 679–691, https://doi.org/10.5194/bg-5-679-2008, 2008.
Cullen, J. J. and Eppley, R. W.: Chlorophyll maximum layers of the Southern-California Bight and possible mechanisms of their formation and maintenance, Oceanologica Acta, 4, 23–32, 1981.
de Boyer Montégut, C., Madec, G., Fischer, A. S., Lazar, A., and Iudicone, D.: Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology, J. Geophys. Res.-Ocean., (1978–2012), 109, C12003, https://doi.org/10.1029/2004JC002378, 2004.
Dierssen, H. M. and Smith, R. C.: Bio-optical properties and remote sensing ocean color algorithms for Antarctic Peninsula waters, J. Geophys. Res.-Ocean., (1978–2012), 105, 26301–26312, https://doi.org/10.1029/1999JC000296, 2000.
Dong, S., Sprintall, J., Gille, S. T., and Talley, L.: Southern Ocean mixed?layer depth from Argo float profiles, J. Geophys. Res.-Oceans, 113, C06013, https://doi.org/10.1029/2006JC004051, 2008.
Durham, W. M., Climent, E., Barry, M., De Lillo, F., Boffetta, G., Cencini, M., and Stocker, R.: Turbulence drives microscale patches of motile phytoplankton, Nature communications, 4, 2148, https://doi.org/10.1038/ncomms3148, 2013.
Estrada, M., Marrase, C., Latasa, M., Berdalet, E., Delgado, M., and Riera, T.: Variability of deep chlorophyll maximum characteristics in the Northwestern Mediterranean, Marine Ecol. Progr. Ser., 92, 289–289, 1993.
Fairbanks, R. G., Sverdlove, M., Free, R., Wiebe, P. H., and Bé, A. W.: Vertical distribution and isotopic fractionation of living planktonic foraminifera from the Panama Basin, Nature, 298, 841–844, 1982.
Falkowski, P. G. and Kolber, Z.: Variations in Chlorophyll Fluorescence Yields in Phytoplankton in the World Oceans, Austr. J. Plant Physiol., 22, 341–355, 1995.
Falkowski, P. G., Barber, R. T., and Smetack, V.: Biogeochemical controls and feedbacks on ocean primary productivity, Science, 281, 200–206, 1998.
Fedak, M., Lovell, P., McConnell, B., and Hunter, C.: Overcoming the constraints of long range radio telemetry from animals: getting more useful data from smaller packages, Integr. Comparat. Biol., 42, 3–10, https://doi.org/10.1093/icb/42.1.3, 2002.
Franks, P. J.: Has Sverdrup's critical depth hypothesis been tested? Mixed layers vs. turbulent layers, ICES J. Mar. Sci., https://doi.org/10.1093/icesjms/fsu175, online firstm, 2014.
Fu, G., Baith, K. S., and McClain, C. R.: SeaDAS: The SeaWiFS Data Analysis System, Proceedings of The 4th Pacific Ocean Remote Sensing Conference, Qingdao, China, 28–31 July, 73–79, 1998.
Garcia, V. M. T. and Purdie, D. A.: The influence of irradiance on growth, photosynthesis and respiration of Gyrodinium cf. aureolum, J. Plankton Res., 14, 1251–1265, 1992.
Gordon, H. R. and Morel, A.: Remote Sensing of Ocean Color for Interpretation of Satellite Visible Imagery: A Review, (Springer-Verlag, New York), 1983.
Guinet, C., Xing, X., Walker, E., Monestiez, P., Marchand, S., Picard, B., Jaud, T., Authier, M., Cotté, C., Dragon, A. C., Diamond, E., Antoine, D., Lovell, P., Blain, S., D'Ortenzio, F., and Claustre, H.: Calibration procedures and first dataset of Southern Ocean chlorophyll a profiles collected by elephant seals equipped with a newly developed CTD-fluorescence tags, Earth Syst. Sci. Data, 5, 15–29, https://doi.org/10.5194/essd-5-15-2013, 2013.
Hameedi, M. J.: Aspects of water column primary productivity in the Chukchi Sea during summer, Marine Biol., 48, 37–46, 1978.
Henson, S. A., Sarmiento, J. L., Dunne, J. P., Bopp, L., Lima, I., Doney, S. C., John, J., and Beaulieu, C.: Detection of anthropogenic climate change in satellite records of ocean chlorophyll and productivity, Biogeosciences, 7, 621–640, https://doi.org/10.5194/bg-7-621-2010, 2010.
Holm-Hansen, O. and Hewes, C. D.: Deep chlorophyll a maxima (DCMs) in Antarctic waters, Polar Biol., 27, 699–710, https://doi.org/10.1007/s00300-004-0641-1, 2004.
Holm-Hansen, O., Kahru, M., and Hewes, C. D.: Deep chlorophyll a maxima (DCMs) in pelagic Antarctic waters. II. Relation to bathymetric features and dissolved iron concentrations, Marine Ecol. Progr. Ser., 297, 71–81, https://doi.org/10.3354/meps297071, 2005.
Jaud, T., Dragon, A. C., Garcia, J. V., and Guinet, C.: Relationship between Chlorophyll a Concentration, Light Attenuation and Diving Depth of the Southern Elephant Seal Mirounga leonina, PLoS one, 7, e47444, https://doi.org/10.1371/journal.pone.0047444, 2012.
Johnson, K. S., Berelson, W. M., Boss, E. S., Chase, Z., Claustre, H., Emerson, S. R., Gruber, N., Kortzinger, A., Perry, M. J., and Riser, S. C.: Observing Biogeochemical Cycles at Global Scales with Profiling Floats and Gliders: Prospects for a Global Array, Oceanography, 22, 216–225, https://doi.org/10.5670/oceanog.2009.81, 2009.
Kropuenske, L. R., Mills, M. M., van Dijken, G. L., Bailey, S., Robinson, D. H., Welschmeyer, N. A., and Arrigo, K. R.: Photophysiology in two major Southern Ocean phytoplankton taxa: photoprotection in Phaeocystis antarctica and Fragilariopsis cylindrus, Limnol. Oceanogr., 54, 1176, https://doi.org/10.1111/j.1529-8817.2010.00922.x, 2009.
Kropuenske, L. R., Mills, M. M., Van Dijken, G. L., Alderkamp, A. C., Mine Berg, G., Robinson, D. H., Welschmeyer, N. A., and Arrigo, K. R.: Strategies And Rates Of Photoacclimation In Two Major Southern Ocean Phytoplankton Taxa: Phaeocystis Antarctica (Haptophyta) And Fragilariopsis Cylindrus (Bacillariophyceae) 1, J. Phycol., 46, 1138–1151, 2010.
Lavigne, H., D'Ortenzio, F., Claustre, H., and Poteau, A.: Towards a merged satellite and in situ fluorescence ocean chlorophyll product, Biogeosciences, 9, 2111–2125, https://doi.org/10.5194/bg-9-2111-2012, 2012.
Lee, S. H., Stockwell, D., and Whitledge, T. E.: Uptake rates of dissolved inorganic carbon and nitrogen by under-ice phytoplankton in the Canada Basin in summer 2005, Polar Biol., 33, 1027–1036, 2010.
Lee, Z., Weidemann, A., Kindle, J., Arnone, R., Carder, K. L., and Davis, C.: Euphotic zone depth: Its derivation and implication to ocean-color remote sensing, J. Geophys. Res.-Oceans (1978–2012), 112, 223–227, https://doi.org/10.1016/0011-7471(66)91102-8, 2007.
Lorenzen, C. J.: A method for the continuous measurement of in vivo chlorophyll concentration, Deep Sea Res. Oceanogr. Abstr., 13, 223–227, 1966.
Lorenzen, C. J. and Jeffrey, S. W.: Determination of chlorophyll in seawater, Unesco tech. pap. Mar. Sci., 35, 1–21, 1980.
McClain, C. R.: A Decade of Satellite Ocean Colour Observations, Ann. Rev. Marine Sci., 1, 19–22, 2009.
McIntyre, T., de Bruyn, P. J. N., Ansorge, I. J., Bester, M. N., Bornemann, H., Plötz, J., and Tosh, C. A.: A lifetime at depth: vertical distribution of southern elephant seals in the water column, Polar Biol., 33, 1037–1048, 2010.
Mellard, J. P., Yoshiyama, K., Litchman, E., and Klausmeier, C. A.: The vertical distribution of phytoplankton in stratified water columns, J. Theor. Biol., 269, 16–30, https://doi.org/10.1016/j.jtbi.2010.09.041, 2011.
Mengesha, S., Dehairs, F., Fiala, M., Elskens, M., and Goeyens, L.: Seasonal variation of phytoplankton community structure and nitrogen uptake regime in the Indian Sector of the Southern Ocean, Polar Biol., 20, 259–272, 1998.
Mignot, A., Claustre, H., D'Ortenzio, F., Xing, X., Poteau, A., and Ras, J.: From the shape of the vertical profile of in vivo fluorescence to Chlorophyll-a concentration, Biogeosciences, 8, 2391–2406, https://doi.org/10.5194/bg-8-2391-2011, 2011.
Milligan, A. J., Aparicio, U. A., and Behrenfeld, M. J.: Fluorescence and nonphotochemical quenching responses to simulated vertical mixing in the marine diatom Thalassiosira weissflogii, Mar. Ecol. Progr. Ser., 448, 67–78, https://doi.org/10.3354/meps09544, 2012.
Morel, A.: Optical modeling of the upper ocean in relation to its biogenous matter content (case I waters), J. Geophys. Res.-Ocean., 93, 10749–10768, 1988.
Morel, A. and Berthon, J. F.: Surface pigments, algal biomass profiles, and potential production of the euphotic layer: Relationships reinvestigated in view of remote-sensing applications, Limnol. Oceanogr., 34, 1545–1562, 1989.
Morel, A. and Prieur, L.: Analysis of variations in ocean color, Limnol. Oceanogr., 22, 709–722, 1977.
Morel, A., Huot, Y., Gentili, B., Werdell, P. J., Hooker, S. B., and Franz, B. A.: Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach, Remote Sens. Environ., 111, 69–88, https://doi.org/10.1016/j.rse.2007.03.012, 2007.
Müller, P., Li, X. P., and Niyogi, K. K.: Non-photochemical quenching. A response to excess light energy, Plant Physiol., 125, 1558–1566, 2001.
Navarro, G., Ruiz, J., Huertas, I. E., García, C. M., Criado-Aldeanueva, F., and Echevarría, F.: Basin-scale structures governing the position of the deep fluorescence maximum in the Gulf of Cádiz, Deep Sea Res. Pt II, 53, 1261–1281, 2006.
Orsi, A. H. and Harris, U.: Locations of the various fronts in the Southern Ocean Australian Antarctic Data Centre-CAASM Metadata, 2001, available at: https://data.aad.gov.au/aadc/metadata/metadata_redirect.cfm?md=/AMD/AU/southern_ocean_fronts, 15, 1835–1852, updated 2014.
Palmer, M. A., van Dijken, G. L., Mitchell, B. G., Seegers, B. J., Lowry, K. E., Mills, M. M., and Arrigo, K. R.: Light and nutrient control of photosynthesis in natural phytoplankton populations from the Chukchi and Beaufort seas, Arctic Ocean, Limnol. Oceanogr., 58, 2185–2205, 2013.
Platt, T., Harrison, W. G., Irwin, B., Horne, E. P., and Gallegos, C. L.: Photosynthesis and photoadaptation of marine phytoplankton in the Arctic, Deep Sea Res. Pt A, 29, 1159–1170, 1982.
Quéguiner, B.: Iron fertilization and the structure of planktonic communities in high nutrient regions of the Southern Ocean. Deep Sea Res. Pt II, 90, 43–54, https://doi.org/10.1016/j.dsr2.2012.07.024, 2013.
Ross, O. N., Moore, C. M., Suggett, D. J., MacIntyre, H. L., and Geider, R. J.: A model of photosynthesis and photo-protection based on reaction center damage and repair, Limnol. Oceanogr., 53, 1835, https://doi.org/10.1029/2008JC005086, 2008.
Ross, O. N., Geider, R. J., Berdalet, E., Artigas, M. L., and Piera, J.: Modelling the effect of vertical mixing on bottle incubations for determining in situ phytoplankton dynamics. I. Growth rates, Marine Ecol. Progr. Ser., 435, 33–45, 2011.
Ryther, J. H. and Menzel, D. W.: Light adaptation by marine phytoplankton, Limnol. Oceanogr., 4, 492–497, 1959.
Sackmann, B. S., Perry, M. J., and Eriksen, C. C.: Seaglider observations of variability in daytime fluorescence quenching of chlorophyll-a in Northeastern Pacific coastal waters, Biogeosciences Discuss., 5, 2839–2865, https://doi.org/10.5194/bgd-5-2839-2008, 2008.
Sangrà, P., García-Muñoz, C., García, C. M., Marrero-Díaz, A., Sobrino, C., Mouriño-Carballido, B., Aguiar-González, B., Henríquez-Pastene, C., Rodríguez, S. A., Lubian, L., Hernández, M., Hernández-León, S., Vázquez, E., and Estrada-Allis, S. N.: Coupling between upper ocean layer variability and size-fractionated phytoplankton in a non-nutrient-limited environment, Marine Ecol. Progr. Ser., 499, 35–46, 2014.
Saulquin, B., Hamdi, A., Gohin, F., Populus, J., Mangin, A., and d'Andon, O. F.: Estimation of the diffuse attenuation coefficient K(dPAR) using MERIS and application to seabed habitat mapping, Remote Sens. Environ., 128, 224–233, 2013.
Shang, S., Lee, Z., and Wei, G.: Characterization of MODIS-derived euphotic zone depth: Results for the China Sea, Remote Sens. Environ., 115, 180–186, 2011.
Soppa, M. A., Dinter, T., Taylor, B. B., and Bracher, A.: Satellite derived euphotic depth in the Southern Ocean: Implications for primary production modelling, Remote Sens. Environ., 137, 198–211, https://doi.org/10.1016/j.rse.2013.06.017, 2013.
Taylor, J. R. and Ferrari, R.: Shutdown of turbulent convection as a new criterion for the onset of spring phytoplankton blooms, Limnol. Oceanogr., 56, 2293–2307, https://doi.org/10.4319/lo.2011.56.6.2293, 2011.
Todd, R. E., Rudnick, D. L., and Davis, R. E.: Monitoring the greater San Pedro Bay region using autonomous underwater gliders during fall of 2006, J. Geophys. Res.-Ocean., 114, 483–495, https://doi.org/10.1029/2008JC005086, 2009. 2009.
van de Poll, W. H. and Buma, A. G. J.: Does ultraviolet radiation affect the xanthophyll cycle in marine phytoplankton?, Photochem. Photobiol. Sci., 8, 1295–1301, https://doi.org/10.1039/b904501e, 2009.
Xing, X., Morel, A., Claustre, H., Antoine, D., D'Ortenzio, F., Poteau, A., and Mignot, A.: Combined processing and mutual interpretation of radiometry and fluorimetry from autonomous profiling Bio-Argo floats: Chlorophyll a retrieval, J. Geophys. Res.-Oceans, (1978–2012), 116, https://doi.org/10.1029/2010JC006899, 2011.
Xing, X., Claustre, H., Blain, S., D'Ortenzio, F., Antoine, D., Ras, J., and Guinet, C.: Quenching correction for in vivo chlorophyll fluorescence acquired by autonomous platforms: A case study with instrumented elephant seals in the Kerguelen region (Southern Ocean), Limnol. Oceanogr. Methods, 10, 483–495, https://doi.org/10.4319/lom.2012.10.483, 2012.
Short summary
To protect from light stress, phytoplankton inhibit photosynthesis and suppress fluorescence through the process of quenching. This makes them invisible to fluorometers. Conventionally, quenching is corrected by taking maximum fluorescence yield in a surface mixed layer (MLD) and filling in the invisible proportion. This is only valid in waters where turbulence is high and phytoplankton are uniformly mixed. Here, we show that correcting from Zeu is a robust alternative to correcting from MLD
To protect from light stress, phytoplankton inhibit photosynthesis and suppress fluorescence...