Articles | Volume 11, issue 4
Ocean Sci., 11, 559–571, 2015
https://doi.org/10.5194/os-11-559-2015
Ocean Sci., 11, 559–571, 2015
https://doi.org/10.5194/os-11-559-2015
Research article
09 Jul 2015
Research article | 09 Jul 2015

Reconstructing bottom water temperatures from measurements of temperature and thermal diffusivity in marine sediments

F. Miesner et al.

Related authors

The CryoGrid community model (version 1.0) – a multi-physics toolbox for climate-driven simulations in the terrestrial cryosphere
Sebastian Westermann, Thomas Ingeman-Nielsen, Johanna Scheer, Kristoffer Aalstad, Juditha Aga, Nitin Chaudhary, Bernd Etzelmüller, Simon Filhol, Andreas Kääb, Cas Renette, Louise Steffensen Schmidt, Thomas Vikhamar Schuler, Robin B. Zweigel, Léo Martin, Sarah Morard, Matan Ben-Asher, Michael Angelopoulos, Julia Boike, Brian Groenke, Frederieke Miesner, Jan Nitzbon, Paul Overduin, Simone M. Stuenzi, and Moritz Langer
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-127,https://doi.org/10.5194/gmd-2022-127, 2022
Preprint under review for GMD
Short summary
Strong increase in thawing of subsea permafrost in the 22nd century caused by anthropogenic climate change
Stiig Wilkenskjeld, Frederieke Miesner, Paul P. Overduin, Matteo Puglini, and Victor Brovkin
The Cryosphere, 16, 1057–1069, https://doi.org/10.5194/tc-16-1057-2022,https://doi.org/10.5194/tc-16-1057-2022, 2022
Short summary

Related subject area

Depth range: Bottom Boundary Layer | Approach: Numerical Models | Geographical range: All Geographic Regions | Phenomena: Temperature, Salinity and Density Fields
On the numerical resolution of the bottom layer in simulations of oceanic gravity currents
N. Laanaia, A. Wirth, J. M. Molines, B. Barnier, and J. Verron
Ocean Sci., 6, 563–572, https://doi.org/10.5194/os-6-563-2010,https://doi.org/10.5194/os-6-563-2010, 2010
Structure and forcing of the overflow at the Storfjorden sill and its connection to the Arctic coastal polynya in Storfjorden
F. Geyer, I. Fer, and L. H. Smedsrud
Ocean Sci., 6, 401–411, https://doi.org/10.5194/os-6-401-2010,https://doi.org/10.5194/os-6-401-2010, 2010

Cited articles

Beardsmore, G. R. and Cull, J. P.: Crustal Heat Flow: a Guide to Measurement and Modelling, Cambridge University Press, New York, 336 pp., 2001.
Brakelmann, H. and Stammen, J.: Thermal Analysis of Submarine Cable Routes: LSM or FEM?, IEEE-conference PECon, Putra Jaya, Malaysia, 560–565, 2006.
Bullard, E. C.: Heat Flow in South Africa, Proc. R. Soc. Lond. A, 173, 474–502, 1939.
Bundesamt für Seeschifffahrt und Hydrographie: MARNET-Messnetz, available at: http://www.bsh.de/de/Meeresdaten/Beobachtungen/MARNET-Messnetz/index.jsp (last access: 6 June 2014), 2014.
Chouinard, C., Fortier, R., and Mareschal, J.-C.: Recent climate variations in the Subarctic inferred from three borehole temperature profiles in Northern Quebec, Canada, Earth Planet. Sc. Lett., 263, 355–369, 2007.
Download
Short summary
Temperature fields in marine sediments are controlled by the geothermal steady state heat flow and the bottom water temperature. Thus, the current sediments' temperature field stores the history of bottom water temperature variation. The aim of this work is the inverse modeling of the bottom water temperature variation in the last year from instantaneous measurements of the depth-dependent temperature and the thermal diffusivity.